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Introduction

I Quantum Metrology exploits the quantumness of a
many-body system to improve the precision (∆θ) of the
estimation problem.

I Entanglement is a resource for such improvement.

I Many experiments create quantum states with large scale
entanglement.

I It is important to find ways to verify their metrological
usefulness with simple measurements.
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Metrology with polarized states
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The precision bounds and their scaling

∆θ ∼ 1√
m

→ ∆θ ∼ 1√
mN

→ ∆θ ∼ 1√
mNβ

→ ∆θ ∼ 1√
mN
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Our metrological setup

Basic task in metrology: estimate the homogeneous magnetic field,
By, with N qubits.

I Interaction with the magnetic magnetic field

H = γByJy.

I Unitary dynamics
U = exp(−iθJy),

where θ = γByt.

I Collective observables

Jl =
N∑

i=1

σ
(i)
l

2 ,

for l ∈ {x, y, z} and where σ(i)
l are Pauli matrices.
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Theoretical precision bounds

I Shot-noise limit
∆θ ≥ 1√

N
.

I Heisenberg limit
∆θ ≥ 1

N
.

I Precision bound when local noise affects the system and when
N � 1,

∆θ ≥ 1
α
√
N
.

[V. Giovannetti, et al., Science 306 1330-1336 (2004)]
[B. Escher, et al., Nat. Phys. 7 406-411 (2011)]
[R. Demkowicz-Dobrzański et al., Nat. Commun. 3, 1063 (2012)]
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We use unpolarized states

I Non-polarized states are better for metrology

∆θ ≥ 1
/√

2N +N2
(
1− 〈Jz〉2

J2
max

)
.

[G. Tóth, IA, J. Phys. A: Math. Theor. 47, 424006 (2014)]

I Even if many experiments have been done with polarised
ensembles, unpolarised ensembles are becoming trendy

[B. Lücke, et al., Science 334, 773 (2011)]
[I. Urizar-Lanz, et al., Phys. Rev. A 88, 013626]
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Magnetic field induces rotation on Dicke states

[B. Lücke, et al., Science 334, 773 (2011)]

I In this work, the measurement of 〈J2
z 〉 has been considered to

estimate θ,

(∆θ)2 = (∆J2
z )2

|∂θ〈J2
z 〉|2

.
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Precision Bound, measuring 〈J2
z 〉

I Using the error propagation formula

(∆θ)2 = (∆J2
z )2

|∂θ〈J2
z 〉|2

= 〈J
4
z 〉 − 〈J2

z 〉2

|∂θ〈J2
z 〉|2

.

I We assume that 〈J2
z 〉 and 〈J4

z 〉 are even functions of θ, which
is true in most relevant cases.

I We obtain,

〈J2
z (θ)〉 = 〈J2

z 〉 cos2(θ) + 〈J2
x〉 sin2(θ),

〈J4
z (θ)〉 = 〈J4

z 〉 cos4(θ) + 〈J4
x〉 sin4(θ)

+
(
〈{Jz, Jx}2〉+ 〈{J2

z , J
2
x}〉
)

cos2(θ) sin2(θ).
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Precision dynamics and optimal parameter

I Precision bound written with initial expectation values

(∆θ)2 = (∆J2
x)2f(θ)+4〈J2

x〉−3〈J2
y 〉−2〈J2

z 〉(1+〈J2
x〉)+6〈JzJ2

xJz〉
4(〈J2

x〉−〈J2
z 〉)2 ,

f(θ) := (∆J2
z )2

(∆J2
x)2

1
tan2(θ) + tan2(θ).

I Optimal θ for the precision

tan2(θopt) =
√

(∆J2
z )2

(∆J2
x)2 .

I For Dicke states |N2 , 0〉,

(∆θ)2
opt = 1

4〈J2
x〉

= 1
FQ[|N2 , 0〉, Jy]

.
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Simple example for thousands of particles

One can see that the optimal value is at θopt ≈ 0.005.

[IA, B. Lücke, J. Peise, C. Klempt and G. Tóth, arxiv:1412.3426 ]
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Testing the bound against CR inequality

N = 100 particle system

(left) Our bound compared to the Cramér-Rao bound (dashed) for the pure
state, ground state of H = J2

z − λJx.

(right) The same for thermal state % ∝
∑

e− m2

T |N2 ,m〉〈
N
2 ,m|.
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Using the bound with experimental data

We approximate 〈J4
z 〉 ≈ 3〈J2

z 〉2 and we bound the 4th moments with 2nd order
ones.

N = 7900, 〈J2
x〉 = 6.1× 106 ± 0.6× 106, 〈J2

z 〉 = 112± 31

Iagoba Apellaniz - DPG Spring Meeting - Heidelberg - March 24th Application of the result 13



Conclusions

I We have developed a method to estimate the metrological
precision for Dicke states.

I Our method needs the the second and forth moments of
collective angular momentum components.

I We can also get a somewhat worse lower bound with second
order moment only.

I We tested our method for an experiment with 8000 particles,
creating a Dicke states in cold gases.

Iagoba Apellaniz - DPG Spring Meeting - Heidelberg - March 24th Conclusions 14



Acknowledgements
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