Enhancing the performance of quantum key distribution

based on New J. Phys. 21 113052 (2019); Phys. Rev. A 101, 012325 (2020) and arXiv:2006.16891 (2020)

Róbert Trényi Supervisor: Prof. Marcos Curty

Escuela de Ingeniería de Telecomunicación, Department of Signal Theory and Communications, Universidade de Vigo

November 24, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675662

Róbert Trényi (UVigo)

Enhancing the performance of QKD

November 24, 2020 1 / 24

Introduction

2 Source imperfections

- Photon number splitting attack
- Techniques against the photon number splitting attack

3 Fundamental limitations

- Repeaterless bound
- Overcoming the repeaterless bound

4 Conclusions

Basic setting for quantum key distribution

Task: obtain information-theoretically secure secret keys (in contrast to computational security)

Key: 01110111

Key: 01110111

Basic setting for quantum key distribution

Task: obtain information-theoretically secure secret keys (in contrast to computational security)

Key: 01110111

Key: 01110111

- Security is guaranteed by quantum physics
- $\bullet\,$ The key is not perfect $\rightarrow\,$ error-correction and privacy amplification
- Figure of merits: secret key rate and distance

Róbert Trényi (UVigo)

Milestones of quantum key distribution

- First idea: S. Wiesner in the 70s
- BB84 protocol [Bennett and Brassard, 1984] \rightarrow polarization encoding in the X, Z-basis
- Entanglement-based schemes [Ekert, 1991] [Bennett, Brassard, and Mermin, 1992]

Milestones of quantum key distribution

- First idea: S. Wiesner in the 70s
- BB84 protocol [Bennett and Brassard, 1984] \rightarrow polarization encoding in the X, Z-basis
- Entanglement-based schemes [Ekert, 1991] [Bennett, Brassard, and Mermin, 1992]
- First rigorous security proofs [Mayers, 1996], [Shor and Preskill, 2000]
- Detector side-channels [Makarov, 2009] → measurement-device independent QKD [Lo, Curty, and Qi, 2012]

Milestones of quantum key distribution

- First idea: S. Wiesner in the 70s
- BB84 protocol [Bennett and Brassard, 1984] \rightarrow polarization encoding in the X, Z-basis
- Entanglement-based schemes [Ekert, 1991] [Bennett, Brassard, and Mermin, 1992]
- First rigorous security proofs [Mayers, 1996], [Shor and Preskill, 2000]
- Detector side-channels [Makarov, 2009] → measurement-device independent QKD [Lo, Curty, and Qi, 2012]
- Optical fiber-based setups: [Boaron et al., 2018] \rightarrow 421 km, 6.5 bps [J.-P. Chen et al., 2020] \rightarrow 509 km, 0.269 bps
- Satellite-based setups: [Liao et al., 2018] 7600 km on Earth
- Ultimate goal: improve the rate and the distance

Introduction

2 Source imperfections

- Photon number splitting attack
- Techniques against the photon number splitting attack

<ロ> (四) (四) (三) (三) (三)

æ

3 Fundamental limitations

- Repeaterless bound
- Overcoming the repeaterless bound

Conclusions

High-quality and high-performance single photon sources \rightarrow challenging Instead:

• Weak coherent pulses (WCP)

$$|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \xrightarrow{\text{phase}}_{\text{randomization}} \rho = \sum_{n=0}^{\infty} \frac{e^{-\mu}\mu^n}{n!} |n\rangle\langle n|$$

with $\mu = |\alpha|^2$ average photon number

Practical sources have $2, 3 \cdots$ -photon components

Photon number splitting (PNS) attack

• PNS attack [Lütkenhaus, 2000] \rightarrow single photon sources are preferred

Photon number splitting (PNS) attack

• PNS attack [Lütkenhaus, 2000] \rightarrow single photon sources are preferred

• Example: BB84 with WCPs have a key rate $\mathcal{O}(\eta^2)$ [Inamori, Lütkenhaus, and Mayers, 2007]

$$\eta = 10^{-lpha l/10}$$

Róbert Trényi (UVigo)

