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Digital sundial

Theorem (Falconer, 1987)

Consider 2D shadows in all spatial directions. Then there is a 3D object
having these shadows (up to measure zero).
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Marginal distributions

Question

Can p(x , y , z) be reconstructed from p(x , y), p(y , z), and p(x , z)?

Example

Consider 4 variables A,B,C ,D with values ±1 and the marginal distributi-
ons (A,C ), (A,D), (B,C ) and (B,D). When do they come from a global
distribution?

Iff they obey the CHSH inequality, A. Fine, PRL 48, 291 (1981).
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The quantum case

How do local properties determine the global properties of a
quantum state?

Which quantum states are determined as thermal states of a local
Hamiltonian?



Maximally entangled states

Results and Questions

A bipartite pure state is maximally entangled, if the marginals are
maximally mixed.

For four qubits, there is no state that is maximally entangled for any
bipartition.

What happens for general states of N particles?

Phys. Lett. A 273, 213 (2000)



Three qubits

Results and Questions

Nearly all pure three-qubit states are determined by their reduced
two-body marginals.

⇒ All pure three-qubit states can be approximated by ground states
of two-body Hamiltonians.

For more qubits, are there states which cannot be approximated by
two-body thermal states?



Graph states

Results and Questions

Graph states cannot be exact ground states of two-body
Hamiltonians.

If they can be approximated, then the energy gap vanishes.

But can one approximate them at all? Or is there a finite distance?



Outline

Questions

Given a set of reduced states, is there a global state compatible
with it?

Given a global state, is it uniquely determined by its reduced states?

Given a global state, which properties can be inferred by looking at
the marginals only?

Outline

1 Are there N-particle pure states, for which many marginals are
maximally mixed?

2 How can we address the general pure state marginal problem?



Maximally entangled states



Absolutely maximally entangled states

Results on AME states

An N-particle state where all bN/2c-particle reduced states are
maximally mixed is called AME.

Examples: Bell states, GHZ states, quantum codewords, ...

AME states correspond to ((N, 1, bN/2c+ 1))D quantum codes.

If D is large enough, they exist for any N.

Qubits: They exist for N = 2, 3, 5, 6 but not for N = 4 and N ≥ 8.

So what happens for N = 7?

Note: Not all AME states are graph states, A. Burchardt & Z. Raissi, PRA 102, 022413 (2020).
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The seven qubit case

First result

There is no AME state for seven qubits.

Second result

The best approximation to a seven qubit AME state is a graph state where
32 of the 35 three-body density matrices are maximally mixed.

F. Huber et al., PRL 118, 200502 (2017).
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Proof idea

(a) We use the Bloch decomposition and sort the correlations:

% ∼
∑
α1...αn

rα1,...,αnσα1 ⊗ · · · ⊗ σαN
∼
(
1
⊗n +

N∑
j=1

Pj

)
.

(b) From the Schmidt decomposition of a 7-qubit AME state % = |φ〉〈φ|
it follows for the five-qubit reductions

%2
(5) =

1

4
%(5) .

and

%(4) ⊗ 1⊗3 |φ〉 =
1

8
|φ〉 and %(5) ⊗ 1⊗2 |φ〉 =

1

4
|φ〉 .

(c) Inserting this in the Bloch picture and using the commutation relation
of the Paulis leads to a contradiction.
F. Huber et al., PRL 118, 200502 (2017).
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General strategies

Rains’ shadow inequality

Consider positive operators X and Y on N particles and T ⊂ {1, . . . ,N}.
Then: ∑

S⊂{1,...,N}

(−1)|S∩T |TrS
[
TrSc (X )TrSc (Y )

]
≥ 0

Application to the AME problem

Assume that an AME state |ψ〉 exists and set X = Y = |ψ〉〈ψ|.

Since |ψ〉 is AME, many
[
TrSc (X )2

]
in the SI are known as

proportional to the identity.

If one finds a contradiction, the AME does not exist.

E.M. Rains, IEEE Trans. Inf. Theory 46, 54 (2000); F. Huber et al., JPA 51, 175301 (2018)
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General results

Using similar ideas and the theory of weight and shadow enumerators one
can exclude many more cases:
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number of parties n (even only)
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F. Huber et al., JPA 51, 175301 (2018), see also https://www.tp.nt.uni-siegen.de/+fhuber/ame.html

Recent progress: AME(4,6) exists, S.A. Rather et al., arXiv:2104.05122.



General approach to the marginal problem



The problem

Find a pure n-particle state |ϕ〉 for some given marginals %I :

find: |ϕ〉
subject to: TrI c (|ϕ〉〈ϕ|) = %I , I ⊂ {1, ..., n}.

If the marginals I are not overlapping: Only the eigenvalues of the
%I matter, a solution is known.
A. Klyachko, quant-ph/0409113

The AME problem is a special case of it: %I ∼ 1
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Compatible states

The set of compatible states is given by

C = {% | % ≥ 0, TrI c (%) = %I ∀I}.

Question: Does C contain a pure state?

Trick

Take the convex hull of two copies of the compatible states:

C2 = conv{%⊗ % | % ∈ C} =
{∑

k
pk%k ⊗ %k | %k ∈ C

}
,

1

2

3

n

1

2

3

n

n-body
system A

n-body
system B
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The purity constraint

1

2

3

n

1
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n

n-body
system A

n-body
system B

If FAB is the flip operator, then Tr(FAB%A ⊗ %B) = Tr(%A%B).

So, for ΦAB ∈ C2 :

Tr(FABΦAB) =
∑

k
pkTr(%2

k) ≤ 1.

Equality holds if and only if there is a pure state in C.



