



# Detection and chemical tailoring of entanglement in antiferromagnetic spin clusters

February 4<sup>th</sup> 2015, **Bilbao** 

## Outline

Molecular Nanomagnets

Spin Hamiltonians

Entanglement detection

Exchange energy as an entanglement witness

• Spin-pair entanglement modulation

Homometallic and heterometallic rings :  $Cr_8$ ,  $Cr_7M$  and  $Cr_{2n}M_2$ Exchanged coupled dimers

Multi-spin entanglement

Energy as a witness of multi-spin entanglement

Homometallic and heterometallic rings

• Conclusions

## Molecular Spin Clusters: Single Molecule Magnets





8 Mn<sup>3+</sup>+ 4 Mn<sup>4+</sup>

8 Mn<sup>3+</sup>+ 4 Mn<sup>4+</sup>





Thomas et al, Nature 383, 145 (1996). Sangregorio et al, Phys. Rev. Lett. 78, 4645 (1997). Schelgel et al., Phys. Rev. Lett. 101, 147203 (2003).

#### quantum oscillations



#### Molecular Spin Clusters: AF molecules



#### highly correlated low spin ground state

#### quantum oscillations



Bertaina et al, Nature 453, 203 (1996). Timco et al. Angew. Chem. Int. Ed. 47, 9681 –9684 (2008). Timco et al., Chem. Soc. Rev. 40, 3067–3075 (2011)

#### chemical engineering





### Spin Hamiltonians

$$H = \sum_{i=1}^{N} J_{i,i+1} \mathbf{s}_{i} \cdot \mathbf{s}_{i+1} + \sum_{i=1}^{N} \left( d_{i} s_{i,z}^{2} + \frac{1}{2} e_{i} (s_{i,+}^{2} - s_{i,-}^{2}) \right) + \sum_{i < j} \bar{\mathbf{s}}_{i} \cdot \bar{D}_{ij} \cdot \mathbf{s}_{j}$$

• Direct **diagonalization** of the Hamiltonian (dimension  $(2s_i+1)^N$ )

Irreducible Tensor Operator (ITO) formalism

block matrix (exploiting symmetries, conservation of S and M)

non-local basis: successive coupling scheme is adopted

$$|S_1S_2(\widetilde{S}_2)S_3(\widetilde{S}_3)...S_{N-1}(\widetilde{S}_{N-1})S_NSM > = |(\widetilde{S})SM >$$

• Reduced density matrix at finite temperature in the local basis

$$\rho = \frac{1}{Z} e^{-H/k_B T} \qquad |m_1, m_2, ..., m_N| >$$

J.J. Borras-Almenar et al, Inorg. Chem. 38, 6081 (1999)

#### An observable *W* is an **entanglement witness** if:

$$\langle W \rangle \geq W^{th}$$
 for all separable states  $\rho_s$   
 $W^{th} = \inf_{\psi \in S} \langle \psi | W | \psi \rangle_{\psi \text{ is separable}}$ 

✓ knowledge of ρ is not required
 ✓ macroscopic properties are informative
 of microscopic quantum correlations
 ✓ thermal entanglement

✓ each witness is selective for a specific kind of entanglement

$$H = J\mathbf{s}_1 \cdot \mathbf{s}_2$$



#### **Factorizable state**

## $|\psi\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle \Longrightarrow \langle H\rangle = J \langle \varphi_1 | \mathbf{s}_1 | \varphi_1 \rangle \cdot \langle \varphi_2 | \mathbf{s}_2 | \varphi_2 \rangle \ge -Js^2$

 $H = J\mathbf{s}_{1} \cdot \mathbf{s}_{2}$ Factorizable state  $|\psi\rangle = |\varphi_{1}\rangle \otimes |\varphi_{2}\rangle \implies \langle H \rangle \ge -Js^{2}$   $\langle H \rangle < -Js^{2} \implies \text{spin-pair entanglement}$ Singlet  $|\psi\rangle_{s} \implies \langle H \rangle = -Js^{2} - Js$ 





## Spin pair entanglement modulation

I. Siloi and F. Troiani, Phys. Rev. B 86,224404 (2012)

G. Lorusso, V. Corradini, A. Ghirri, R. Biagi, U. del Pennino, I. Siloi, F. Troiani, G. Timco, R.E.P. Winpenny and M. Affronte, Phys. Rev. B 86, 184424 (2012)

