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The degrees of freedom

Janus-faced GR:

The arena and the phenomena :

All the pre-GR physical theories provide a distinction between the arena in which
physical phenomena take place and the phenomena themselves.

arena: phenomena:

classical mechanics phase space: δab dynamical trajectories

electrodynamics Minkowski spacetime: ηab evolution of Fab
general relativity curved spacetime: gab evolution of gab

Such a clear distinction between the arena and the phenomenon is simply not
available in general relativity

the metric plays both roles.

GR is more than merely a field theoretic description of gravity.
It is a certain body of universal rules:

modeling the space of events by a four-dimensional differentiable manifold
the use of tensor fields and tensor equations to describe physical phenomena
use of the (otherwise dynamical) metric in measuring of distances, areas,
volumes, angles ...
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The degrees of freedom

The degrees of freedom in GR:

What are the degrees of freedom?

in a theory possessing an initial value formulation: “degrees of freedom” is a
synonym of “how many” distinct solutions of the equations exist

in ordinary particle mechanics: the number of degrees of freedom is the
number of quantities that must be specified as initial data divided by two

The degrees of freedom in the linearized theory:

Einstein (1916, 1918): the field equations involve two degrees of freedom per
spacetime point when studying linearized theory

Is the full nonlinear theory characterized by two degrees of freedom?

Darmois (1927): probably the earliest answer in the confirmatory based on
consideration of the Cauchy (or initial value) problem in GR

How to identify these two degrees of freedom?

They are supposed to be given in terms of components of the metric tensor and
its derivatives or such combinations of these as, e.g. the Riemann tensor.
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The degrees of freedom

The degrees of freedom in GR:
What are the main issues?

initial data: (hij ,Kij), metric and symmetric tensor on Σ0

(3)

R+
(
Kj

j

)2 −KijK
ij = 0 & DjK

j
i −DiK

j
j = 0

Di denotes the covariant derivative operator associated with hij .

“conformal method” A. Lichnerowicz (1944) and J.W. York (1972):
the constraints are solved by transforming them into a semilinear elliptic
system by replacing the fields hij and Kij by φ4 h̃ij and φ−2 K̃ij ...

“... no way singles out precisely which functions (i.e., which of the 12
metric or extrinsic curvature components or functions of them) can be freely
specified, which functions are determined by the constraints, and which
functions correspond to gauge transformations. Indeed, one of the major
obstacles to developing a quantum theory of gravity is the inability to
single out the physical degrees of freedom of the theory. ”

R.M. Wald: General Relativity, Univ. Chicago Press, (1984)

The main issue is not to find the only legitimate quantities representing
the gravitational degrees of freedom, rather, finding a particularly
convenient embodiment of this information (solving various problems).
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The degrees of freedom

The outline:

Based on some recent papers

I. Rácz: Is the Bianchi identity always hyperbolic?, Class. Quantum Grav. 31 (2014) 155004

I. Rácz: Cauchy problem as a two-surface based ‘geometrodynamics’, Class. Quantum Grav. 32 (2015) 015006

I. Rácz: Dynamical determination of the gravitational degrees of freedom, submitted to Class. Quantum Grav.

I. Rácz and J. Winicour: Black hole initial data without elliptic equations, to appear in Phys. Rev. D

The main message:

1 Euclidean and Lorentzian signature Einsteinian spaces of n + 1-dimension
(n ≥ 3), satisfying some mild topological assumptions, will be considered.

