Multicopy metrology with many-particle quantum states arXiv:2203.05538 (2022)

Róbert Trényi^{1,2,3}, Árpád Lukács^{1,4,3}, Paweł Horodecki^{5,6}, Ryszard Horodecki⁵, Tamás Vértesi⁷, and Géza Tóth^{1,2,8,3}

 1 Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain ² Donostia International Physics Center (DIPC), San Sebastián, Spain ³Wigner Research Centre for Physics, Budapest, Hungary ⁴Department of Mathematical Sciences, Durham University, Durham, United Kingdom ⁵ International Centre for Theory of Quantum Technologies, University of Gdańsk, Gdańsk, Poland ⁶ Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdańsk University of Technology, Gdańsk, Poland ⁷ Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary 8 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

DPG Meeting 2022, (Regensburg, Germany)

 R' óbert Trényi (UPV/EHU) a na multicopy metrology $1/11$

1 [Motivation](#page-3-0)

• [Quantum metrology](#page-3-0)

2 [Improving metrological performance](#page-8-0)

- **[Idea of activation](#page-10-0)**
- [Embedding into higher dimension](#page-25-0)

[Quantum metrology](#page-3-0)

[Improving metrological performance](#page-8-0)

- [Idea of activation](#page-10-0)
- **•** [Embedding into higher dimension](#page-25-0)

Basic task in quantum metrology

$$
Q \Rightarrow \overline{U_{\theta} = \exp(-i\mathcal{H}\theta)} \Rightarrow U_{\theta} Q U_{\theta}^{\dagger} \Rightarrow \overline{E_{\theta} E_{\theta}^{\dagger}}
$$

 \bullet H is local, that is,

$$
\mathcal{H}=h_1+\cdots+h_N
$$

where h_n 's are single-subsystem operators.

Basic task in quantum metrology

$$
Q \Rightarrow \overline{U_{\theta} = \exp(-i\mathcal{H}\theta)} \Rightarrow U_{\theta} Q U_{\theta}^{\dagger} \Rightarrow \overline{E_{\theta} E_{\theta} E_{\theta}}
$$

 \bullet H is local, that is,

$$
\mathcal{H}=h_1+\cdots+h_N
$$

where h_n 's are single-subsystem operators.

 \bullet Cramér-Rao bound:

$$
(\Delta \theta)^2 \geq \frac{1}{\mathcal{F}_Q[\varrho, \mathcal{H}]},
$$

where the quantum Fisher information is

$$
\mathcal{F}_{Q}[\varrho, \mathcal{H}] = 2 \sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|\mathcal{H}|l\rangle|^2,
$$

with $\varrho = \sum_k \lambda_k |k\rangle\!\langle k|$ being the eigendecomposition.

Metrological gain

For a given Hamiltonian

$$
g_{\mathcal{H}}(\varrho)=\frac{\mathcal{F}_{Q}[\varrho,\mathcal{H}]}{\mathcal{F}_{Q}^{(\text{sep})}(\mathcal{H})},
$$

where the separable limit for *local* Hamiltonians is

$$
\mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = \sum_{n=1}^N [\sigma_{\text{max}}(h_n) - \sigma_{\text{min}}(h_n)]^2.
$$

Metrological gain

• For a given Hamiltonian

$$
g_{\mathcal{H}}(\varrho)=\frac{\mathcal{F}_{Q}[\varrho,\mathcal{H}]}{\mathcal{F}_{Q}^{(\text{sep})}(\mathcal{H})},
$$

where the separable limit for *local* Hamiltonians is

$$
\mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = \sum_{n=1}^N [\sigma_{\text{max}}(h_n) - \sigma_{\text{min}}(h_n)]^2.
$$

- For separable states $g_H \sim 1$ ($\mathcal{F}_Q \sim N$) at best (shot-noise scaling).
- For entangled states $g_{\mathcal{H}} \sim \mathcal{N}\ (\mathcal{F}_Q \sim \mathcal{N}^2)$ at best (Heisenberg scaling).