## Homometallic rings: Cr<sub>8</sub>



$$H = J \sum_{i=1}^{N} \mathbf{s}_{i} \cdot \mathbf{s}_{i+1}$$
$$\Delta \approx 0.559J$$
$$J \approx 17K$$

spin-pair entanglement @ finite temperature

$$N(\rho_{ij}) > 0, T < 1.58 J$$
  
 $\langle H \rangle < -18J, T < 1.51 J$ 



## Homometallic rings: Cr<sub>8</sub>



$$H = J \sum_{i=1}^{N} \mathbf{s}_{i} \cdot \mathbf{s}_{i+1}$$
$$\Delta \approx 0.559J$$
$$J \approx 17K$$

spin-pair entanglement@ finite temperature

$$N(\rho_{ij}) > 0, T < 1.58 J$$
  
 $\langle H \rangle < -18J, T < 1.51 J$ 



## Heterometallic rings: Cr<sub>7</sub>M



|           | Zn                                      | $\mathbf{Cu}$ | Ni                                  | $\mathbf{Cr}$ | $\mathbf{Fe}$ | Mn         |
|-----------|-----------------------------------------|---------------|-------------------------------------|---------------|---------------|------------|
| $S^{s_M}$ | $\begin{array}{c} 0 \\ 3/2 \end{array}$ | $1/2 \\ 1$    | $\begin{array}{c}1\\1/2\end{array}$ | ${3/2} \\ 0$  | $2 \\ 1/2$    | $5/2 \\ 1$ |

#### entanglement modulation @ T=0

- oscillations damped with increasing distance from the impurity N(p<sub>i-1</sub>
- each pair displays spin impurity dependence
- competition between neighboring pairs



## Heterometallic rings: Cr<sub>7</sub>M



|       | Zn                                      | $\mathbf{Cu}$ | Ni                                  | $\mathbf{Cr}$ | Fe         | Mn              |
|-------|-----------------------------------------|---------------|-------------------------------------|---------------|------------|-----------------|
| $s_M$ | $\begin{vmatrix} 0\\ 3/2 \end{vmatrix}$ | $1/2 \\ 1$    | $\begin{array}{c}1\\1/2\end{array}$ | ${3/2} \\ 0$  | $2 \\ 1/2$ | $\frac{5/2}{1}$ |

#### entanglement modulation @ T=0

- oscillations damped with increasing distance from the impurity N(p<sub>i-1</sub>
- each pair displays spin impurity dependence
- competition between neighboring pairs



## Heterometallic rings: Cr<sub>2n</sub>Cu<sub>2</sub>



### Exchanged coupled dimer



$$\left|\Psi_{AB}^{Ni}(\alpha)\right\rangle = \alpha \left|\Uparrow,\Downarrow\right\rangle - (1-\alpha^{2})^{1/2} \left|\Downarrow,\Uparrow\right\rangle$$
$$\rho_{ij}^{A}(\alpha) = \alpha^{2} \rho_{ij}^{\Uparrow} + (1-\alpha^{2}) \rho_{ij}^{\Downarrow}$$
$$N(\sum_{i} p_{i} \rho_{i}) \leq \sum_{i} p_{i} N(\rho_{i})$$

Candini et al., Phys. Rev. Lett. 104, 037203 (2010).



17

## Multi-spin entanglement

F. Troiani and I. Siloi, Phys. Rev. A 86, 032330 (2012)

I. Siloi and F. Troiani, Eur. J. Phys. B (Special Issue JEMS2012) 86 (2), 1-6 (2013)

I. Siloi and F. Troiani, Phys. Rev. A 90, 042328 (2014)

#### k-spin entanglement



### Energy as a witness of k-spin entanglement



O. Guhne, G. Toth and H. J. Briegel, New J. Phys. 7,229 (2005) O. Guhne and G. Toth , Phys. Rev A 73, 052319 (2006)

## Energy as a witness of k-spin entanglement



## $H = H_{123} + H_{345} + H_{567} + H_{678}$

$$\left\langle H_{ijk} \right\rangle \geq E_3$$

fully separable or biseparable

 $\langle H \rangle > 4E_3$ 

## Energy as a witness of k-spin entanglement



$$\begin{split} H = H_{123} + H_{345} + H_{567} + H_{678} \\ \Big\langle H_{ijk} \Big\rangle &\geq E_3 \end{split}$$

fully separable or biseparable

 $\langle H \rangle > 4E_3$ 

3-spin entanglement

$$\left< H \right> \ < 4 E_3$$

#### Example: 3-spi n entanglement



$$H = \mathbf{s}_1 \cdot \mathbf{s}_2 + \mathbf{s}_2 \cdot \mathbf{s}_3$$

$$E^{bs} = \left\langle \Phi_{bs} \left| H \right| \Phi_{bs} \right\rangle = \left\langle \varphi_{1} \left| \mathbf{s}_{1} \right| \varphi_{1} \right\rangle \cdot \left\langle \varphi_{23} \left| \mathbf{s}_{2} \right| \varphi_{23} \right\rangle + \left\langle \varphi_{23} \left| \mathbf{s}_{2} \cdot \mathbf{s}_{3} \right| \varphi_{23} \right\rangle$$

