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Why Optimal Transport (OT) theory?

OT has seen an increasing amount of attention from the applications:
Signal and data analysis
Machine learning
Neural architecture search
Image processing
Modeling population dynamics in biology or social sciences
Economics
Weather and climate models
Quantum information theory!
etc.

The methods generated from OT theory are competitive with the current
state-of-the-art methods!
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OT pave the way towards a beautiful interplay between:
partial differential equations
fluid mechanics
geometry
probability theory
functional analysis
geometric measure theory, etc.

Very recently OT gained extreme popularity, because many researchers in
different areas of mathematics understood that this topic was strongly
linked to their subject.
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Cédric Villani Alessio Figalli
(Fields Medal in 2010) (Fields Medal in 2018)
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Classical optimal transport Monge Formulation

What is Optimal Transport (OT)?

The optimal transport problem seeks the most efficient way of
transporting one distribution of mass into another.
The problem was originally studied by Gaspard Monge in 1781:
“Given a pile of sand and a pit of equal volume, how can one optimally
transport the sand into the pit?”
In: Mémoire sur la théorie des déblais et les remblais (Note on the
theory of land excavation and infill)
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Classical optimal transport Monge Formulation

The classical optimal transport problem - Monge
Formulation

X – sand space : complete separable metric space with its Borel
σ-algebra
Y – pit space : complete separable metric space with its Borel
σ-algebra
µ ∈ P(X ) the sand distribution - probability measure over X
ν ∈ P(Y ) the shape of the pit - probability measure over Y
c : X × Y → [0,∞] Borel measurable cost function: c(x , y)
represents the cost of moving a unit of mass from x ∈ X to y ∈ Y
T : X → Y transport map
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Classical optimal transport Monge Formulation

The map T : X → Y must be mass-preserving:

µ(T−1(B)) = ν(B), for all B ⊂ Y Borel

ν ∈ P(Y ) is push-forward measure of µ ∈ P(X ) under the map T if

(T#µ)(B) := µ(T−1(B)) = ν(B),

for all B ⊂ Y Borel measurable set. In other words if X is a random
variable such that Law(X ) = µ, then

Law(T (X )) = T#µ.
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Classical optimal transport Monge Formulation

The total transport cost of the map T : X → Y :

C (T ) :=

∫
X
c(x ,T (x))dµ(x)

The Monge problem
For given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → [0,∞] to find the
optimal transport map T : X → Y , i.e. to solve

inf{C (T ) =
∫
X c(x ,T (x))dµ(x) : T#µ = ν}
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Classical optimal transport Monge Formulation

What can we say about the solution of the Monge problem?

A transport map may not exist!
For example if µ = δx0 is the Dirac measure at some x0 ∈ X but ν is not,
then the set B = {T (x0)} satisfies

µ(T−1(B)) = 1 > ν(B),

so no such T can exist! Why?
Because the mass at x0 must be sent to a unique point T (x0), i.e. splitting
the grains of sand is not allowed!
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Classical optimal transport Monge Formulation

Remarks:
The existence and the uniquness of the solution depend heavily on the
structure of the space, and on the cost function.
Monge originally considered the case X = Y = R3, and the cost was
the Euclidean distance c(x , y) = ‖x − y‖. This original problem was
extremely difficult, and the Academy of Paris offered a prize for its
solution.
The existence thory for the Monge problem was not fully understood
until 1995. (Brenier ’87, Gangbo & McCann ’95.)
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Classical optimal transport Monge Formulation

In the case

X = Y = Rn, c(x , y) = ‖x − y‖p, 0 < p <∞,

µ, ν are compactly supported:

For p > 1, if µ, ν are absolutely continous with respec to Lebesgue
measure, then there is a unique solution to the Monge problem.
For p = 2 and n ≥ 2 the unique optimal transport map is T = ∇ϕ for
some convex function ϕ : Rn → R.
For p = 1, if µ, ν are absolutely continous with respec to Lebesgue
measure, then there are solutions of the Monge problem, but there is
no uniqueness.
For p < 1, there is in general no solution of the Monge problem,
except if µ and ν are concentrated on disjoint sets.
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Classical optimal transport Kantorovich Formulation

The classical optimal transport problem - Kantorovich
Formulation

Working on optimal allocation of scarce resources during World War II,
Kantorovich revisited the optimal transport problem in 1942.
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Classical optimal transport Kantorovich Formulation

