A divergence center interpretation of general Kubo-Ando means

József Pitrik Wigner Research Centre for Physics and Budapest University of Technology and Economics Joint work with Dániel Virosztek, Erdős group, IST Austria

- 2 The divergence interpretation of the arithmetic mean
- 3 The divergence interpretation of the geometric mean
 - The divergence interpretation of the harmonic mean
- General Kubo-Ando means as divergence centers
- 6 Weighted multivariate versions of Kubo-Ando means

Notations

- \mathcal{H} (finite) dimensional complex Hilbert-space
- $\mathcal{B}(\mathcal{H})$ linear operators on \mathcal{H}
- $\mathcal{B}(\mathcal{H})^{sa}$ self-adjoint operators on \mathcal{H}
- $\bullet~ {\mathcal B}({\mathcal H})^+$ positive semi-definite operators on ${\mathcal H}$
- $\bullet~ \mathcal{B}(\mathcal{H})^{++}$ positive definite (and so invertible) operators on \mathcal{H}
- $\langle A \mid B \rangle = \operatorname{Tr} A^*B$ Hilbert-Schmidt inner product of $A, B \in \mathcal{B}(\mathcal{H})$
- $\|A\|_2 = (\operatorname{Tr} A^*A)^{1/2}$ Hilbert-Scmidt (Schatten-2) norm of $A \in \mathcal{B}(\mathcal{H})$
- $\bullet~D$ and D^2 denote the first and second Fréchet derivatives, respectively

We consider the Löwner order induced by positivity on $\mathcal{B}(\mathcal{H})^{sa}$, that is, by $A \leq B$ we mean that B - A is positive semi-definite.

Operator (matrix) means in Kubo-Ando sense

A binary operation $\sigma : \mathcal{B}(\mathcal{H})^+ \times \mathcal{B}(\mathcal{H})^+ \to \mathcal{B}(\mathcal{H})^{++}$ is called an **operator connection**, if it satisfies for $A, B, C, D \in \mathcal{B}(\mathcal{H})^+$:

- $A \leq B$ and $B \leq D$ imply $A\sigma B \leq C\sigma D$ (joint monotonicity)
- **2** $C(A\sigma B)C \leq (CAC)\sigma(CBC)$ (transformer inequiality)
- A_n, B_n ∈ B(H)⁺, A_n ∖ A, B_n ∖ B imply A_nσB_n ∖ AσB (downward continuity). (here A_n ∖ A means that A₁ ≥ A₂ ≥ ... and A_n → A in strong operator topology.)

An operator connection σ is called an **operator mean (Kubo-Ando mean)** if

() $I \sigma I = I$, where *I* is the identity in $\mathcal{B}(\mathcal{H})$.

An operator mean is symmetric if $A\sigma B = B\sigma A$.

Kubo-Ando Theorem ¹

For each operator connection σ there exist a unique operator monotone function $f_{\sigma}: [0, \infty) \to [0, \infty)$, s.t.

$$f_{\sigma}(t)I = I\sigma(tI), \quad t \geq 0.$$

Furthermore,

The map σ → f_σ is an affine order-isomporphism between the operator connections and the operator monotone functions f_σ: [0,∞) → [0,∞).
(i.e. when σ_i → f_i for i = 1, 2, then Aσ₁B ≤ Aσ₂B for all A, B ∈ B(H)⁺ iff f₁(t) ≤ f₂(t), for all t ≥ 0.)

¹T. Ando, F. Kubo, *Means of positive linear operators*, Math. Ann. **246** (1980), 205–224.

Kubo-Ando Theorem

• If A is invertible, then

$$A\sigma B = A^{1/2} f_{\sigma} (A^{-1/2} B A^{-1/2}) A^{1/2}.$$

- σ is an operator mean if and only if $f_{\sigma}(1) = 1$. In this case, $A\sigma A = A$, for all A.
- σ is a symmetric operator mean if and only if $f_{\sigma}(1) = 1$ and $f_{\sigma}(t) = tf_{\sigma}(1/t)$, for t > 0.