First main result

1

2

3

n

1

2

3

n

n-body
system A

n-body
system B

There exists are pure global state for the marginal problem if and only if
the result of the following optimization equals one:

max
ΦAB

Tr(FABΦAB)

subject to: ΦAB is separable and normalized,

TrAI c ,BI c
(ΦAB) = %I ⊗ %I .

Remains to show: If ΦAB obeys the marginal condition, then all (pure!) terms in the convex combination do it also.

X.-D. Yu et al., Nature Comm. 12, 1012 (2021).



Remarks

If Tr(FABΦAB) = 1, then ΦAB acts on the symmetric subspace only.

For characterizing separability, it is convenient to go to more copies:

%AB =
∑

k
pk |ak〉〈ak | ⊗ |bk〉〈bk | is separable

⇒ %ABB′ =
∑

k
pk |ak〉〈ak | ⊗ |bk〉〈bk | ⊗ |bk〉〈bk | exists!

The semidefinite program

find: %ABB′

subject to: TrB′(%ABB′) = TrB(%ABB′) = %AB ,

%ABB′ ≥ 0, Tr(%ABB′) = 1

is a test for separability of %AB .

R.F. Werner, Lett. Math. Phys. 17, 359 (1989), A. C. Doherty et al., PRL 88, 187904 (2002).
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The complete hierarchy

There exists are pure global state for the marginal problem if and only if
for all N here exists an N-party quantum state ΦAB···Z such that

P+
N ΦAB···ZP

+
N = ΦAB···Z

ΦAB···Z ≥ 0, Tr(ΦAB···Z ) = 1

TrAI c
(ΦAB···Z ) = ρI ⊗ TrA(ΦAB···Z )

where P+
N is a projector onto the symmetric space.

This is a sequence of semidefinite programs!

1

2

3

n

1

2

3

n

1

2

3

n

ZBA ......
......
......

......

......



Symmetries & AME states

Observation

If the marginals in TrAI c ,BI c
(ΦAB) = ρI ⊗ ρI obey some symmetry

X = gXg†,

then this results in a symmetry of ΦAB .
⇒ The set of possible ΦAB becomes smaller ...

Observation

Potential AME states have two symmetries:

An AME state remains AME under permutation of the n particles.

An AME state remains AME under local unitaries.
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AME = Separability

ΦAB is unique

An AME(n, d) state exists if and only if an explitely given operator ΦAB is
a separable state w.r.t. the bipartition (A|B).

If ΦAB is not a state or NPT, the AME cannot exist.
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This reproduces all known nonexistence results, apart from AME(7, 2)!
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2021 Euros

Challenge

Alice and Bob have four six-dimensional systems each. Let
|φ+〉 = (

∑5
k=0 |kk〉)/

√
6 be the maximally entangled state,

define Π⊥ = 1− |φ+〉〈φ+|.

Then:

ΦTB

AB =
1

1296
|φ+〉〈φ+|⊗4

+
1

1587600

[
|φ+〉〈φ+|⊗1 ⊗ (Π⊥)⊗3 + permutations

]
+

11

18522000

[
(Π⊥)⊗4

]
.

If this state is entangled, the AME(4, 6) does not exist.

This would solve one of the “five selected open problems” in
quantum information theory.

P. Horodecki,  L. Rudnicki, K. Życzkowski, arXiv:2002.03233. Probably the money goes to: S.A. Rather et

al., arXiv:2104.05122.
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Training example

The seven-qubit problem

Alice and Bob have seven qubits each. Let P+ (P−) projectors onto
the (anti)symmetric subspace of the 2× 2 system.

Consider the state:

ΦAB =
113

1119744
(P+)⊗7

+
17

124416

[
(P+)⊗5 ⊗ (P−)⊗2 + permutations

]
+

1

13824

[
(P+)⊗3 ⊗ (P−)⊗4 + permutations

]
+

1

1536

[
(P+)⊗1 ⊗ (P−)⊗6 + permutations

]
This state is entangled, since AME(7, 2) does not exist.

Can one see the entanglement directly?



Conclusion

Results

Not all AME states exist.

The pure state marginal problem can be solved with a hierarchy of
SDPs.

The AME problem is equivalent to a specific separability problem.
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Proof ingredients

(a) We use the Bloch decomposition and sort the correlations:

% ∼
∑
α1...αn

rα1,...,αnσα1 ⊗ · · · ⊗ σαN
∼
(
1
⊗n +

N∑
j=1

Pj

)
.

(b) For anticommutators of Paulis we have the parity rule:

{σxσyσz1,11σzσz} ∼ σiσj1σk

{odd, even} 7→ odd

{even, even} 7→ even

{odd, odd} 7→ even

(c) Take a 7-qubit AME state % = |φ〉〈φ|. The five-qubit reduction fulfils

%2
(5) =

1

4
%(5) .

and

%(4) ⊗ 1⊗3 |φ〉 =
1

8
|φ〉 and %(5) ⊗ 1⊗2 |φ〉 =

1

4
|φ〉 .
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Proof steps

(d) Expand %(4) and %(5) in the Bloch basis

%(4) =
1

24
(1 + P4) , %(5) =

1

25
(1 +

5∑
j=1

P
[j]
4 ⊗ 1

(j) + P5) .

(e) Resulting eigenvalue equations:

P
[j]
4 ⊗ 1

⊗3 |φ〉 = 1|φ〉, P5 ⊗ 1⊗2 |φ〉 = 2|φ〉 .

(f) Expanding %2
(5) = 1

4%(5) gives two equations due to the parity rule.
One of them:

{P5,

5∑
j=1

P
[j]
4 ⊗ 1

(j)} = 6P5 .

(g) Multiplying with |φ〉 from the right:

(2 · 5 · 1 + 5 · 1 · 2) |φ〉 = 6 · 2 |φ〉 .
F. Huber et al., PRL 118, 200502 (2017).
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