November 24, 2020 6 / 24

Photon number splitting (PNS) attack

• PNS attack [Lütkenhaus, 2000] \rightarrow single photon sources are preferred

• Example: BB84 with WCPs have a key rate $\mathcal{O}(\eta^2)$ [Inamori, Lütkenhaus, and Mayers, 2007]

$$\eta = 10^{-\alpha l/10}$$

• Special techniques are required to avoid the PNS attack

Róbert Trényi (UVigo)

Introduction

2 Source imperfections

Photon number splitting attack

• Techniques against the photon number splitting attack

<ロト <四ト <注入 <注下 <注下 <

3 Fundamental limitations

- Repeaterless bound
- Overcoming the repeaterless bound

Conclusions

Decoy state QKD

$[{\sf Hwang},\,2003] \rightarrow {\sf security proof}$ [Lo, Ma, and K. Chen, 2005]

< A >

Decoy state QKD

$[{\sf Hwang},\,2003] \rightarrow {\sf security proof}$ [Lo, Ma, and K. Chen, 2005]

- Alice uses phase-randomized WCPs with more intensities $\rightarrow \mu, \mu_{d1}, \ldots$ to estimate the behavior of the channel better
- Field QKD networks: Vienna [Peev et al., 2009], Tokyo [Sasaki et al., 2011] and China [T.-Y. Chen et al., 2009]

< A > <

Decoy state QKD

$[{\sf Hwang},\,2003]$ \rightarrow security proof [Lo, Ma, and K. Chen, 2005]

- Alice uses phase-randomized WCPs with more intensities $\rightarrow \mu, \mu_{d1}, \ldots$ to estimate the behavior of the channel better
- Field QKD networks: Vienna [Peev et al., 2009], Tokyo [Sasaki et al., 2011] and China [T.-Y. Chen et al., 2009]
- There are simpler/more convenient approaches

Róbert Trényi (UVigo)

Differential-phase-shift (DPS) QKD

(figure from [Inoue, Waks, and Yamamoto, 2002])

The promising coherent-one-way (COW) protocol

Image: A match a ma

The promising coherent-one-way (COW) protocol

Published: 09 February 2015

Provably secure and practical quantum key distribution over 307 km of optical fibre

Boris Korzh ⊠, Charles Ci Wen Lim ⊠, Raphael Houlmann, Nicolas Gisin, Ming Jun Li, Daniel Nolan, Bruno Sanguinetti, Rob Thew & Hugo Zbinden

Nature Photonics 9, 163–168(2015) Cite this article

1641 Accesses | 244 Citations | 135 Altmetric | Metrics

Abstract

Proposed in 1984, quantum key distribution (QKD) allows two users to exchange provably secure keys via a potentially insecure quantum channel¹. Since then, QKD has attracted much attention and significant progress has been made both in theory and practice^{2,3}. On Róbert Trényi (UVigo) Enhancing the performance of QKD November 24, 2020

9/24

Layout of the COW protocol

November 24, 2020

10/24

Layout of the COW protocol

Monitored quantities:

- Quantum bit error rate (QBER)
- Visibilities $V_s = \frac{p(\text{DM1}|s) p(\text{DM2}|s)}{p(\text{DM1}|s) + p(\text{DM2}|s)}$ with $s \in \{d, 01, 0d, 1d, dd\}$
- as a function of the Gain (probability that Bob observes a detection event per signal)

Layout of the COW protocol

- Monitored quantities:
 - Quantum bit error rate (QBER)
 - Visibilities $V_s = \frac{p(\text{DM1}|s) p(\text{DM2}|s)}{p(\text{DM1}|s) + p(\text{DM2}|s)}$ with $s \in \{d, 01, 0d, 1d, dd\}$
 - as a function of the Gain (probability that Bob observes a detection event per signal)
- Performance was not yet established
 - upper bound $\mathcal{O}(\eta)$
 - lower bound $\mathcal{O}(\eta^2)$

10 / 24

We introduced an *intercept-resend* type of attack [González-Payo et al., 2020] (submitted to PRL) \rightarrow entanglement breaking channel \rightarrow no secret key can be generated [Curty, Lewenstein, and Lütkenhaus, 2004] \rightarrow can the attack be detected?