Some well known operator mean

 $A,B\in\mathcal{B}(\mathcal{H})^{++}$, $lpha\in[0,1]$

• Weighted arithmetic mean

$$A\nabla_{\alpha}B = (1-\alpha)A + \alpha B$$

Representing function:

$$f_{\nabla_{\alpha}}(t) = (1 - \alpha) + \alpha t$$

In particular for $\alpha=1/2$:

$$A\nabla B = (A+B)/2$$

arithmetic mean (symmetric) Generalization for the positive operators A_j , j = 1, 2, ..., m:

Weighted geometric mean

$$A\#_{\alpha}B = A^{1/2}(A^{-1/2}BA^{-1/2})^{\alpha}A^{1/2}$$

Representing function:

$$f_{\#_{lpha}}(t)=t^{lpha}, \quad (t>0)$$

In particular for $\alpha = 1/2$:

$$A \# B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

geometric mean (symmetric) If A and B commutes, then $A#B = (AB)^{1/2}$. Generalization for m > 2 positive operators? • Weighted harmonic mean

$$A!_{\alpha}B = ((1 - \alpha)A^{-1} + \alpha B^{-1})^{-1}$$

Representing function:

$$f_{!_{\alpha}}(t) = rac{t}{(1-lpha)t+lpha}$$

In particular for $\alpha = 1/2$:

$$A!B = 2\left(A^{-1} + B^{-1}\right)^{-1}$$

harmonic mean (symmetric) Generalization for the positive operators A_j , j = 1, 2, ..., m:

$$m(\sum_{j=1}^{m} A_j^{-1})^{-1}.$$

/ 40

For
$$t > 0$$
 $\displaystyle rac{t}{(1-lpha)t+lpha} \leq t^lpha \leq (1-lpha)t+lpha t$

holds, which implies thanks to the Kubo-Ando Theorem that

$$A!_{\alpha}B \leq A\#_{\alpha}B \leq A\nabla_{\alpha}B.$$

Furthermore, for an arbitrary operator mean σ with the representing function f_{σ}

$$\frac{t}{(1-\alpha)t+\alpha} \le f_{\sigma} \le (1-\alpha)t+\alpha t$$

which implies

$$A!_{\alpha}B \leq A\sigma B \leq A\nabla_{\alpha}B.$$

Barycenters

- motivation from statistics: we perform an uncertain measurement several times with outcomes in a metric space (X, d)
- the most natural estimator of the quantity *a* we are interested in is the *mean squared error estimator*

$$\hat{a} := \operatorname*{arg\,min}_{x \in X} rac{1}{m} \sum_{j=1}^{m} d^2\left(a_j, x
ight),$$

where a_i 's are the outcomes

slightly more generally,

$$\hat{a} := \operatorname*{arg\,min}_{x\in X} \sum_{j=1}^{m} w_j d^2(a_j, x),$$

where the *w_j*'s are arbitrary weights (not necessarily relative frequencies)

József Pitrik

Introduction

• if $(X, d) = (\mathbb{R}^n, \|\cdot\|)$, then the barycenter is the weighted average,

$$\operatorname*{arg\,min}_{x\in \mathsf{X}} \sum_{j=1}^m w_j d^2\left(a_j, x\right) = \sum_{j=1}^m w_j a_j$$

- sometimes one should consider "squared distance-like" quantities instead of the square of a genuine metric
- a prominent example is the (classical) relative entropy on probability vectors,

$$H(\mathbf{p},\mathbf{q})=\sum_{k=1}^n p_k\left(\log p_k-\log q_k\right),\,$$

where $0 < p_1, \ldots, p_n, q_1, \ldots, q_n < 1$ and $\sum_{k=1}^n p_k = \sum_{k=1}^n q_k = 1$ • in this case, we have similar result:

$$\underset{\mathbf{q}\in\mathcal{P}_{n}}{\operatorname{arg\,min}}\sum_{j=1}^{m}w_{j}H\left(\mathbf{p}_{j},\mathbf{q}\right)=\sum_{j=1}^{m}w_{j}\mathbf{p}_{j}$$

• more generally, if $arphi:(0,1) o\mathbb{R}$ is a strictly convex \mathcal{C}^1 function, and

$$H_{\varphi}(\mathbf{p},\mathbf{q}) = \sum_{k=1}^{n} \varphi(p_k) - \varphi(q_k) - \varphi'(q_k)(p_k - q_k)$$

is the associated Bregman divergence, then again,²

$$\operatorname*{arg\,min}_{\mathbf{q}\in\mathcal{P}_{n}}\sum_{j=1}^{m}w_{j}H_{\varphi}\left(\mathbf{p}_{j},\mathbf{q}\right)=\sum_{j=1}^{m}w_{j}\mathbf{p}_{j}$$

no matter what φ is

• the classical relative entropy corresponds to $\varphi(x) = x \log x - x$

²I. S. Dhillon and J. A. Tropp, Matrix nearness problems with Bregman divergences, SIAM J. Matrix Anal. Appl. **29** (2004), 1120-1146, and A. Banerjee, S. Merugu, I. S. Dhillon and J. Ghosh, Clustering with Bregman divergences, J. Mach. Learn. Res. **6** (2005), 1705-1749