The classical optimal transport problem - Kantorovich
Formulation

X – sand space : complete separable metric space with its Borel
σ-algebra
Y – pit space : complete separable metric space with its Borel
σ-algebra
µ ∈ P(X ) the sand distribution - probability measure over X
ν ∈ P(Y ) the shape of the pit - probability measure over Y
c : X × Y → [0,∞] Borel measurable cost function: c(x , y)
represents the cost of moving a unit of mass from x ∈ X to y ∈ Y

József Pitrik OT: classical and quantum 14 / 52



Classical optimal transport Kantorovich Formulation

Instead of transport maps, we consider probability measures on the product
space X × Y . If π ∈ P(X × Y ), then π(A× B) is the amount of sand
transported from the subset A ⊆ X into the part of the pit represented by
B ⊆ Y .

The total mass sent from A is π(A×Y ), and the total mass sent to B
is π(X × B).
π is mass-preserving iff

π(A× Y ) = µ(A) for all A ⊂ X Borel

π(X × B) = ν(B) for all B ⊂ Y Borel

A probability measure π satisfying these conditions will be called coupling
or transport plan of µ and ν.
The set of such couplings is denoted by Π(µ, ν).

József Pitrik OT: classical and quantum 15 / 52



Classical optimal transport Kantorovich Formulation

If π ∈ Π(µ, ν), then π|X = µ and π|Y = ν are the marginals.
Π(µ, ν) is never empty: it always contains the product measure µ⊗ ν
defined by [µ⊗ ν](A× B) = µ(A)ν(B)

1

1Source: Wikipedia
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Classical optimal transport Kantorovich Formulation

The total cost associated with π ∈ Π(µ, ν) is

C (π) =

∫
X×Y

c(x , y)dπ(x , y).

The Kantorovich problem
For given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → [0,∞] to find the
optimal transport plan π ∈ Π(µ, ν), i.e. to solve

inf{C (π) =
∫
X×Y c(x , y)dπ(x , y) : π ∈ Π(µ, ν)}

Probabilistic view:

inf
(X ,Y )

{E[c(X ,Y )] : X ∼ µ and X ∼ ν}

Both the objective function C (π) and the constraints for the coupling are
linear in π, so the problem can be seen as infinite-dimensional linear
programming.
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Classical optimal transport Kantorovich Formulation

In 1975, Kantorovich shared the Nobel Memorial Prize in Economic
Sciences with Tjalling Koopmans “for their contributions to the theory of
optimum allocation of resources.”
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Classical optimal transport Kantorovich Formulation

Kantorovich vs. Monge

The Kantorovich problem admits a solution when the cost is continous.
The Kantorovich problem is a relaxation of the Monge problem,
because to each transport map T one can associate a coupling πT , by

πT (A× B) := µ(A ∩ T−1(B)), for all Borel A ⊆ X , B ⊆ Y

with the same cost, i.e. C (T ) = C (πT ).
It follows that

inf
T :T#µ=ν

C (T ) = inf
πT :T#µ=ν

C (π) ≥ inf
π∈Π(µ,ν)

C (π) = C (π∗),

for some optimal π∗.
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Wasserstein spaces p-Wasserstein distance

What is a Wasserstein space?

Let Wp(X ) be the set of Borel probability measures with finite p’th
moment defined on a given complete separable metric space (X , d):

Wp(X ) =

{
µ ∈ P(X )

∣∣∣∣ ∫
X
d(x , x̂)p dµ(x) <∞ for some x̂ ∈ X

}
.

The p-Wasserstein metric Wp, for p ≥ 1 on Wp(X ) is then defined
as the optimal transport problem with the cost function
c(x , y) = dp(x , y). For µ, ν ∈ Wp(X )

Wp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X 2

d(x , y)p dπ(x , y)

) 1
p

.

where Π(µ, ν) =
{
π ∈ P

(
X 2) ∣∣π|1 = µ, π|2 = ν

}
is the collection of

all transport plans between µ and ν.
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Wasserstein spaces p-Wasserstein distance

The space of sufficiently concentrated probability measures Wp(X )
endowed with the metric Wp is a separable and complete metric space,
called p–Wasserstein space.