We introduced an *intercept-resend* type of attack [González-Payo et al., 2020] (submitted to PRL) \rightarrow entanglement breaking channel \rightarrow no secret key can be generated [Curty, Lewenstein, and Lütkenhaus, 2004] \rightarrow can the attack be detected?

Unambiguous state discrimination (USD)

•
$$|\langle \varphi_0 | \varphi_1 \rangle| = e^{-|\alpha|^2}$$

•
$$|\langle arphi_0|arphi_2
angle|=e^{-|lpha|^2/2}$$

• inconclusive result $q_{
m inc}
ightarrow$ vacuum is resent

We introduced an *intercept-resend* type of attack [González-Payo et al., 2020] (submitted to PRL) \rightarrow entanglement breaking channel \rightarrow no secret key can be generated [Curty, Lewenstein, and Lütkenhaus, 2004] \rightarrow can the attack be detected?

Unambiguous state discrimination (USD)

•
$$|\langle \varphi_0 | \varphi_1 \rangle| = e^{-|\alpha|^2}$$

•
$$|\langle arphi_0|arphi_2
angle|=e^{-|lpha|^2/2}$$

• inconclusive result $q_{
m inc}
ightarrow$ vacuum is resent

Eve only resends blocks of type "0...1" and USD \rightarrow no errors (QBER=0), not breaking coherence (visibility 1) \rightarrow the protocol is insecure

11 / 24

Upper bound for the secret key rate

- Given $\eta \to \exists \, \alpha_{\max}$ s.t. Eve cannot achieve QBER=0 and visibilities 1 at the gain Bob expects
- Trivial upper bound for the key rate $\eta |\alpha_{\max}(\eta)|^2$

November 24, 2020

Upper bound for the secret key rate

- Given $\eta \to \exists \alpha_{max}$ s.t. Eve cannot achieve QBER=0 and visibilities 1 at the gain Bob expects
- Trivial upper bound for the key rate $\eta |\alpha_{\max}(\eta)|^2$

Upper bound for the secret key rate scales $\mathcal{O}(\eta^2) \rightarrow \text{not suitable for long-distance}$ $(\eta = 10^{-\alpha l/10} \text{ is the channel loss})$

Róbert Trényi (UVigo)

Enhancing the performance of QKD

November 24, 2020

12 / 24

All experiments in scientific literature are insecure [Gisin et al., 2004], [Stucki, Brunner, et al., 2005], [Stucki, Walenta, et al., 2009] [Korzh et al., 2014]

COW experiments are insecure

Róbert Trényi (UVigo)

Enhancing the performance of QKD

November 24, 2020 13 / 24

Performance of our improved attack

Introduction

Source imperfections

- Photon number splitting attack
- Techniques against the photon number splitting attack

<ロ> (四) (四) (三) (三) (三)

- 2

3 Fundamental limitations

- Repeaterless bound
- Overcoming the repeaterless bound

Conclusions

Repeaterless bounds

The secret key rate of *point-to-point* QKD protocols is *fundamentally* limited:

• $\log_2[(1 + \eta)/(1 - \eta)]$ [Takeoka, Guha, and Wilde, 2014] (TGW) • $-\log_2(1 - \eta)$ [Pirandola et al., 2017] (PLOB)

Repeaterless bounds

The secret key rate of *point-to-point* QKD protocols is *fundamentally* limited:

- $\log_2[(1+\eta)/(1-\eta)]$ [Takeoka, Guha, and Wilde, 2014] (TGW)
- $-\log_2(1-\eta)$ [Pirandola et al., 2017] (PLOB)
- O(η) for long distances → η decays exponentially with distance for optical fibers → intermediate nodes (and special techniques) are necessary to overcome

Róbert Trényi (UVigo)

Example: measurement-device-independent (MDI) QKD

(figure from [Lo, Curty, and Qi, 2012])

Example: measurement-device-independent (MDI) QKD

(figure from [Lo, Curty, and Qi, 2012])

- key rate scales with $\mathcal{O}(\eta)$
- just the intermediate node itself is not enough to overcome the repeaterless bound