The divergence interpretation of the arithmetic mean

• The arithmetic mean $A\nabla B = (A + B)/2$ is the mean squared estimator for the Euclidean metric on positive operators:

$$A \nabla B = \operatorname*{arg\,min}_{X>0} rac{1}{2} (\operatorname{Tr}(A - X)^2 + \operatorname{Tr}(B - X)^2).$$

• Let $\varphi:\mathbb{R}^+\to\mathbb{R}$ be a differentiable strictly convex function and

$$\Phi(x,y) = \varphi(x) - \varphi(y) - \varphi'(y)(x-y)$$

be the associated **Bregman divergence**. Then³ for the positive operators A_j

$$\underset{X>0}{\operatorname{arg\,min}}\sum_{j=1}^{m}\frac{1}{m}\Phi(A_{j},X)=\sum_{j=1}^{m}\frac{1}{m}A_{j}$$

holds, independently of φ .

³R. Bhatia, S. Gaubert, T. Jain, *Matrix versions of the Hellinger distance*, Lett. Math. Phys.,vol 109, 1777–1804 (2019)

The Riemannian trace metric (RTM)

• the *Boltzmann entropy* (or H-functional) of a random variable X with probability density f is given by

$$H(X) = -\int_{\operatorname{supp}(X)} f(x) \log f(x) dx$$

• this is a particularly important functional; for instance, the heat equation

$$\partial_t u = \Delta u$$

can be seen as the gradient flow for the Boltzmann entropy as potential (or "energy") in the differential structure induced by optimal transportation⁴

⁴C. Villani, *Topics in optimal transportation*, Graduate studies in Mathematics vol. 58, American Mathematical Society, Providence, RI, 2003, Sec. 8.3.

 centered multivariate Gaussians on ℝⁿ are completely described by their positive definite covariance matrix A; the probability density is given by

$$f_{\mathcal{N}(0,\mathcal{A})}(x) = \frac{\exp\left(-\frac{1}{2}x^*\mathcal{A}^{-1}x\right)}{\sqrt{(2\pi)^N \det \mathcal{A}}}$$

• the Boltzmann entropy of $X \sim \mathcal{N}\left(0, A\right)$ is

$$H(X) = \frac{1}{2} \left((\log (2\pi) + 1)N + \operatorname{Tr} \log A \right) = \frac{1}{2} \operatorname{Tr} \log A + C(N)$$

(Remember, that $\log \det A = \operatorname{Tr} \log A$.)

- $\bullet\,$ so H is a convex functional on non-degenerate centered Gaussians on \mathbb{R}^n
- for the sake of simplicity, we will identify these Gaussians with their covariance $(\mathcal{N}(0,A) \longrightarrow A)$, and forget the prefactor 1/2 and the constant C(n)

Let $\dim \mathcal{H} = n$. The set $\mathcal{P}_n := \mathcal{B}(\mathcal{H})^{++}$ of positive definite $n \times n$ matrices can be considered as an open subset af the Euclidean space \mathbb{R}^{n^2} and they form a manifold.

- the Boltzmann entropy gives rise to a Riemannian metric by its Hessian
- $H(A) = \operatorname{Tr} \log A$
- $\mathbf{D}H(A)[X] = \mathrm{Tr}A^{-1}X$

•
$$\mathbf{D}^2 H(A)[Y,X] = \operatorname{Tr} A^{-1} Y A^{-1} X$$

- this is a collection of positive definite bilinear forms on the tangent spaces $T_A \mathcal{P}_n(\mathbb{R}) \simeq M_n^{sa}(\mathbb{R})$ that depends smoothly on the foot point A, and is therefore a Riemannian tensor field
- the metric induced by the Riemannian tensor field

$$g_A(X,Y) := \operatorname{Tr} A^{-1} Y A^{-1} X$$

is often called Riemannian trace metric (RTM)