biseparable

$$\left|\Phi_{bs}\right\rangle = \left|\phi_{1}\right\rangle \otimes \left|\phi_{23}\right\rangle$$

$$E^{bs} = \left\langle H_{eff} \right\rangle = \left\langle -s_1 s_2^{z} + \mathbf{s}_2 \cdot \mathbf{s}_3 \right\rangle$$

fully separable

$$E^{fs} = -s_2(s_1 + s_3)$$

$$E < E^3 = E^{bs} = \left\langle -s_1 s_2^{z} + \mathbf{s}_2 \cdot \mathbf{s}_3 \right\rangle$$

## Homometallic ring: Cr<sub>8</sub>



- spin-pair entanglement T<T<sub>2</sub>=1.51 J
- 3-spin entanglement T<T<sub>3</sub>=1.02 J
- 5-spin entanglement T<T<sub>5</sub>=0.72 J

### k-spin entanglement in spin rings

$$\begin{split} & \left\{ \Psi_{bs} | H | \Psi_{bs} \right\} = \left\{ \Psi_A | H_A | \Psi_A \rangle + \left\langle \Psi_B | H_B | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A+1} | \Psi_B \right\rangle \\ & + \left\langle \Psi_A | \mathbf{s}_{N_A} | \Psi_A \rangle \cdot \left\langle \Psi_B | \mathbf{s}_{N_A} | \Psi_B \right\rangle . \end{split}$$

 $z_B \equiv \left\langle s_{N_{A+1}} \right\rangle \quad z'_B \equiv \left\langle s_N \right\rangle$ 

### k-spin entanglement in spin rings



s

### Heterometallic rings: Cr<sub>7</sub>M



 $\tilde{H}_B(z_A = s_k) = H_B + s_k(s_{z,k-1} + s_{z,k+1})$ 



Inequivalent ways of including the defect into the 3-spin terms





- chemical substitutions induce strong spatial modulation of spin-pair entanglement
- modulation at finite temperature is detected by spin-pair correlation function
- exchange coupled dimers: local spins and collective spins entanglement coexist
- exchange energy is a witness also of k-spin entanglement
- single spin separariblity criteria: access to local features through global observable

#### finite temperature

 spatial modulations revealed by local witnesses

$$\langle \mathbf{s}_i \cdot \mathbf{s}_{i+1} \rangle < -s_i s_{i+1}$$

threshold temperatures
 identified by global energy
 witness

$$\langle H \rangle < -(N-2)Js_{Cr}^{2} - 2Js_{Cr}s_{M}$$



## N-spin entanglement in spin rings



$$\tilde{H}_{A}(\mathbf{z}_{B}, \mathbf{z}_{B}') = H_{A} + \mathbf{z}_{B} \cdot \mathbf{s}_{N_{A}} + \mathbf{z}_{B}' \cdot \mathbf{s}_{1} 
\tilde{H}_{B}(\mathbf{z}_{A}, \mathbf{z}_{A}') = H_{B} + \mathbf{z}_{A} \cdot \mathbf{s}_{N_{A}+1} + \mathbf{z}_{A}' \cdot \mathbf{s}_{N} 
\mathbf{z}_{A} \equiv \langle \mathbf{s}_{N_{A}} \rangle \qquad \mathbf{z}_{A}' \equiv \langle \mathbf{s}_{1} \rangle 
\mathbf{z}_{B} \equiv \langle \mathbf{s}_{N_{A}+1} \rangle \qquad \mathbf{z}_{B}' \equiv \langle \mathbf{s}_{N} \rangle$$

$$\mathbf{z}_A' = \eta \mathbf{z}_A, \ \mathbf{z}_B' = \eta \mathbf{z}_B \ (\eta = \pm 1)$$

$$\cos \theta_{\alpha} \equiv \frac{\mathbf{z}_{\alpha} \cdot \mathbf{z}_{\alpha}'}{|\mathbf{z}_{\alpha}| |\mathbf{z}_{\alpha}'|} \neq (-1)^{N_{\alpha}+1} \qquad Z_{\alpha} \equiv ||\mathbf{z}_{\alpha}| - |\mathbf{z}_{\alpha}'|| > 0,$$

$$(\mathbf{z}_B, \mathbf{z}'_B) \xrightarrow{\tilde{H}_A} (\bar{\mathbf{z}}_A, \bar{\mathbf{z}}'_A) \xrightarrow{\tilde{H}_B} (\bar{\bar{\mathbf{z}}}_B, \bar{\bar{\mathbf{z}}}'_B)$$