2 the Bianchi identity can be used to explore relations of various subsets of
the basic field equations

3 new method in solving the constraints: as opposed to the “conformal one”
by introducing some geometrically distinguished variables !!! regardless
whether the primary space is Riemannian or Lorentzian

momentum constraint as a first order symmetric hyperbolic system.
the Hamiltonian constraint as a parabolic or an algebraic equation

4 the conformal structure appears to provide a convenient embodiment of
the degrees of freedom
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The degrees of freedom

Assumptions:

The primary space: (M, gab)
M : n+ 1-dim. (n ≥ 3), smooth, paracompact, connected, orientable manifold
gab: smooth Lorentzian(−,+,...,+) or Riemannian(+,...,+) metric

Einsteinian space: Einstein’s equation restricting the geometry

Gab − Gab = 0

with source term Gab having a vanishing divergence, ∇aGab = 0.

or, in a more conventionally looking setup

[Rab − 1
2
gabR] + Λ gab = 8π Tab

with matter fields satisfying their field equations with energy-momentum
tensor Tab and with cosmological constant Λ

Gab = 8π Tab − Λ gab
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Foliations and their use

The primary 1 + n splitting:

No restriction on the topology by Einstein’s equations! (local PDEs)

Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some codimension one manifold Σ.

known to hold for globally hyperbolic spacetimes (Lorentzian case)
equivalent to the existence of a smooth function σ : M → R with
non-vanishing gradient ∇aσ such that the σ = const level surfaces
Σσ = {σ} × Σ comprise the one-parameter foliation of M .

Σσ
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Foliations and their use

Projections:

The projection operator:

na the ‘unit norm’ vector field that is normal to the Σσ level surfaces

nana = ε

the sign of the norm of na is not fixed. ε takes the value −1 or +1 for
Lorentzian or Riemannian metric gab, respectively.

the projection operator

hab = δab − ε nanb

to the level surfaces of σ : M → R.

the induced metric on the σ = const level surfaces

hab = heah
f
b gef

while Da denotes the covariant derivative operator associated with hab.
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Foliations and their use

Decompositions of various fields:

Examples:

a form field: La = δea Le = (hea + ε nena)Le = λna + La

where λ = ε ne Le and La = hea Le

“time evolution vector field”

σa : σe∇eσ = 1

σa = σa⊥ + σa‖ = N na +Na Σσ

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

σσ

σ

σ

σσ

aa

a

a

a

a

σ
σa

a

σ
a

where N and Na denotes the ‘laps’ and ‘shift’ of σa = (∂σ)a:

N = ε (σene) and Na = hae σ
e
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Foliations and their use

Decompositions of various fields:

Any symmetric tensor field Pab can be decomposed

in terms of na and fields living on the σ = const level surfaces as

Pab = π nanb + [na pb + nb pa] + Pab

where π = nenf Pef , pa = ε hean
f Pef , Pab = heah

f
b Pef

It is also rewarding to inspect the decomposition of the contraction ∇aPab:

ε (∇aPae)ne = Lnπ +Depe + [π (Ke
e)− εPefKef − 2 ε ṅepe]

(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

ṅa := ne∇ena = −εDa lnN

back
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Foliations and their use

Decompositions of various fields:

Examples:

the metric
gab = ε nanb + hab

the “source term”
Gab = nanb e + [na pb + nb pa] + Sab

where e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

the r.h.s. of our basic field equation Eab = Gab − Gab

Eab = nanbE
(H)

+ [naE
(M)

b + nbE
(M)

a ] + (E
(EVOL)

ab + habE
(H)

)

E
(H)

= nenf Eef , E
(M)

a = ε hean
f Eef , E

(EVOL)

ab = heah
f
bEef − habE

(H)
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Foliations and their use

Relations between various parts of the basic equations:

The decomposition of the covariant divergence ∇aEab = 0 of Eab = Gab − Gab:

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e ) back

− εKae (E
(EVOL)

ae + haeE
(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)

ab + habE
(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)

ab + habE
(H)

) ṅa ] = 0

a first order symmetric hyperbolic linear homogeneous system for (E
(H)

, E
(M)

i )T fosh

Theorem

Let (M, gab) be as specified above and assume that the metric hab induced on the
σ = const level surfaces is Riemannian. Then, regardless whether gab is of
Lorentzian or Euclidean signature, any solution to the reduced equations

