Investigation of high-precision phase estimation with trapped ions in the presence of noise

Sanah Altenburg, S. Wölk and O. Gühne

Department Physik, Universität Siegen, Siegen, Germany

Bilbao, 23. April 2015

Sanah Altenburg

Investigation of high-precision phase estimation in the presence of noise

1

Siegen

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Motivation: Why Quantum Metrology?

• Classical setup:

- N particles in a classical state,
- The Standard Quantum Limit (SQL):

 $(\Delta arphi)^2 \propto 1/N$

• Quantum setup:

- *N* particles in a quantum state.
- The Heisenberg Limit (HL):

 $(\Delta arphi)^2 \propto 1/\mathit{N}^2$

Motivation: Why Quantum Metrology?

The Cramer-Rao bound

$$(\Delta \varphi)^2 \ge 1/F_Q[\varrho, \Lambda_{\varphi}]$$

With the tool; Quantum Fisher Information (QFI) $F_Q[\varrho, \Lambda_{\varphi}]$

• But noise destroys the advantage of using quantum states.

The Question: For a given set-up, with a given noise model; Which quantum state should be used?

Sanah Altenburg

Investigation of high-precision phase estimation in the presence of noise

→ Ξ →

3 Quantum Metrology with lons

- 4 Metrology with different states
- 5 Conclusions and next steps

3 Quantum Metrology with lons

4 Metrology with different states

5 Conclusions and next steps

ラト

The QFI is proportional to the statistical velocity of the evolution of a given state

 $(\partial_t D_H)^2 \propto F$

with the Hellinger Distance D_H (distance in probability space).

Picture from G. Tóth and I. Apellaniz, J. Phys. A **42**, 424006 (2004)

Sanah Altenburg

Investigation of high-precision phase estimation in the presence of noise

7

- Initial state in its eigendecomposition $\varrho = \sum \lambda_i |i \rangle \langle i|$
- Unitary time evolution $U = \exp[-i\theta M]$

Definition of the Quantum Fisher-Information

$$F(\varrho, M) = 2 \sum_{\alpha, \beta} \frac{(\lambda_{\alpha} - \lambda_{\beta})^2}{\lambda_{\alpha} + \lambda_{\beta}} |\langle \alpha | M | \beta \rangle|^2$$

Example:

• The fully mixed state $\rho = 1/d$ is insensitive to any kind of unitary time evolution, so that $F(\rho, M) = 0$.

3 Quantum Metrology with lons

4 Metrology with different states

∃ →

Quantum Metrology with lons Setup:

- N trapped ions in a chain.
- Magnetic field $\vec{B_0} = B_0 \vec{e}_z$

Dynamics:

Ideal dynamics

$$H = \underbrace{\gamma B_0 t}_{\varphi} S_z$$

• Noise: Magnetic field fluctuations $B = B_0 + \Delta B(t)$

$$\eta = \varphi + \underbrace{\gamma \int_0^t \mathrm{d}\tau \Delta B(\tau)}_{\delta \varphi(t)}$$

• Estimate φ for a given time t = T

The noise model¹

• Dynamics

$$U = \underbrace{\exp[-i\varphi S_z]}_{U_{\varphi}} \underbrace{\exp[-i\gamma \int_0^T d\tau \Delta B(\tau) S_z]}_{U_{noise}}$$

- The state ϱ_0 evolves in a noisy state $\varrho_T = U_{noise} \varrho_0 U_{noise}^{\dagger}$
- Time correlation function for the magnetic field fluctuations $\Delta B(au)$

$$\langle \Delta B(\tau) \Delta B(0)
angle = \exp[-rac{ au}{ au_c}] \langle \Delta B^2
angle$$

- Assume Gaussian phase fluctuations with $\langle \delta \varphi(T) \rangle = 0$
- Average $\langle \varrho_T \rangle$ and calculate the QFI $F_Q[\langle \varrho_T \rangle\,,S_z]$
- For frequency estimation with $\varphi = \omega T$:

$$F_Q^{\omega} = T^2 F_Q^{\varphi}$$

¹T. Monz et al.: 14-Qubit Entanglement: Creation and Coherence, PRL 106 (2011)

3 Quantum Metrology with lons

Sanah Altenburg

Investigation of high-precision phase estimation in the presence of noise

The product-state

The classical state....

... is a Product-state:

$$|P_{N}
angle = \left(rac{1}{\sqrt{2}}(|0
angle+|1
angle)
ight)^{\otimes N}$$

Observations:

- For T = 0 we find $F_Q = N$, this is the SQL.
- For T > 0 the QFI decreases.
- The more ions the faster the QFI decreases.

The GHZ-state

The GHZ-state...

... is defined as

$$|\Psi
angle_{\mathrm{GHZ}}=rac{1}{\sqrt{2}}(|000...0
angle+|111...1
angle).$$

• The QFI is

$$F_Q = N^2 \mathrm{e}^{-N^2 C(T)}$$

• Solving the master equation leads to

$$F_Q = N^2 \mathrm{e}^{-N^2 \tilde{C}(T)}$$

[F.Fröwis et al., New Journal of Phys. 8 (2014)]

< 3 >

The sym. Dicke-state

Definition: Dicke-state

$$|D_{sym.}^{N}
angle \propto \sum_{j}P_{j}\{|0
angle^{\otimes N/2}\otimes|1
angle^{\otimes N/2}\}$$

• Rotation around the X-axis: $U_x^N(\alpha) | D_N^{sym.} \rangle$

(人間) トイヨト イヨト

The sym. Dicke-state

For N = 4:

- For $\alpha = 0$, $F_Q = 0$
- For $\alpha = \pi/2$ and T = 0, $F_Q = N(N+2)/2$
- For $\alpha = \pi/4$, somewhere in between

For a given T and N, we are able to tell which state gives the best precision for phase and frequency estimation.

Dicke state under any rotation angle α

- *N* = 4
- Rotation around the X-axis: $U_x^N(\alpha) | D_N^{sym.} \rangle$

- ×

3 Quantum Metrology with lons

4 Metrology with different states

Conclusions

Next steps

Differential interferometry with trapped lons

• Trapped ions with Hamiltonian

$$egin{aligned} \mathcal{H} &= \gamma \int_0^t \mathrm{d} au \Delta \mathcal{B}(au) (\mathcal{S}_z \otimes \mathcal{S}_z) \ &+ \gamma \phi(\mathbbm{1} \otimes \mathcal{S}_z). \end{aligned}$$

• For photons and atoms see M. Landini et al., New J. of Phys. **11**, 113074 (2014)

Other states

Investigation of the usefulness of other Dicke-states, e.g. the W-state.

Collaboration with Ch. Wunderlich (Siegen)

I. Baumgart et al., arXiv:1411.7893 (2014)

• Trapped ions with Hamiltonian

$$H = \gamma \int_0^t \mathrm{d}\tau \Delta B(\tau) S_z + \gamma (\Omega + \epsilon) t S_x.$$

• Optimization for the estimation of *ε*.

Acknowledgements

This work was founded by the Friedrich-Ebert-Foundation.

Sanah Altenburg

Investigation of high-precision phase estimation in the presence of noise

Thank you for your Attention! Questions?

Sanah Altenburg

nvestigation of high-precision phase estimation in the presence of noise

22