Quantifying clumsiness in a Leggett-Garg test

G. Vitagliano ${ }^{1}$

${ }^{1}$ Theoretical Physics, University of the Basque Country UPV/EHU, E-48080 Bilbao, Spain

DPG Meeting-2016, Hannover

Invasivity of measurements in phase space

- Assuming an initial definite phase-space point $\mathbf{r}_{\text {in }}=(x, p)$
- We formalize the effect of measurement as
- For initial uncertainty we have a PDF $\rho(x, p)$ and

$$
\rho_{\mathrm{in}}(x, p) \mapsto \rho_{\text {out }}(x, p)=\int d \lambda \mu(\lambda) \rho_{\mathrm{in}}\left(\mathcal{M}_{\lambda}(x, p)\right)
$$

Invasivity of measurements in phase space

- Assuming an initial definite phase-space point $\mathbf{r}_{\text {in }}=(x, p)$
- We formalize the effect of measurement as

$$
\mathbf{r}_{\mathrm{in}}=(x, p) \mapsto \mathcal{M}(x, p)=\left(x^{\prime}, p^{\prime}\right):=\mathbf{r}_{\mathrm{out}}
$$

- For initial uncertainty we have a PDF $\rho(x, p)$ and

Invasivity of measurements in phase space

- Assuming an initial definite phase-space point $\mathbf{r}_{\mathrm{in}}=(x, p)$
- We formalize the effect of measurement as

$$
\mathbf{r}_{\mathrm{in}}=(x, p) \mapsto \mathcal{M}(x, p)=\left(x^{\prime}, p^{\prime}\right):=\mathbf{r}_{\mathrm{out}}
$$

- For initial uncertainty we have a PDF $\rho(x, p)$ and

$$
\rho_{\mathrm{in}}(x, p) \mapsto \rho_{\mathrm{out}}(x, p)=\int d \lambda \mu(\lambda) \rho_{\mathrm{in}}\left(\mathcal{M}_{\lambda}(x, p)\right)
$$

Coarse-grained dichotomic observables

- Macroscopic dichotomic observables can be defined by coarse-graning

$$
Q=\operatorname{sgn}(x) \quad P=\operatorname{sgn}(p)
$$

- And discrete probabilities $\operatorname{Pr}(Q, P)$ like

Coarse-grained dichotomic observables

- Macroscopic dichotomic observables can be defined by coarse-graning

$$
Q=\operatorname{sgn}(x) \quad P=\operatorname{sgn}(p)
$$

- And discrete probabilities $\operatorname{Pr}(Q, P)$ like

$$
\operatorname{Pr}(+,+)=\int_{x \geq 0, p \geq 0} \rho(x, p) \mathrm{d} x \mathrm{~d} p,
$$

are associated to uncertainty

Macrorealism conditions

- Macrorealism (MR) means that $\mathcal{N}(\mathrm{r})=\mathrm{r}$ and in particular

$$
\begin{equation*}
\operatorname{sgn}(\mathcal{M}(\mathbf{r}))=\operatorname{sgn}(\mathbf{r}) \tag{1}
\end{equation*}
$$

- Necessary conditions follow
- On joint probabilities $\operatorname{Pr}\left(Q_{i}, Q_{j}\right)_{\delta_{(i, \mathrm{i})}}$ of $\mathcal{S}_{\mathrm{i}, \mathrm{j}}=\mathcal{M}_{j} \circ \mathcal{M}_{i}$

Macrorealism conditions

- Macrorealism (MR) means that $\mathcal{N}(\mathrm{r})=\mathrm{r}$ and in particular

$$
\begin{equation*}
\operatorname{sgn}(\mathcal{M}(\mathbf{r}))=\operatorname{sgn}(\mathbf{r}) \tag{1}
\end{equation*}
$$

- Necessary conditions follow

$$
\begin{equation*}
W:=\sum_{Q_{1}, Q_{3}= \pm 1}\left|\operatorname{Pr}\left(Q_{1}, Q_{3}\right)_{S_{1,2,3}}-\operatorname{Pr}\left(Q_{1}, Q_{3}\right)_{S_{1,3}}\right|=0 \tag{2}
\end{equation*}
$$

- On joint probabilities $\operatorname{Pr}\left(Q_{i}, Q_{j}\right)_{\delta_{(i, \mathrm{j})}}$ of $\mathcal{S}_{\mathrm{i}, \mathrm{j}}=\mathcal{M}_{j} \circ \mathcal{M}_{i}$

Clumsiness loophole of Macrorealism tests

- A test can witness failure of MR due to
(1) Non-existence of a definite state $\mathbf{r}(t)$ at t_{1}, t_{2}, t_{3}
(2) Invasive effect of measurement $\mathcal{M}_{i}(\mathbf{r}) \neq \mathbf{r}$
- QM assumes both (1) and (2)
- However, also clumsy measurements are invasive!
- One must distinguish clumsiness from invasivity and quantify the former (Remember:macroscopic observables should be considered)

Clumsiness loophole of Macrorealism tests

- A test can witness failure of MR due to
(1) Non-existence of a definite state $\mathbf{r}(t)$ at t_{1}, t_{2}, t_{3}
(2) Invasive effect of measurement $\mathcal{M}_{i}(\mathbf{r}) \neq \mathbf{r}$
- QM assumes both (1) and (2)
- However, also clumsy measurements are invasive!
- One must distinguish clumsiness from invasivity and quantify the former (Remember:macroscopic observables should be considered)