E
(EVOL)

ab = 0 is also a solution to the full set of field equations Gab − Gab = 0

provided that the constraint expressions E
(H)

and E
(M)

a vanish on one of the
σ = const level surfaces. back
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Foliations and their use

The secondary 1 + [n− 1] splitting:

Assume now that on one of the σ = const level surfaces—say on Σ0—there exists
a smooth function ρ : Σ0 → R, with nowhere vanishing gradient such that:

the ρ = const level surfaces Sρ are homologous to each other and such that
they are orientable compact without boundary in M .

n
a n

a

n
a

na

Σ 0

n
i

n
i

n
i

n
i

ni

n
i

n i

n

n

i

i

n
i

The metric hij on Σ0 can be decomposed as

hij = γ̂ij + n̂in̂j

in terms of the positive definite metric γ̂ij , induced on the Sρ hypersurfaces,
and the unit norm field

n̂i = N̂
−1

[ (∂ρ)
i − N̂ i ]

normal to the Sρ hypersurfaces on Σ0, where N̂ and N̂ i denotes the ‘laps’
and ‘shift’ of an ‘evolution’ vector field ρi = (∂ρ)

i on Σ0.
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Foliations and their use

Secondary projections:

The Lie transport of this foliation of Σ0 along the integral curves of the vector
field σa yields then a two-parameter foliation Sσ,ρ:

Σσ

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

σσ

σ

σ

σσ

aa

a

a

a

a

σ
σa

a

σ
a

the fields n̂i, γ̂ij and the
associated projection op.

γ̂kl = hkl − n̂kn̂l to the

codimension-two surfaces
Sσ,ρ get to be well-defined
throughout M .

with some algebra

heah
f
bEef = E

(EVOL)

ab + habE
(H)

can be put into the form

heih
f
j Eef =

(n)

Eij =
(n)

Gij −
(n)

Gij
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Foliations and their use

The integrability condition for
(n)

Gij −
(n)

Gij = 0
(n)

Eij = Ê
(H)

n̂in̂j + [n̂iÊ
(M)

j + n̂jÊ
(M)

i ] + (Ê
(EVOL)

ij + γ̂ijÊ
(H)

)

Ê
(H)

= n̂en̂f
(n)

Eef , Ê
(M)

i = γ̂ej n̂
f (n)

Eef , Ê
(EVOL)

ij = γ̂eiγ̂
f
j
(n)

Eef − γ̂ijÊ
(H)

Lemma

The integrability condition Di[
(n)

Gij ] = 0 holds on Σσ if the momentum

constraint expression E
(M)

b , along with its Lie derivative LnE
(M)

b , vanishes there.

Corollary

Assume that E
(M)

b = 0 on all the Σσ level surfaces, and that both Ê
(H)

and Ê
(M)

a

vanish along a world-tube WS in M . Then any solution to the secondary reduced

equations Ê
(EVOL)

ij = 0 is also a solution to the secondary equations
(n)

Gij −
(n)

Gij = 0. Theorem

Corollary

Assume, in addition, that E
(H)

= 0 on Σ0. Then any solution to the reduced

equations Ê
(EVOL)

ij = 0 is also a solution to the original basic field equations

Gij − Gij = 0. [ E
(M)

b = 0 on Σ0 ⇐⇒ {Ê(H)

= 0, Ê
(M)

i = 0} on WS ]
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Foliations and their use

The explicit forms:

Expressions in the 1 + n decomposition:

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e}

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa

E
(EVOL)

ab =
(n)

Rab + ε
{
−LnKab − (Ke

e)Kab + 2KaeK
e
b − εN−1DaDbN

}
+ 1+ε

(n−1) habE
(H)

−
(
Sab − 1

n−1 hab [Sef h
ef + ε e]

)
where

e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

and the extrinsic curvature Kab which is defined as

Kab = hea∇enb = 1
2 Lnhab

where Ln stands for the Lie derivative with respect to na
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Foliations and their use