• When $\gamma : [0,1] \to \mathcal{P}_n$ is a C^1 curve, the lenght of γ with respect to RTM:

$$L(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\gamma'(t),\gamma'(t))} dt = \int_0^1 \|\gamma(t)^{-1/2}\gamma'(t)\gamma(t)^{-1/2}\|_2 dt.$$

• the global distance (the RTM) is obtained from the Riemannian structure by a variational formula:

 $d_{RTM}(A, B)$

$$= \inf\left\{\int_0^1 \sqrt{g_{\gamma(t)}\left(\gamma'(t),\gamma'(t)\right)} \mathrm{d}t \,\middle|\, \gamma: [0,1] \to \mathcal{P}_n,\, \gamma(0) = A, \gamma(1) = B\right\}$$

 \bullet the curve γ with minimal arc length is called geodesic

The geometric mean as barycenter in RTM⁵

• For any $A, B \in \mathcal{P}_n$ the geodesic joining A to B in RTM is given by

$$\gamma_{A \to B}(t) = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^t A^{\frac{1}{2}}$$

that is, the geodesic consists of the weighted geometric means.Consequently,

$$\gamma'_{A \to B}(t) = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^t \log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}},$$

⁵Corach-Porta-Recht, Lawson-Lim, Bhatia-Holbrook, Moakher

József Pitrik

/ 40

Seminar16 Sentember

• ...and the RTM has a simple closed form:

$$d_{RTM}(A,B) = \int_0^1 \sqrt{g_{\gamma_{A \to B}(t)} \left(\gamma'_{A \to B}(t), \gamma'_{A \to B}(t)\right)} dt$$
$$= \int_0^1 \sqrt{\text{Tr} \left((\gamma_{A \to B}(t))^{-1} \gamma'_{A \to B}(t)\right)^2} dt$$
$$= \left\|\log\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right\|_2$$

• The midpoint of the geodesic curve joining *A* to *B* is the geometric mean:

$$\gamma_{A \to B}(\frac{1}{2}) = A \# B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}}$$

• The S-divergence is given by

$$d_{\mathcal{S}}(X,Y) = \sqrt{\operatorname{Tr}\log\left(\frac{X+Y}{2}\right) - \frac{1}{2}\operatorname{Tr}\log X - \frac{1}{2}\operatorname{Tr}\log Y}.$$

The geometric mean is the mean squared error estimator also for the $S\mbox{-}{\rm divergence}^6$

$$A \# B = \arg\min_{X>0} \frac{1}{2} \left(d_{S}^{2}(A, X) + d_{S}^{2}(B, X) \right)$$

⁶S. Sra, *Positive definite matrices and the S-divergence*, Proc. Amer. Math. Soc. **144** (2016), 2787-2797.

The Karcher mean

• the barycenter of the positive definite matrices A_1, \ldots, A_m with weights w_1, \ldots, w_m , which is usually called *Karcher mean* or *multivariate geometric mean* in RTM is

$$\underset{X \in \mathcal{P}_n}{\operatorname{arg\,min}} \sum_{j=1}^{m} w_j d_{RTM}^2 \left(A_j, X \right) = \underset{X \in \mathcal{P}_n}{\operatorname{arg\,min}} \sum_{j=1}^{m} w_j \left\| \log \left(A_j^{-\frac{1}{2}} X A_j^{-\frac{1}{2}} \right) \right\|_2^2$$

• the barycenter problem: we aim to find $X_0 \in \mathcal{P}_n$, where the derivative of the mean squared error function vanishes, i.e.,

$$\mathsf{D}\left(\sum_{j=1}^{m} w_j d_{RTM}^2 \left(A_j, \cdot\right)\right) (X_0)[Y] = 0 \qquad (Y \in M_n^{sa})$$

keeping in mind that

$$\mathsf{D}\left(\left\|\mathsf{log}(\cdot)\right\|_{2}^{2}\right)(X)[Y] = 2\mathrm{Tr}\left(X^{-1}\log X\right)Y,$$

we get⁷ that the Karcher mean is the solution of the nonlinear matrix equation called *Karcher equation*:

$$\sum_{j=1}^{m} w_j \log \left(X^{\frac{1}{2}} A_j^{-1} X^{\frac{1}{2}} \right) = 0$$

- no explicit formula is known unless all the A_j 's commute
- in the commutative case, the Karcher mean coincides with the geometric mean

⁷R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.