Metrological gain

• For a given Hamiltonian

$$
g_{\mathcal{H}}(\varrho)=\frac{\mathcal{F}_{Q}[\varrho,\mathcal{H}]}{\mathcal{F}_{Q}^{(\text{sep})}(\mathcal{H})},
$$

where the separable limit for *local* Hamiltonians is

$$
\mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = \sum_{n=1}^N [\sigma_{\text{max}}(h_n) - \sigma_{\text{min}}(h_n)]^2.
$$

- For separable states $g_{\mathcal{H}} \sim 1$ ($\mathcal{F}_{Q} \sim N$) at best (shot-noise scaling).
- For entangled states $g_{\mathcal{H}} \sim \mathcal{N}\ (\mathcal{F}_Q \sim \mathcal{N}^2)$ at best (Heisenberg scaling).
- \bullet $g_{\mathcal{H}}(\rho)$ can be maximized over local Hamiltonians

$$
g(\varrho)=\max_{\text{local}\mathcal{H}}g_{\mathcal{H}}(\varrho).
$$

• If $g(\varrho) > 1$ then the state is useful metrologically. [G. Tóth et al., PRL 125, 020402 (2020)]

Róbert Trényi (UPV/EHU) a matematic [Multicopy metrology](#page-0-0) and the state of the state and the 4/11

- **•** Entanglement is required for usefulness
- Some highly entangled (pure) states are not useful [P. Hyllus et al., PRA 82, 012337 (2010)]
- But some weakly entangled states can be useful [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]
- What kind of states can be made useful with extended techniques?

[Motivation](#page-3-0)

• [Quantum metrology](#page-3-0)

2 [Improving metrological performance](#page-8-0)

- **[Idea of activation](#page-10-0)**
- **•** [Embedding into higher dimension](#page-25-0)

Can considering more copies of an N-partite state ρ help?

$$
\boxed{A_1^{\scriptscriptstyle (1)}}\left[\begin{array}{c|c} A_2^{\scriptscriptstyle (1)} & \\\hline A_2^{\scriptscriptstyle (1)} & \\\hline \end{array}\right]\cdots\left[\begin{array}{c|c} A_N^{\scriptscriptstyle (1)}}\right]\varrho\end{array}\right.
$$

Can considering more copies of an N-partite state ρ help?

Can considering more copies of an N-partite state ρ help?

Can we have $g(\varrho^{\otimes M})>1\geq g(\varrho)?$ [G. Tóth et al., PRL 125, 020402 (2020)]

Observation

Entangled states of $N \geq 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$
\{|0..0\rangle\,,|1..1\rangle\,,...,|d-1,..,d-1\rangle\}.
$$

Observation

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$
\begin{array}{|c|c|} \hline \{{\ket{0..0}},\ket{1..1},...,\ket{d-1},..,d-1\rangle\}.\hline\\\hline \hline \rule{0mm}{6mm}\hline \rule{0mm}{6mm}\rule{0mm}{4mm}\hline \rule{0mm}{6mm}\rule{0mm}{4mm}\hline \rule{0mm}{4mm}\rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm}{4mm}\hline \rule{0mm
$$

Observation

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$
\fbox{\fbox{$0..0$}}, \hbox{$|1..1\rangle}, ... , |d-1,..,d-1\rangle\}.
$$

• With $D = diag(+1, -1, +1, -1, ...)$

$$
\bullet \ \mathcal{H}=h_1+h_2+...+h_N
$$

Róbert Trényi (UPV/EHU) a matematic [Multicopy metrology](#page-0-0) 7 / 11

Observation

Entangled states of $N \geq 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$
\begin{array}{c|c} \{ |0..0\rangle\, , |1..1\rangle\, ,... , |d-1,..,d-1\rangle\}.\end{array}
$$

• With $D = diag(+1, -1, +1, -1, ...)$

$$
\bullet \ \mathcal{H}=h_1+h_2+...+h_N
$$

Róbert Trényi (UPV/EHU) [Multicopy metrology](#page-0-0) 7/11

Observation

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

{|0..0i, |1..1i, ..., |d − 1, .., d − 1i}.