The explicit forms:

Expressions in the 1 + [n− 1] decomposition:

Ê
(H)

= 1
2 {−R̂+ (K̂l

l)
2 − K̂klK̂

kl − 2 ê} ,

Ê
(M)

i = D̂lK̂li − D̂iK̂
l
l − p̂i ,

Ê
(EVOL)

ij = R̂ij −Ln̂K̂ij − (K̂l
l)K̂ij + 2 K̂ilK̂

l
j − N̂

−1
D̂iD̂jN̂

+ γ̂ij{Ln̂K̂
l
l + K̂klK̂

kl + N̂
−1
D̂lD̂lN̂} − [Ŝij − ê γ̂ij ]

where D̂i, R̂ij and R̂ denote the covariant derivative operator, the Ricci tensor
and the scalar curvature of γ̂ij , respectively. The ‘hatted’ source terms ê, p̂i and

Ŝij and the extrinsic curvature K̂ij are defined as

ê = n̂kn̂l
(n)

Gkl , p̂i = γ̂ki n̂
l (n)

Gkl and Ŝij = γ̂kiγ̂
l
j

(n)

Gkl

and

K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij
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Solving the constraints

The 1 + [n− 1] decomposition of the extrinsic curvature:

The Σσ hypersurfaces in both cases are spacelike:

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

κ = n̂kn̂lKkl = n̂k(Lnn̂
k)

ki = γ̂kin̂
lKkl = 1

2 γ̂
k
i (Lnn̂k)− 1

2 γ̂ki (Lnn̂
k)

Kij = γ̂kiγ̂
l
j Kkl = 1

2 γ̂
k
iγ̂
l
j (Lnγ̂kl)

Kl
l = γ̂klKkl = 1

2 γ̂
ij(Lnγ̂ij)

projection taking the trace free parts on the Sσ,ρ surfaces:

Πkl
ij = γ̂kiγ̂

l
j − 1

n−1 γ̂ij γ̂
kl

◦
Kij = Kij − 1

n−1 γ̂ij(γ̂
efKef )
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Solving the constraints

The 1 + n constraints

The momentum constraint:

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa = 0 div

(K̂l
l)ki + D̂l ◦Kli + κ ˙̂ni + Ln̂ki − ˙̂nlKli − D̂iκ− n−2

n−1 D̂i(K
l
l)− ε pl γ̂li = 0

κ (K̂l
l) + D̂lkl −KklK̂

kl − 2 ˙̂nl kl −Ln̂(Kl
l)− ε pl n̂l = 0

where ˙̂nk = n̂lDln̂k = −D̂k(ln N̂)

With some algebra in coordinates (ρ, x3, . . . , xn+1) adopted to the foliation Sσ,ρ:

 n−1

(n−2) N̂
γ̂AB 0

0 1

∂ρ +

− (n−1) N̂K

(n−2) N̂
γ̂AB −γ̂AK

−γ̂BK −N̂K

∂K


 kB

KEE

 +

BA
(k)

B(K)

 = 0

Is a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’. ... with characteristic cone

(apart from the surfaces Sρ with n̂iξi = 0) [γ̂ij − (n− 1) n̂in̂j ] ξiξj = 0
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Solving the constraints

The 1 + n constraints
The Hamiltonian constraint:

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

using
(n)

R = R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂klK̂

kl + 2 N̂
−1
D̂lD̂lN̂

}

−ε R̂+ ε
{

2 Ln̂(K̂l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂
−1
D̂lD̂lN̂

}
+ 2 κ Kl

l + (Kl
l)
2 − 2klkl −KklK

kl − 2 e = 0

algebraic equation for κ provided that Kl
l does not vanish

eliminating κ ⇒ the momentum constraint becomes a strongly hyperbolic system
for (ki,K

l
l)
T provided that κ and Kl

l are of opposite sign

by choosing the free data (N̂, N̂ i, γ̂ij ,
◦
Kij) on Σ0 this can be guaranteed locally

considering data in Kerr-Schild form: gab = ηab + 2H`a`b, (H smooth! on R4, `a
is null with respect to both gab and an implicit background Minkowski metric ηab)

for near Schwarzschild kA
κ
≈ 0 approximations: −Kll

κ
≈ 2(1+2H)

1+H
everywhere !