The harmonic mean as barycenter⁸

• We can define a Riemannian metric on \mathcal{P}_n locally at A by the relation

$$\mathrm{d}\boldsymbol{s} = \|\boldsymbol{A}^{-1}\mathrm{d}\boldsymbol{A}\boldsymbol{A}^{-1}\|_2,$$

• Let $\gamma:[0,1]\to \mathcal{P}_n$ be a smooth path. The arc-length along this path is given by

$$L(\gamma) = \int_0^1 \|\gamma(t)^{-1} \gamma'(t) \gamma(t)^{-1}\|_2 \mathrm{d}t.$$

• The corresponding geodesic distance between $A, B \in \mathcal{P}_n$ is defined by

$$\delta(A,B) =$$

$$\inf\left\{\int_0^1 \|\gamma(t)^{-1}\gamma'(t)\gamma(t)^{-1}\|_2 \mathrm{d}t: \gamma(t) \in \mathcal{P}_n, t \in (0,1), \gamma(0) = A, \gamma(1) = B\right\}$$

⁸P. J., Virosztek D. 2021. A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means. Linear Algebra and its Applications. 609, 203–217.

• The unique geodesic running from A to B is the weighted harmonic mean:

$$\gamma(t) = A!_t B = \left[(1-t)A^{-1} + tB^{-1} \right]^{-1}, \quad t \in [0,1]$$

• The geodesic distance is:

$$\delta(A,B) = \|B^{-1} - A^{-1}\|_2.$$

A new divergence

Let $\sigma : \mathcal{B}(\mathcal{H})^{++} \times \mathcal{B}(\mathcal{H})^{++} \to \mathcal{B}(\mathcal{H})^{++}$ be a symmetric Kubo-Ando mean with operator monotone representing function $f_{\sigma} : (0, \infty) \to (0, \infty)$ i.e.

$$A\sigma B = A^{\frac{1}{2}} f_{\sigma} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}}.$$

Clearly, $f_{\sigma}(1) = 1$, and the symmetry of σ implies that $f_{\sigma}(x) = xf_{\sigma}\left(\frac{1}{x}\right)$ for x > 0, and hence $f'_{\sigma}(1) = 1/2$. We define

$$g_{\sigma}: (0,\infty) \supseteq \operatorname{ran}(f_{\sigma}) \to [0,\infty)$$

by

$$g_{\sigma}(x) := \int_1^x \left(1 - rac{1}{f_{\sigma}^{-1}(t)}
ight) \mathrm{d}t.$$

Obviously, $g_{\sigma}(1) = 0$, $g'_{\sigma}(x) = 1 - \frac{1}{f_{\sigma}^{-1}(x)}$, and $g'_{\sigma}(1) = 0$ as $f_{\sigma}(1) = 1$.

Now we define⁹ the following quantity for operators $A, B \in \mathcal{B}(\mathcal{H})^{++}$

$$\phi_{\sigma}(A,B) := \begin{cases} \operatorname{Tr} g_{\sigma} \left(A^{-1/2} B A^{-1/2} \right), & \text{if spec} \left(A^{-1/2} B A^{-1/2} \right) \subseteq \operatorname{ran} \left(f_{\sigma} \right), \\ +\infty, & \text{if spec} \left(A^{-1/2} B A^{-1/2} \right) \nsubseteq \operatorname{ran} \left(f_{\sigma} \right). \end{cases}$$

⁹P. J., Virosztek D. 2021. A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means. Linear Algebra and its Applications. 609, 203–217.

Then ϕ_{σ} is a **divergence** in the sense of Amari¹⁰, i.e. for any symmetric Kubo-Ando mean σ , the map

$$\phi_{\sigma}: \mathcal{B}(\mathcal{H})^{++} \times \mathcal{B}(\mathcal{H})^{++} \to [0, +\infty]; \quad (A, B) \mapsto \phi_{\sigma}(A, B)$$

satisfies the followings.

- $\phi_{\sigma}(A,B) \ge 0$ and $\phi_{\sigma}(A,B) = 0$ if and only if A = B.
- The first derivative of φ_σ in the second variable vanishes at the diagonal, that is, D (φ_σ(A, ·)) [A] = 0 ∈ Lin (B(H)^{sa}, ℝ) for all A ∈ B(H)⁺⁺.
- The second derivative of Φ_{σ} in the second variable is positive at the diagonal, that is, $D^2(\phi_{\sigma}(A, \cdot))[A](Y, Y) \ge 0$ for all $Y \in \mathcal{B}(\mathcal{H})^{sa}$.