Clumsiness loophole of Macrorealism tests

- A test can witness failure of MR due to
(1) Non-existence of a definite state $\mathbf{r}(t)$ at t_{1}, t_{2}, t_{3}
(2) Invasive effect of measurement $\mathcal{M}_{i}(\mathbf{r}) \neq \mathbf{r}$
- QM assumes both (1) and (2)
- However, also clumsy measurements are invasive!
- One must distinguish clumsiness from invasivity and quantify the former (Remember:macroscopic observables should be considered)

Clumsiness loophole of Macrorealism tests

- A test can witness failure of MR due to
(1) Non-existence of a definite state $\mathbf{r}(t)$ at t_{1}, t_{2}, t_{3}
(2) Invasive effect of measurement $\mathcal{M}_{i}(\mathbf{r}) \neq \mathbf{r}$
- QM assumes both (1) and (2)
- However, also clumsy measurements are invasive!
- One must distinguish clumsiness from invasivity and quantify the former (Remember:macroscopic observables should be considered)

Our proposal: perform QND measurements...

$$
\begin{gathered}
{\left[H_{I}, x_{S}\right]=0} \\
\Longrightarrow \text { Quantum Non-Demolition }{ }^{1} \text { measurement of } x_{S}
\end{gathered}
$$

- It is suitable for macroscopic variables

Where does MR fail?

$$
p_{S}^{(\mathrm{out})}=p_{S}^{(\mathrm{in})}+\kappa x_{M}^{(\mathrm{in})}
$$

there is a back action on p_{S}

Where does MR fail?

$$
\left(\Delta x_{S}\right)_{\text {(out) }}^{2}=\chi\left(\Delta x_{S}\right)_{(\text {in })}^{2}+(1-\chi)\left(\Delta x_{S}\right)_{\text {(noise) }}^{2}
$$

and also noise directly in x_{S}

Where does MR fail?

- We can make an explicit distinction

$$
\mathcal{M}(\mathbf{r})=\mathcal{M}_{X} \circ \mathcal{M}_{P},
$$

where $\mathcal{M}_{X}(x, p)=\left(x^{\prime}, p\right)$ and $\mathcal{M}_{P}(x, p)=\left(x, p^{\prime}\right)$
... then quantify the direct disturbance on x_{S}

We define a quantifier of $\mathcal{M}_{X}(x, p)$ for the second measurement
Clumsiness parameter

$$
\mathcal{J}\left(\mathcal{M}_{2}\right)=\sum_{Q_{1}, Q_{3}= \pm 1}\left|\operatorname{Pr}\left(Q_{1}, Q_{3}\right)_{\delta_{\left(1,2^{\prime}, 3\right)}}-\operatorname{Pr}\left(Q_{1}, Q_{3}\right)_{\delta_{(1,3)}}\right|
$$

A proposed test in atomic ensembles

Sequences for MR test

Control Sequences

Modified LG inequality

$$
\left\langle Q_{7} Q_{3}\right\rangle+\left\langle Q_{5} Q_{3}\right\rangle+\left\langle Q_{7} Q_{5}\right\rangle+1+\mathcal{J}_{37}+\mathcal{J}_{57} \geq 0
$$

A proposed test in atomic ensembles

Sequences for MR test

Control Sequences

$$
\mathcal{J}_{57}=\sum_{Q_{5}, Q_{7}= \pm}\left|\operatorname{Pr}\left(Q_{5}, Q_{7}\right)_{\mathcal{S}_{(5,7)}^{\prime}}-\operatorname{Pr}\left(Q_{5}, Q_{7}\right)_{\mathcal{S}_{(3,5)}}\right|
$$

A proposed test in atomic ensembles

Modified LG inequality

$$
\left\langle Q_{7} Q_{3}\right\rangle+\left\langle Q_{5} Q_{3}\right\rangle+\left\langle Q_{7} Q_{5}\right\rangle+1+\mathcal{J}_{37}+\mathcal{J}_{57} \geq 0
$$

System+Meter are atoms $\vec{J}=\left(N_{A}, J_{y}, J_{z}\right)$ and light $\vec{S}=\left(\frac{N_{L}}{2}, S_{y}, S_{z}\right)$

$$
S_{y}^{(\mathrm{out})}=S_{y}^{(\mathrm{in})}+\kappa J_{z}^{(\mathrm{in})}
$$

noise can be parameterized with $\chi=\exp \left(-\eta N_{L}\right)$

$$
\left(\Delta J_{z}\right)_{(\mathrm{out})}^{2}=\chi^{2}\left(\Delta J_{z}\right)_{(\mathrm{in})}^{2}+\chi(1-\chi) \frac{N_{A}}{2}+(1-\chi) \frac{2}{3} N_{A}
$$

Summary

- We addressed the clumsiness loophole of MR tests by
(- Exploiting the features of QND measurement
(2) Defining an appropriate clumsiness quantifier
- We extended current MR tests to exclude larger set of theories, including some invasivity
- We showed that adroit MR tests are feasible in macroscopic systems (e.g. atomic ensembles) with current-state technology

THANKS FOR YOUR ATTENTION!

C. Budroni, GV, G. Colangelo, et al., PRL 115, 200403 (2015)

GV, PhD Thesis, arxiv:1511.08104

+ in preparation

Group Home Page
www.gedentqopt.eu