István Rácz (Wigner RCP, Budapest) degrees of freedom 27 May, 2015 21 / 30



Solving the constraints

Conformal structure by splitting of the induced metric γ̂ij:

There exist a smooth function Ω : Σ0 → R—which does not vanish except at an
origin where the foliation Sρ smoothly reduces to a point on the Σ0 level
surfaces—such that the induced metric γ̂ij can be decomposed as

γ̂ij = Ω2 γij

where γij is such that

γij(Lργij) = 0

throughout Σ0 surfaces.

What does the second relation mean?

In virtue of

γij(Lργij) = Lρ ln[det(γij)]

the determinant is independent of ρ but may depend on the ‘angular’
coordinates.

Does the desired smooth function Ω : Σ0 → R and the metric γij exist?
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Solving the constraints

The conformal structure: γij = Ω−2 γ̂ij

The construction of Ω : Σ0 → R:

for any smooth distribution of the induced metric γ̂ij one may integrate

γ̂ij(Lργ̂ij) =�����
γij(Lργij) + (n− 1) Lρ(ln Ω2)

along the integral curves of ρa on Σ0, starting with a smooth non-vanishing
function Ω0 = Ω0(x3, . . . , xn+1) at S0.

Ω2 = Ω2(ρ, x3, . . . , xn+1) can be given as

Ω2 = Ω2
0 · exp

[
1

n−1
∫ ρ
0

(
γ̂ij(Lργ̂ij)

)
dρ̃
]

The conformal structure satisfying γij(Lργij) = 0 can be given then as:

γij = Ω−2 γ̂ij
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Solving the constraints

The other faces of the Hamiltonian constraint:

−ε R̂+ ε
{

2 Ln̂(K̂l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂
−1
D̂lD̂lN̂

}
+ 2κKl

l + (Kl
l)
2 − 2klkl −KklK

kl − 2 e = 0

�ε = ±1 elliptic equation for Ω: using K̂l
l = n−1

2
Ln̂ ln Ω2 − N̂−1

DkN̂k and

γ̂ij = Ω2 γij =⇒ R̂ = Ω−2
[
(γ)

R− (n− 2)
{
DlDl ln Ω2 + (n−3)

4
(Dl ln Ω2)(Dl ln Ω2)

}]
parabolic equation for N̂ :

K̂l
l = N̂

−1
[n−1

2
Lρ ln Ω2 − D̂kN̂k] , Ln̂(K̂l

l) = [...] ·Ln̂N̂ + ... & N̂
−1
D̂lD̂lN̂

R. Bartnik (1993), R. Weinstein & B. Smith (2004)
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Solving the constraints

Sorting the components of (hij, Kij):

The twelve independent components of the pair (hij ,Kij) may be represented by

(N̂, N̂ i,Ω, γij ;κ,ki,K
l
l,

◦
Kij)

or by applying
κ = Ln ln N̂ and ki = (2N̂)

−1
γ̂il (LnN̂

l)

Kl
l = n−1

2
Ln ln Ω2 and

◦
Kij = 1

2
Ω2 γkiγ

l
j (Lnγkl)

(N̂, N̂ i,Ω, γij ; LnN̂,LnN̂
l,LnΩ,Lnγij)

The momentum constraint (satisfying a hyperbolic system) can always be
solved as an initial value problem with initial data specified at some Sρ ⊂ Σσ
for the variables LnN̂

l,LnΩ.