Introduction

Source imperfections

- Photon number splitting attack
- Techniques against the photon number splitting attack

3 Fundamental limitations

- Repeaterless bound
- Overcoming the repeaterless bound

Conclusions

• $\eta^{1/n}$ (containing more intermediate nodes)

Full-scale quantum repeaters (e.g. based on entanglement swapping)
 → challenging experimentally

• $\eta^{1/n}$ (containing more intermediate nodes)

- Full-scale quantum repeaters (e.g. based on entanglement swapping) \rightarrow challenging experimentally
- $\sqrt{\eta}$ improvement (one intermediate node)
 - Adaptive MDI-QKD approach [Azuma, Tamaki, and Munro, 2015]
 - Quantum memory based approach [Panayi et al., 2014]
 - Twin-field QKD [Lucamarini et al., 2018]

(figure from [Azuma, Tamaki, and Munro, 2015])

- parallelized version of MDI-QKD using a multiplexing technique and QND measurements
- single-photon sources are assumed
- key generation: enough for a photon to travel half the distance $ightarrow \sqrt{\eta}$

18 / 24

(figure from [Azuma, Tamaki, and Munro, 2015])

- parallelized version of MDI-QKD using a multiplexing technique and QND measurements
- single-photon sources are assumed
- key generation: enough for a photon to travel half the distance $ightarrow \sqrt{\eta}$

(figure from [Azuma, Tamaki, and Munro, 2015])

- parallelized version of MDI-QKD using a multiplexing technique and QND measurements
- single-photon sources are assumed
- key generation: enough for a photon to travel half the distance $ightarrow \sqrt{\eta}$

(figure from [Azuma, Tamaki, and Munro, 2015])

- parallelized version of MDI-QKD using a multiplexing technique and QND measurements
- single-photon sources are assumed
- key generation: enough for a photon to travel half the distance $\rightarrow \sqrt{\eta}$ $\mathcal{O}(\sqrt{\eta})$ but single photon sources are assumed

Róbert Trényi (UVigo)

Enhancing the performance of QKD

[Trényi, Azuma, and Curty, 2019]

- single-photon sources \rightarrow heralded PDC sources $\sum_{n=0}^{\infty} \sqrt{p_n} |\phi_n\rangle$
- perfect EPR sources in the QND \rightarrow PDC sources $\sum_{m=0}^{\infty} \sqrt{q_m} \ket{\phi_m}$

[Trényi, Azuma, and Curty, 2019]

- single-photon sources \rightarrow heralded PDC sources $\sum_{n=0}^{\infty} \sqrt{p_n} |\phi_n\rangle$
- perfect EPR sources in the QND \rightarrow PDC sources $\sum_{m=0}^{\infty} \sqrt{q_m} |\phi_m\rangle$

$$p_n = \frac{(n+1)(\lambda')^n}{(1+\lambda')^{n+2}} \text{ and } q_m = \frac{(m+1)\lambda^m}{(1+\lambda)^{m+2}} \text{ with}$$
$$|\phi_n\rangle = \frac{1}{\sqrt{n+1}} \sum_{m=0}^n (-1)^m |n-m,m\rangle_a |m,n-m\rangle_b$$

The QND measurement

글 🖌 🖌 글 November 24, 2020

< 行

20 / 24

э

The QND measurement

• Impossible to beat the repeaterless bound with PDC sources

• Characterized allowable q_2/q_1 and p_2/p_1 to overcome the bound

Róbert Trényi (UVigo)

Enhancing the performance of QKD

20 / 24

[Luong et al., 2016]

• perfect Bell-states are emitted by the QMs \rightarrow first towards Alice \rightarrow then towards Bob \rightarrow once both QMs are loaded, a BSM is performed

(figure from [Luong et al., 2016])

[Luong et al., 2016]

• perfect Bell-states are emitted by the QMs \rightarrow first towards Alice \rightarrow then towards Bob \rightarrow once both QMs are loaded, a BSM is performed

(figure from [Luong et al., 2016])