• With $D = diag(+1, -1, +1, -1, ...)$

$$
\bullet \ \mathcal{H}=h_1+h_2+...+h_N
$$

Róbert Trényi (UPV/EHU) [Multicopy metrology](#page-0-0) 7/11

o The state

$$
\varrho_N(p) = p |\text{GHZ}_N\rangle \langle \text{GHZ}_N| + (1-p) \frac{(|0\rangle\langle 0|)^{\otimes N} + (|1\rangle\langle 1|)^{\otimes N}}{2},
$$
\nwith $|\text{GHZ}_N\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N}).$

o The state

$$
\varrho_N(p) = p |\text{GHZ}_N\rangle \langle \text{GHZ}_N| + (1-p) \frac{(|0\rangle\langle 0|)^{\otimes N} + (|1\rangle\langle 1|)^{\otimes N}}{2},
$$
\nwith $|\text{GHZ}_N\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N}).$

All entangled pure states of the form

$$
\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}.
$$

• In the limit of many copies $(M \gg 1)$ ${\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto {\mathcal N}^2 \;\; \Longrightarrow \;\; (\Delta \theta)^2 \geq 1/{\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto 1/{\mathcal N}^2$

- In the limit of many copies $(M \gg 1)$ ${\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto {\mathcal N}^2 \;\; \Longrightarrow \;\; (\Delta \theta)^2 \geq 1/{\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto 1/{\mathcal N}^2$
- Measuring in the eigenbasis of M (error propagation formula):

$$
(\Delta \theta)_{\mathcal{M}}^2 = \frac{(\Delta \mathcal{M})^2}{\langle i[\mathcal{M}, \mathcal{H}]\rangle^2}.
$$

- In the limit of many copies $(M \gg 1)$ ${\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto {\mathcal N}^2 \;\; \Longrightarrow \;\; (\Delta \theta)^2 \geq 1/{\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto 1/{\mathcal N}^2$
- Measuring in the eigenbasis of M (error propagation formula):

$$
(\Delta \theta)_{\mathcal{M}}^2 = \frac{(\Delta \mathcal{M})^2}{\langle i[\mathcal{M}, \mathcal{H}]\rangle^2}.
$$

Can we actually reach this limit with simple measurements?

- In the limit of many copies $(M \gg 1)$ ${\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto {\mathcal N}^2 \;\; \Longrightarrow \;\; (\Delta \theta)^2 \geq 1/{\mathcal F}_Q[\varrho_N(\rho)^{\otimes M},{\mathcal H}] \propto 1/{\mathcal N}^2$
- Measuring in the eigenbasis of M (error propagation formula):

$$
(\Delta \theta)_{\mathcal{M}}^2 = \frac{(\Delta \mathcal{M})^2}{\langle i[\mathcal{M}, \mathcal{H}]\rangle^2}.
$$

- Can we actually reach this limit with simple measurements?
- For M copies of $\varrho_N(p)$ we constructed a simple M such that

$$
(\Delta\theta)^2_{\mathcal{M}} = \frac{1 + (M-1)\rho^2}{4MN^2\rho^2}
$$

• For $M = 2$ copies of $\rho_3(p)$

$$
\mathcal{M} = \sigma_y \otimes \sigma_y \otimes \sigma_y \otimes \sigma_z \otimes 1 \otimes 1
$$

+ $\sigma_z \otimes 1 \otimes 1 \otimes \sigma_y \otimes \sigma_y \otimes \sigma_y$

[Motivation](#page-3-0)

• [Quantum metrology](#page-3-0)

2 [Improving metrological performance](#page-8-0)

- [Idea of activation](#page-10-0)
- [Embedding into higher dimension](#page-25-0)

"GHZ"-like states

Observation

All entangled pure states of the form

$$
\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}
$$

with $\sum_{k}|\sigma_{k}|^{2}=1$ are useful for $d\geq3$ and $N\geq3.$

"GHZ"-like states

Observation

All entangled pure states of the form

$$
\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}
$$

with $\sum_{k}|\sigma_{k}|^{2}=1$ are useful for $d\geq3$ and $N\geq3.$

• The state for $N > 3$ with $d = 2$

$$
\ket{\psi} = \sigma_0 \ket{0}^{\otimes N} + \sigma_1 \ket{1}^{\otimes N}
$$

is useful if $1/N < 4|\sigma_0\sigma_1|^2$ [P. Hyllus et al., PRA 82, 012337 (2010)].