The Hamiltonian constraint:

�ε = ±1 elliptic equation for Ω: ill-posed together with the hyp.mom.constr.

parabolic equation for N̂ :
freely specifiable: (N̂ i,Ω,γij ; LnN̂,Lnγij)

algebraic equation for κ:
freely specifiable: (N̂, N̂ i,Ω,γij ; Lnγij)
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Summary

Summary:

1 Euclidean and Lorentzian signature Einsteinian spaces of n + 1-dimension
(n ≥ 3) were considered. The topology of M was restricted by assuming:

smoothly foliated by a one-parameter family of homologous hypersurfaces
one of these level surfaces is smoothly foliated by a one-parameter family of
codimension-two-surfaces (orientable compact without boundary in M)

2 the Bianchi identity and a pair of nested decompositions can be used to
explore relations of various projections of the field equations

3 solving the 1 + n constraints: by introducing some geometrically
distinguished variables !!! regardless whether the primary space is
Riemannian or Lorentzian

momentum constraint as a first order symmetric hyperbolic system.
the Hamiltonian constraint as a parabolic or an algebraic equation

4 the conformal structure γij , defined on the foliating codimension-two
surfaces Sρ, appears to provide a convenient embodiment of the
(n−1)n

2 − 1 degrees of freedom to various metric theories of gravity
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Summary

Thanks for your attention
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Summary

First order symmetric hyperbolic linear homogeneous system for (E
(H)

, E
(M)

i )T :

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e )

− εKae (E
(EVOL)
ae + haeE

(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)
ab + habE

(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)
ab + habE

(H)

) ṅa ] = 0

When writing them out explicitly in some local coordinates (σ, x1, . . . , xn) adopted

to the vector field σa = N na +Na: σe∇eσ = 1 and the foliation {Σσ}, read
as {(

1
N

0
0 1

N
hij

)
∂σ +

(
− 1
N
Nk hik

hjk − 1
N
Nk hij

)
∂k

}(
E

(H)

E
(M)

i

)
=

(
E
E j

)

where the source terms E and E j are linear and homogeneous in E
(H)

and E
(M)

i . back

It is also informative to inspect the characteristic cone associated with the above
equation which—apart from the hypersurfaces Σσ with niξi = 0—can be given as

(hij − ninj) ξiξj = 0

István Rácz (Wigner RCP, Budapest) degrees of freedom 27 May, 2015 28 / 30



Summary

Relations between various parts of the basic equations:

Corollary

If the constraint expressions E
(H)

and E
(M)

a vanish on all the σ = const level
surfaces then the relations

KabE
(EVOL)

ab = 0

DaE
(EVOL)

ab − ε ṅaE
(EVOL)

ab = 0

hold for the evolutionary expression E
(EVOL)

ab .
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Summary

Having an origin

A world-line Wρ∗ represents an origin in M :

If the foliating codimension-two-surfaces
smoothly reduce to a point on the Σσ level
surfaces at the location ρ = ρ∗. back

Note that then Ω vanishes at ρ = ρ∗. =⇒
The existence of an origin on the individual Σσ
level surfaces is signified by the limiting
behavior γ̂ij(Lργ̂ij)→ ±∞ while ρ→ ρ±∗ .

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

σσ

σ

σ

σσ

aa

a

a

a

a

σ
σa

a

σ
a

wρ
*

To have a regular origin in M :

One needs to impose further conditions excluding the occurrence of various
defects such as the existence of a conical singularity.

An origin Wρ∗ will be referred as being regular if there exist smooth functions
N̂ (2),Ω(3) and N̂A

(1) such that, in a neighborhood of the location ρ = ρ∗ on

the Σσ level surfaces, the basic variables N̂,Ω and N̂A can be given as

N̂ = 1 + (ρ− ρ∗)2 N̂ (2), Ω = (ρ− ρ∗) + (ρ− ρ∗)3 Ω(3), N̂
A = (ρ− ρ∗) N̂A

(1)
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