Parameters

- T₂: dephasing-time constant of the QMs
- η_{total} : total efficiency, $\eta_{\text{total}} = \eta_{\text{c}} \eta_{\text{p}} \eta_{\text{d}}$
 - $\eta_{\rm p}:$ preparation efficiency
 - $\eta_c:$ photon-fiber coupling efficiency, wavelength conversion
 - $\eta_d:$ detection efficiency

November 24, 2020

21/24

Improving the previous QM based approach

[Trényi and Lütkenhaus, 2020]

- multiplexing to relax the conditions on T_2
- multiple QMs working in parallel \to a loaded QM has to wait less \to for a pair \to improved key rate

Improving the previous QM based approach

Róbert Trényi (UVigo)

November 24, 2020 23 / 2

• COW protocol is not appropriate for long-distance QKD

э

- COW protocol is not appropriate for long-distance QKD
- Adaptive MDI-QKD cannot beat the repeaterless bound with PDC sources

- COW protocol is not appropriate for long-distance QKD
- Adaptive MDI-QKD cannot beat the repeaterless bound with PDC sources
- Extension of a QM-based QKD protocol

- COW protocol is not appropriate for long-distance QKD
- Adaptive MDI-QKD cannot beat the repeaterless bound with PDC sources
- Extension of a QM-based QKD protocol

Thank you very much for your attention!

- COW protocol is not appropriate for long-distance QKD
- Adaptive MDI-QKD cannot beat the repeaterless bound with PDC sources
- Extension of a QM-based QKD protocol

Thank you very much for your attention! Questions?

November 24, 2020

24 / 24

э

How do we improve?

Emitting	Eve's POVM elements				
probability	Alice's signal	E_0	E_1	E_2	E_3
(1-f)/2	$ \varphi_0 angle$	$q_{ m s}$	$q_{ m f}$	$q_{ m f}$	$q_{ m inc}$
(1-f)/2	$ \varphi_1 angle$	$q_{ m f}$	$q_{ m s}$	q_{f}	$q_{ m inc}$
f	$ arphi_2 angle$	$q_{ m f}$	$q_{ m f}$	$q_{ m s}$	$q_{ m inc}$
Emitting		Eve's POVM elements			
probability	Alice's signal	E_0	E_1	E_2	E_3
(1-f)/2	$ \varphi_0\rangle$	$q_{\rm s}^{\rm s}$	$q_{\mathbf{f}}^{\mathbf{s}}$	$q_{\mathrm{f}}^{\mathrm{s}}$	$q_{\rm inc}^{\rm s}$
(1-f)/2	$ \varphi_1 angle$	$q_{\mathrm{f}}^{\mathrm{s}}$	$q_{\rm s}^{\rm s}$	$q_{\mathrm{f}}^{\mathrm{s}}$	$q_{\rm inc}^{\rm s}$
f	$ \varphi_2\rangle$	$q_{\mathrm{f}}^{\mathrm{a}}$	$q_{ m f}^{ m a}$	$q_{\rm s}^{\rm a}$	$q_{ m inc}^{ m a}$

Róbert Trényi (UVigo)

æ

How do we improve?

• When Eve can perform USD \rightarrow she does not just send "0...1" but also sends all the blocks that are bordered by vacuum pulses \rightarrow still not breaking coherence

November 24, 2020

Róbert Trényi (UVigo)

Enhancing the performance of QKD

November 24, 2020

イロト イヨト イヨト イヨト

24 / 24

3

Twin-field (TF) QKD

- First introduced in [Lucamarini et al., 2018] \rightarrow based on single-photon interference $\rightarrow O(\sqrt{\eta})$ but security proof only against some special type of attacks and challenging experimentally
- Simplifications [Curty, Azuma, and Lo, 2019] and experiments [Zhong et al., 2019] [J.-P. Chen et al., 2020]

Twin-field (TF) QKD

- First introduced in [Lucamarini et al., 2018] \rightarrow based on single-photon interference $\rightarrow O(\sqrt{\eta})$ but security proof only against some special type of attacks and challenging experimentally
- Simplifications [Curty, Azuma, and Lo, 2019] and experiments [Zhong et al., 2019] [J.-P. Chen et al., 2020]

(figure from [Jie Lin and Lütkenhaus, 2018])