"GHZ"-like states

Observation

All entangled pure states of the form

$$
\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}
$$

with $\sum_{k}|\sigma_{k}|^{2}=1$ are useful for $d\geq3$ and $N\geq3.$

• The state for $N > 3$ with $d = 2$

$$
\ket{\psi} = \sigma_0 \ket{0}^{\otimes N} + \sigma_1 \ket{1}^{\otimes N}
$$

is useful if $1/N < 4|\sigma_0\sigma_1|^2$ [P. Hyllus et al., PRA 82, 012337 (2010)]. • But with $d = 3$

$$
\left| {\psi '} \right\rangle = \sigma_0 \left| 0 \right\rangle ^{\otimes N} + \sigma_1 \left| 1 \right\rangle ^{\otimes N} + 0 \left| 2 \right\rangle ^{\otimes N}
$$

is always useful.

The non-useful $|\psi\rangle$, embedded into $d=3$ $(|\psi'\rangle)$ becomes useful. Róbert Trényi (UPV/EHU) [Multicopy metrology](#page-0-0) 10 / 11

Conclusions

- Investigated metrological performance of different quantum states when we have more copies of them.
- **I** Identified a subspace in which all the states become useful if sufficiently many copies are taken (and the also the measurements to perform).
- Also improved metrological performance by embedding.

See arXiv:2203.05538 (2022)! Thank you for the attention!

Róbert Trényi (UPV/EHU) a characteristic [Multicopy metrology](#page-0-0) 11 / 11 / 11 / 11

$$
\varrho(p,q,r) = p |GHZ_q\rangle\langle GHZ_q| + (1-p)[r(|0\rangle\langle 0|)^{\otimes N} + (1-r)(|1\rangle\langle 1|)^{\otimes N}],
$$

with

$$
\left|\mathrm{G} HZ_q\right\rangle = \sqrt{q}\left|000..00\right\rangle + \sqrt{1-q}\left|111..11\right\rangle,
$$

The following operator, being the sum of M correlation terms

$$
\mathcal{M}=\sum_{m=1}^M Z^{\otimes (m-1)}\otimes Y\otimes Z^{\otimes (M-m)},
$$

where we define the operators acting on a single copy

$$
Y = \begin{cases} \sigma_y^{\otimes N} & \text{for odd } N, \\ \sigma_x \otimes \sigma_y^{\otimes (N-1)} & \text{for even } N, \end{cases}
$$

$$
Z = \sigma_z \otimes \mathbb{1}^{\otimes (N-1)}.
$$

$$
(\Delta \theta)_{\mathcal{M}}^2 = \frac{1/[4q(1-q)] + (M-1)p^2}{4MN^2p^2}.
$$

Róbert Trényi (UPV/EHU) [Multicopy metrology](#page-0-0) 11/11 11 / 11 / 11

White noise

Observation

Full-rank states of N qudits cannot be maximally useful in the infinite copy limit.

• Example: Isotropic state of two qubits

$$
\varrho^{(\boldsymbol{\mathcal{p}})}=p\,|\Psi_{\mathrm{me}}\rangle\!\langle\Psi_{\mathrm{me}}|+(1-\boldsymbol{\mathcal{p}})\mathbb{1}/2^2,
$$

where $\ket{\Psi_{\mathrm{me}}}=\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle).$ $\varrho^{(0.9)}$ (top 3 curves) and $\varrho^{(0.52)}$ (bottom 3 curves). $h_n = \sigma_z^{\otimes M}$.

 $4(\Delta \mathcal{H})^2 \geq \mathcal{F}_{\mathsf{Q}}[\varrho, \mathcal{H}] \geq 4I_{\varrho}(\mathcal{H})$

Embedding mixed states

• Embedding the noisy GHZ state

Figure: The metrological gain for the state $\varrho_3^{(p)}$ (dashed), embedded into $d=3$ (left), $d = 4$ (right).

Embedding mixed states

• Embedding the noisy GHZ state

Figure: The metrological gain for the state $\varrho_3^{(p)}$ (dashed), embedded into $d=3$ (left), $d = 4$ (right).

 $\rho_3^{(p)}$ $\binom{10}{3}$ is genuine multipartite entangled for $p > 0.428571$ [SM Hashemi Rafsanjani et al., PRA 86, 062303 (2012)]. ϱ (p) 3 is useful metrologically for $p > 0.439576$. Róbert Trényi (UPV/EHU) 11 / 11 [Multicopy metrology](#page-0-0) 11 / 11 / 11 / 11