Example: quadratic Wasserstein distance of two Gaussians
P = N (m,C ) is a normal distribution on Rn if its probability density
function is

p(x) =
exp
(
−1

2(x −m)TC−1(x −m)
)√

(2π)n detC
,

where m ∈ Rn is its expected value and C is a symmetric postive-definite
n × n matrix, the covariance matrix.
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Wasserstein spaces p-Wasserstein distance

If P1 = N (m1,C1) and P2 = N (m2,C2), then their 2-Wasserstein
distance, wrt. the usual Euclidean norm on Rn is

W2(P1,P2)2 = ‖m1 −m2‖22 + Tr (C1 + C2 − 2(C 1/2
2 C1C

1/2
2 )1/2).

Fun fact: if ρ1 and ρ2 are density matrices, then their Bures distance DB is
given by

D2
B(ρ1, ρ2) = Tr

(
ρ1 + ρ2 − 2(ρ

1/2
2 ρ1ρ

1/2
2 )1/2

)
,

and their fidelity is

F (ρ1, ρ2) = Tr (ρ
1/2
2 ρ1ρ

1/2
2 )1/2.
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Wasserstein spaces p-Wasserstein distance

In general if (X ,Σ) is a measurable space and P(X ) is the space of
probability measures on X , there is a lot of possibility to define distances
and divergences between two diributions P,Q ∈ P(X ) to measure their
dissimilarity:

The Total Variation (TV) distance

TV (P,Q) = sup
A∈Σ
|P(A)− Q(A)|.

The Kullback-Leibler divergence (KL)

KL(P||Q) =

{∫
X log

(
p(x)
q(x)

)
p(x)dµ(x), if supp (P) ∩ kerQ = {0}

+∞, if supp (P) ∩ kerQ 6= {0},

where P(A) =
∫
A p(x)dµ(x) and Q(A) =

∫
A q(x)dµ(x) for all A ∈ Σ.
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Wasserstein spaces p-Wasserstein distance

The Jensen-Shannon divergence (JS)

JS(P,Q) = KL(P||M) + KL(Q||M),

where M = P+Q
2 is the mixture.

These distances are useful, but they have some drawbacks:
1 We cannot use them to compare P and Q when one is discrete and

the other is continous.
2 These distances ignore the underlying geometry of the space.
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Wasserstein spaces p-Wasserstein distance

Example

TV (P,Q) =

{
1− p if Θ 6= 0
0 if Θ = 0

KL(P||Q) =

{
+∞ if Θ 6= 0
0 if Θ = 0
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Wasserstein spaces p-Wasserstein distance

JS(P,Q) = (1− p) log 2
The 1-Wasserstein (Earth-Mover) distance depends on Θ !

W1(P,Q) = Θ(1− p)

József Pitrik OT: classical and quantum 26 / 52



Wasserstein spaces p-Wasserstein distance

p-Wasserstein for 1D probability measures

For absolutely continous probability measures µ and ν on R we can
define their cumulative distribution functions

Fµ(x) = µ((−∞, x)) and Fν(x) = ν((−∞, x))

p-Wasserstein distance expressed by cumulative distribution functions:
Vallender:2

W1(µ, ν) =

∫ 1

0

∣∣F−1
µ (x)− F−1

ν (x)
∣∣ dx

this can be generalized:3

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (x)− F−1

ν (x)
∣∣p dx

) 1
p

(p > 1, µ, ν ∈ Wp(R))

2S. S. Vallender, Calculation of the Wasserstein distance between probability
distributions on the line, Theory Probab. Appl. 18 (1973), 784–786.

3C. Villani, Topics in optimal transportation, Graduate studies in Mathematics vol.
58, American Mathemtical Society, Providence, RI, 2003.
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Wasserstein spaces p-Wasserstein distance

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (x)− F−1

ν (x)
∣∣p dx

) 1
p

Note that the distances and divergences above do not provide a sensible
distance between I0, I1 and I2 while the p-Wasserstein distance does!
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Wasserstein spaces Wasserstein barycenters

Wasserstein barycenters

When we average different objects – such as distributions, data sets or
images – we would like to make sure that we get back a similar objects.
Suppose we have a set of distributions P1,P2, . . . ,Pn. How do we
summarize these distributions with one “typical” distribution? We could
take the average or Euclidean barycenter:

1
n

n∑
i=1

Pi .