¹⁰S. Amari, Information Geometry and its Applications, Springer (Tokyo), 2016 Trojan Math Seminar16 September 202 József Pitrik A divergence center interpretation / 40

Further properties of the divergence ϕ_{σ}

For any Kubo-Ando mean σ and for any $A, B \in \mathcal{B}(\mathcal{H})^{++}$ we have

- $\phi_{\sigma}(A^{-1}, B^{-1}) = \phi_{\sigma}(B, A)$
- $\phi_{\sigma}(TAT^*, TBT^*) = \phi_{\sigma}(A, B)$ for an arbitrary invertible operator $T \in \mathcal{B}(\mathcal{H})$
- The divergence ϕ_{σ} is symmetric in its arguments, that is

$$\phi_{\sigma}(A,B) = \phi_{\sigma}(B,A)$$

holds for all $A, B \in \mathcal{B}(\mathcal{H})^{++}$, if and only if $\sigma = \#$ is the geometric mean.

Kubo-Ando means as divergence centers with respect to ϕ_σ

Theorem

^a For any $A, B \in \mathcal{B}(\mathcal{H})^{++}$,

$$\arg\min_{X\in\mathcal{B}(\mathcal{H})^{++}}\frac{1}{2}\left(\phi_{\sigma}(A,X)+\phi_{\sigma}(B,X)\right)=A\sigma B.$$

That is, $A\sigma B$ is a unique minimizer of the function

$$X\mapsto rac{1}{2}\left(\phi_{\sigma}(A,X)+\phi_{\sigma}(B,X)
ight)$$

on $\mathcal{B}(\mathcal{H})^{++}$.

^aP. J., Virosztek D. 2021. A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means. Linear Algebra and its Applications. 609, 203–217.

Given a symmetric Kubo-Ando mean σ , a finite set of positive definite operators $\mathbf{A} = \{A_1, \ldots, A_m\} \subset \mathcal{B}(\mathcal{H})^{++}$, and a discrete probability distribution $\mathbf{w} = \{w_1, \ldots, w_m\} \subset (0, 1]$ with $\sum_{j=1}^m w_j = 1$ we define the corresponding loss function $Q_{\sigma, \mathbf{A}, \mathbf{w}} : \mathcal{B}(\mathcal{H})^{++} \to [0, \infty]$ by

$$Q_{\sigma,\mathbf{A},\mathbf{w}}(X) := \sum_{j=1}^{m} w_j \phi_\sigma\left(A_j,X\right).$$

From now on, we assume that the range of f_{σ} is maximal, that is, ran $(f_{\sigma}) = (0, \infty)$. Consequently, ϕ_{σ} is always finite, and hence so is $Q_{\sigma,\mathbf{A},\mathbf{w}}$ on the whole positive definite cone $\mathcal{B}(\mathcal{H})^{++}$.

Let $\sigma : \mathcal{B}(\mathcal{H})^{++} \times \mathcal{B}(\mathcal{H})^{++} \to \mathcal{B}(\mathcal{H})^{++}$ be a symmetric Kubo-Ando operator mean such that the operator monotone representing function $f_{\sigma} : (0, \infty) \to (0, \infty)$ is surjective. We call the optimizer

$$\mathsf{bc}\left(\sigma,\mathsf{A},\mathsf{w}
ight):=rgmin_{X\in\mathcal{B}(\mathcal{H})^{++}}Q_{\sigma,\mathsf{A},\mathsf{w}}$$

the weighted barycenter of the operators $\{A_1, \ldots, A_m\}$ with weights $\{w_1, \ldots, w_m\}$.

To find the barycenter $\mathbf{bc}(\sigma, \mathbf{A}, \mathbf{w})$, we have to solve the critical point equation

$$\mathsf{D} Q_{\sigma,\mathbf{A},\mathbf{w}}[X](\cdot) = 0$$

for the strictly convex loss function $Q_{\sigma,\mathbf{A},\mathbf{w}}$, where the symbol

$$\mathsf{D}Q_{\sigma,\mathbf{A},\mathbf{w}}[X](\cdot)\in\mathrm{Lin}\left(\mathcal{B}(\mathcal{H})^{sa},\mathbb{R}
ight)$$

stands for the Fréchet derivative of $Q_{\sigma,\mathbf{A},\mathbf{w}}$ at the point $X \in \mathcal{B}(\mathcal{H})^{++}$.