A generalization of the average is the following. Let (X , d) be a metric
space. The barycenter of the points x1, x2, . . . , xn ∈ X is defined by

BCd (x1, x2, . . . , xn) = argmin
x

1
n

n∑
i=1

d2(x , xi ).
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Wasserstein spaces Wasserstein barycenters

Example 14

Top: Five distibutions. Bottom left: Euclidean average of the distributions.
Bottom right: 1-Wasserstein barycenter.

4Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.
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Wasserstein spaces Wasserstein barycenters

Example 25

Top: We take some random cirles and take a uniform distibution on each
circle. Bottom left: Euclidean average of the distributions. Bottom right:
1-Wasserstein barycenter.

5Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.
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Wasserstein spaces Wasserstein geodesics

2-Wasserstein geodesics

The set of continous measures on Ω together with the 2-Wasserstein
metric forms a Riemannian manifold, denoted by P2(Ω). (F. Otto,
2001.)
Given the 2-Wasserstein space, the geodesic between µ and ν is the
shortest curve on P2(Ω) that connects these measures.
Let ρt for t ∈ [0, 1] parametrizes the geodesic curve on W2(X ) with
ρ0 = µ and ρ1 = ν.
If T is the optimal transport map (it exist in this case!) we define

Tt(x) := (1− t)x + tT (x) (McCann interpolation)

Then the geodesic ρt is given by

ρt = (Tt)#µ.

Recall that the push-forward measure is defined by
(T#µ)(B) := µ(T−1(B)) = ν(B) for all Borel B .
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Wasserstein spaces Wasserstein geodesics

It is straightforward to show that the geodesic ρt is a constant speed
geodesic, ie.

W2(µ, ρt) = tW2(µ, ν).
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Wasserstein spaces Wasserstein geodesics

Example 6

6Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.
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Wasserstein spaces Some modern approaches to the OT problem

Dynamical interpretation – Benamou-Brenier formula

The problem goes back to the fluid mechanics: we like to model an
incompressible, inviscid fluid in a bounded, smooth open set Ω ⊂ Rn

(n = 2, 3). p = p(t, x) ∈ R is the pressure of the fluid at time t and
position x , the unknown is the velocity field of the fluid:

v(t, x) : R+ × Ω→ Rn (=tangent space to Ω)

The incompressible Euler equation:
∂v
∂t + v · ∇v = −∇p (Euler equation)
∇ · v = 0 (incompressibility condition)
v · ν = 0 on ∂Ω (no flux condition).
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Wasserstein spaces Some modern approaches to the OT problem

V.I. Arnold (1966) showed that the Euler eqation can be represented as
geodesic equations on the (infinite-dimensional) group of diffeomorphisms
equipped with a certain Riemannian metric.
Benamou and Brenier (2000)
Let µ0, µ1 ∈ W2(Rd ), and let T be the optimal transport map between µ0
and µ1.

Tt(x) = (1− t)x + tT (x), x ∈ Rd

is the McCann interpolation, for which T0(x) = x and T1(x) = T (x).
Then the geodesic curve in W2(Rd ) between µ0 and µ1 is given by:

µt := µ0 ◦ T−1 = ρtdx , t ∈ [0, 1],

where µ0 = ρ0dx . If we define the velocity field by

vt : Rd → Rd ,
dTt

dt
= vt(Tt),

then µt satisfies the classical continuity equation:
∂ρt

∂t
+∇(ρt · vt) = 0.
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Wasserstein spaces Some modern approaches to the OT problem

Benamou and Brenier defined for a given pair (ρt , vt) solving the continuity
equation with the tangentiality of vt on the boundary the total kinetic
energy (or action) by

A[ρt , vt ] :=

∫ 1

0

∫
Ω
‖vt(x)‖2ρt(x)dxdt,

and showed that

W 2
2 (µ0, µ1) = inf{A[ρt , vt ] : ρ0 = µ0, ρ1 = µ1, ∂tρt +∇(vtρt) = 0}.