That is, the equation to be solved is

$$\sum_{j=1}^{m} w_j A_j^{-\frac{1}{2}} g'_{\sigma} \left(A_j^{-\frac{1}{2}} X A_j^{-\frac{1}{2}} \right) A_j^{-\frac{1}{2}} = 0.$$

By the definition of g_{σ} , $g'_{\sigma}(t) = 1 - \frac{1}{f_{\sigma}^{-1}(t)}$ for $t \in (0, \infty)$, and hence the critical point of the loss function $Q_{\sigma,\mathbf{A},\mathbf{w}}$ is described by the equation

$$\sum_{j=1}^{m} w_j A_j^{-\frac{1}{2}} \left(I - \left(f_{\sigma}^{-1} \left(A_j^{-\frac{1}{2}} X A_j^{-\frac{1}{2}} \right) \right)^{-1} \right) A_j^{-\frac{1}{2}} = 0.$$

The barycenter corresponding to the geometric mean

For $\sigma = \#$ the generating function is $f_{\#}(x) = \sqrt{x}$, and hence the inverse is $f_{\#}^{-1}(t) = t^2$. In this case, the critical point equation describing the barycenter **b**c (#, **A**, **w**) reads as follows:

$$\sum_{j=1}^{m} w_j \left(A_j^{-1} - X^{-1} A_j X^{-1} \right) = 0.$$

It can be rearranged as

$$X\left(\sum_{j=1}^m w_j A_j^{-1}\right) X = \sum_{j=1}^m w_j A_j.$$

This is the Ricatti equation for the weighted multivariate harmonic mean $\left(\sum_{j=1}^{m} w_j A_j^{-1}\right)^{-1}$ and arithmetic mean $\sum_{j=1}^{m} w_j A_j$.

Hence the barycenter **bc** $(\#, \mathbf{A}, \mathbf{w})$ coincides with the weighted $\mathcal{A}\#\mathcal{H}$ -mean of Kim, Lawson, and Lim¹¹, that is,

$$\mathbf{bc}(\#,\mathbf{A},\mathbf{w}) = \left(\sum_{j=1}^{m} w_j A_j^{-1}\right)^{-1} \# \left(\sum_{j=1}^{m} w_j A_j\right)$$

¹¹S. Kim, J. Lawson, Y. Lim, *The matrix geometric mean of parametrized, weighted arithmetic and harmonic means*, Linear Algebra Appl. **435** (2011), 2114–2131.

Elementary properties of the barycenter

The barycenter $\mathbf{bc}(\sigma, \mathbf{A}, \mathbf{w})$ satisfies the following properties:

- Idempotency: bc (σ, {A,..., A}, w) = A for any symmetric Kubo-Ando mean σ, any A ∈ B(H)⁺⁺, and any probability vector w.
- Homogeneity: bc (σ, tA, w) = tbc (σ, A, w) where the shorthand tA denotes {tA₁,..., tA_m} if A = {A₁,..., A_m}
- Permutation invariance: $\mathbf{bc}(\sigma, \mathbf{A}_{\pi}, \mathbf{w}_{\pi}) = \mathbf{bc}(\sigma, \mathbf{A}, \mathbf{w})$ where π is a permutation of $\{1, \ldots, m\}$, and $\mathbf{A}_{\pi} = \{A_{\pi(1)}, \ldots, A_{\pi(m)}\}, \mathbf{w}_{\pi} = \{w_{\pi(1)}, \ldots, w_{\pi(m)}\}.$

• Congruence invariance:

$$bc(\sigma, TAT^*, w) = Tbc(\sigma, A, w) T^*$$

for any invertible $T \in \mathcal{B}(\mathcal{H})$, where $T\mathbf{A}T^* = \{TA_1T^*, \dots, TA_mT^*\}$ if $\mathbf{A} = \{A_1, \dots, A_m\}$.

• The weighted multivariate harmonic mean is a lower bound for the barycenter

$$\left(\sum_{j=1}^m w_j A_j^{-1}\right)^{-1} \leq \mathsf{bc}(\sigma, \mathbf{A}, \mathbf{w}).$$

Thanks for Your attention!

Acknowledgement

The speaker was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) via

- the "Frontline" Research Excellence Programme (Grant No. KKP133827)
- grants no. K119442, no. K124152, and no. KH129601.

and by the Hungarian Academy of Sciences Lendület-Momentum Grant for Quantum Information Theory, No. 96 141.