In the fluid dynamical interpretation ρt(x) stands for the density of
particles.
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Wasserstein spaces Some modern approaches to the OT problem

Gradient flows – Otto calculus

Gradient flows are evolutionary systems driven by a potential (energy), in
the sense that the energy decreases along solutions, as fast as possible. The
two ingredients of the problem are:

the driving energy
“as fast as possible” =⇒ the dissipation mechanism

Example
A curve x : [0,T ]→ Rn is the gradient flow of a potential E : Rn → R
starting at x0 ∈ Rn if {

d
dt x(t) = −∇E (x(t)),

x(0) = x0.
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Wasserstein spaces Some modern approaches to the OT problem

Note that, for a solution x(t) of the gradient flow

d
dt

E (x(t)) = ∇E (x(t))ẋ(t) = −‖∇E (x(t))‖2 ≤ 0,

thus
E decreases along the curve x(t)
d
dtE (x(t)) = 0 iff ‖∇E (x(t))‖ = 0 i.e. x(t) is a critical point a E
convexity of the energy E determines stability and long time behavior

If we like to generalize this concept from Rn to more exciting spaces X , to
define a gradient flow we need gradients (tangent plane) and scalar product
(that is we have to define the dissipation mechanism).
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Wasserstein spaces Some modern approaches to the OT problem

Example
If X = L2(Rn), we define the operator ∇ by

〈∇E (f ), g〉 = lim
t→0

E (f + tg)− E (f )

t
, f , g ∈ L2(Rn).

With the choice of
E (f ) =

1
2

∫
Rn
‖∇f ‖2dx

called Dirichlet energy functional, the gradient flow is the heat equation

∂

∂t
f (x , t) = 4f (x , t).

F. Otto at al. discovered that by replacing the Dirichlet energy functional
with the entropy functional

∫
f log f , and the L2 norm with the

2-Wasserstein distance, the 2-Wasserstein gradient flow is again the heat
equation.
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Wasserstein spaces Some modern approaches to the OT problem

Gradient flows in the 2-Wasserstein space

It turns out that many PDE’s of mathematical physics admit desciptions in
the form of gradient flows of some energy functional E on W2. Moreover,
all Wasserstein gradient flows are of the form

∂ρ

∂t
+∇ · (vρ) = 0, with v = −∇∂E

∂ρ
.
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Quantum optimal transport Basics

Basics of quantum optimal transport

several different approaches:
Biane and Voiculescu (free probability)
Carlen and Maas (dynamical interpretation)
Golse, Mouhot, and Paul (static interpretation)
De Palma and Trevisan (quantum channels)
Życzkowski and Słomczyński (semi-classical approach)

most relevant approaches for us are that of Golse-Mouhot-Paul7 and
De Palma-Trevisan8

7F. Golse, C. Mouhot and T. Paul, On the mean-field and classical limits of quantum
mechanics, Commun. Math. Phys., 343 (2016), 165–205.

8G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.

József Pitrik OT: classical and quantum 42 / 52



Quantum optimal transport Basics

Basics of quantum optimal transport

Purification
Given a state ρ ∈ S(H), a purification γ ∈ S(H⊗K) pure such that

TrKγ = ρ.

Canonical choice: K = H∗ and H⊗H∗ ≈ T2(H) by∑
i ,j

xij |i〉 ⊗ 〈j | ∈ H ⊗H∗ ←→
∑
i ,j

xij |i〉〈j | ∈ T2(H).

ρ ∈ S(H) 7→ ||√ρ〉〉 ∈ H ⊗H∗
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Quantum optimal transport Basics

Basics of quantum optimal transport

The approach of De Palma and Trevisan9

For any ρ, σ ∈ S(H), the setM(ρ, σ) of quantum transport maps
from ρ to σ is the set of the quantum channels (CPTP maps) such
that

Φ : T1(supp (ρ))→ T1(H), Φ(ρ) = σ.

We can associate with any Φ ∈M(ρ, σ) the quantum state
ΠΦ ∈ S(H⊗H∗) by

ΠΦ =
(
Φ⊗ IT1(H∗)

)
(||√ρ〉〉 〈〈√ρ||) .

9G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Quantum optimal transport Basics

Basics of quantum optimal transport

Since
TrHΠΦ = ρT ad TrH∗ΠΦ = σ,

where XT is the transpose map, i.e. XT 〈φ| = 〈φ|X , it induce the
following definition:
The set of quantum couplings assosiated with ρ, σ ∈ S(H) is

C(ρ, σ) = {Π ∈ S(H⊗H∗) : TrHΠ = ρT ,TrH∗Π = σ}.

De Palma and Trevisan showed that for any ρ, σ ∈ S(H), the map
Φ 7→ ΠΦ is a bijection betweenM(ρ, σ) and C(ρ, σ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.
Why? The primary reason: quantum channels can “split mass” , i.e.
they can send pure states to mixed states.
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Quantum optimal transport Basics

Basics of quantum optimal transport

The cost operator for fixed self-adjoint operators {Ri}Ni=1:

C =
M∑

j=1

(
Rj ⊗ IH∗ − IH ⊗ RT

j

)2

The transport cost for a coupling Π is

C (Π) = TrH⊗H∗ΠC

The quantum Wasserstein distance DC (ρ, σ) is defined by

D2
C (ρ, σ) = inf

Π∈C(ρ,σ)
C (Π)

József Pitrik OT: classical and quantum 46 / 52



Quantum optimal transport Basics

Some very strange thing

DC (ρ, σ) = DC (σ, ρ)
√

If ρ = σ then the optimal transport map corresponds to the identity,
so DC (ρ, ρ)2 = C

(∣∣∣∣√ρ〉〉 〈〈√ρ∣∣∣∣) and
DC (ρ, ρ)2 = 2

M∑
i=1

(
Tr (ρR2

i )− Tr (
√
ρRi
√
ρRi )

)
= −

N∑
i=1

Tr
(
[Ri ,
√
ρ]2
)
,

the Wigner – Yanase information, i.e. there is some deep
connection with the quantum Fisher information!
For any ρ, τσ ∈ S(H) the modified triangle inequality holds:

DC (ρ, σ) ≤ DC (ρ, τ) + DC (τ, τ) + DC (τ, σ)
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Quantum optimal transport "Quantum optimal transport is cheaper"

"Quantum optimal transport is cheaper"

the following example is taken from Caglioti-Golse-Paul10

the setting: H = L2 (Rd) , the cost is defined by position and
momentum:

C = (p̂ ⊗ I − I ⊗ p̂)2 + (q̂ ⊗ I − I ⊗ q̂)2 − 2d~

= (x − y)2 − ~2 (∇x −∇y )2 − 2d~ = −4~2∇2
x−y + (x − y)2 − 2d~

1
2 (C + 2d~) is the Hamiltonian of the quantum harmonic oscillator in
the variable (x − y)/

√
2 and hence C ≥ 0

10E. Caglioti, F. Golse, T. Paul, Quantum optimal transport is cheaper, J. Stat. Phys.
181 (2020), 149–162.
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let d = 1 and consider the classical OT problem with
µ = 1+η

2 δa + 1−η
2 δ−a and ν = 1

2δa + 1
2δ−a where η > 0 so η/2 is

transported from a to −a, and the quadratic cost is 2ηa2
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"Quantum optimal transport is cheaper"

the "quantized classical" coupling is Qc =

=
1
2
|a〉 〈a|⊗|a〉 〈a|+1− η

2
|−a〉 〈−a|⊗|−a〉 〈−a|+η

2
|a〉 〈a|⊗|−a〉 〈−a|

where |a〉 is a is a coherent state of null momentum localized at a,

i.e., 〈x | |a〉 = (π~)−
1
4 e−

(x−a)2

2~ , with marginals

tr2Qc =: R =
1 + η

2
|a〉 〈a|+ 1− η

2
|−a〉 〈−a|

and
tr1Qc =: S =

1 + λ

2
|φ+〉 〈φ+|+

1− λ
2
|φ−〉 〈φ−|

where φ± = |a〉±|−a〉√
2(1±λ)

and λ = 〈a| |−a〉 = e−a2/~
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"Quantum optimal transport is cheaper"

now let

Qq :=


1 0 0 −1
0 −1 1 0
0 1 −1 0
−1 0 0 1


in the basis {φ± ⊗ φ±}
clearly, tr2Qq = tr1Qq = trQq = 0
therefore, Qε := Qc + εQq is a coupling of R and S (checking the
positivity is tricky) for 0 < ε << 1

and trCQq = −8a2λ2

1−λ2 < 0, hence

trCQε = trCQ0 − ε
8a2λ2

1− λ2 < trCQ0 = d2
W2

(µ, ν)
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Future plan

Understand the intimate connections between quantum Wasserstein
distances and Fisher information metrics.
Quantum Wasserstein geodesics
Quantum Wasserstein barycenters
Describe the isometric structure of p-Wasserstein spaces in some
important cases.
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Thank you for your kind attention!
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