

How energy conservation limits our measurements

Miguel Navascués and Sandu Popescu

School of Physics, University of Bristol, United Kingdom
University of
BRISTOL

I can explain everything

Everything is Sandu's fault!

$\mid e>$ $\mid g>$

$$
\begin{array}{ll}
\mid g>\longrightarrow & \frac{|g> \pm| e\rangle}{\sqrt{2}} \\
E=0 & E=\Delta / 2
\end{array}
$$

Violates energy conservation!!!

Lots of approximations, infinite energy...

Ancilla

Energy conservation demands that

$$
H_{T}=H_{s} \otimes \mathbb{I}+\mathbb{I} \otimes H_{s}
$$

Energy conservation demands that

$$
H_{T}=H_{s} \otimes \mathbb{I}+\mathbb{I} \otimes H_{S}
$$

$$
\mid e>
$$

$$
\mid g>
$$

x

Previous work

E. Wigner, Z. Phys. 133, 101 (1952).
H. Araki and M. M. Yanase, Phys. Rev. 120, 622626 (1960).

Wigner-ArakiYanase theorem
M. M. Yanase, Phys. Rev. 123, 666 (1961).
M. Ozawa, Phys. Rev. Lett. 88, 050402 (2002).
T. Karasawa, J. Gea-Banacloche and M. Ozawa J. Phys. A: Math. Theor. 42, 225303 (2009).
J. Gea-Banacloche and M. Ozawa, J. Opt. B: quantum Semiclass. Opt. 7, S326 (2005).
S. D. Bartlett, T. Rudolph, R. W. Spekkens and P. S. Turner, New J. Phys. 11, 063013 (2009).
G. Gour, I. Marvian and R. W. Spekkens, Phys. Rev. A 80, 012307 (2009).
M. Ahmadi, D. Jennings and T. Rudolph, arXiv:1209.0921.

The measurement model

Classical measurement model

system $\stackrel{\sigma}{\bigcirc}$

Classical measurement model

system $\stackrel{\sigma}{\bigcirc}$

Classical measurement model

Classical measurement model

Classical measurement model

Classical measurement model

In general, this interaction introduces or subtracts energy from the system

Energy-conserving measurement model

Energy-conserving measurement model

Energy-conserving measurement model

$<\phi_{S B P}\left|U^{*} H_{T} U\right| \phi_{S B P}>=<\phi_{S B P}\left|H_{T}\right| \phi_{S B P}>$

$$
H_{T}=H_{S} \otimes \mathbb{I}_{B P}+\mathbb{I}_{S} \otimes H_{B} \otimes \mathbb{I}_{P}
$$

$<\phi_{S B P}\left|U^{*} H_{T} U\right| \phi_{S B P}>=<\phi_{S B P}\left|H_{T}\right| \phi_{S B P}>$

$$
\left[U, H_{T}\right]=0
$$

$$
H_{T}=H_{S} \otimes \mathbb{I}_{B P}+\mathbb{I}_{S} \otimes H_{B} \otimes \mathbb{I}_{P}
$$

$<\phi_{S B P}\left|U^{*} H_{T} U\right| \phi_{S B P}>=<\phi_{S B P}\left|H_{T}\right| \phi_{S B P}>$

We do not want the pointer to play the role of the battery!!
$H_{T}=H_{S} \otimes \mathbb{I}_{B P}+\mathbb{I}_{S} \otimes H_{B} \otimes \mathbb{I}_{P} \square H_{P}=0$

Example: homodyne measurements in quantum optics

Light pulse

$$
\text { Aim: measure } \frac{a+a^{t}}{\sqrt{2}}
$$

Example: homodyne measurements in quantum optics

Example: homodyne measurements in quantum optics

Energy-conserving measurement model

Energy-conserving measurement model

$$
p(x)=\operatorname{tr}\left(\sigma M_{x}\right), M_{x} \geq 0, \sum_{x} M_{x}=\mathbb{I}
$$

$$
p(x)=\operatorname{tr}\left(\sigma M_{x}\right), M_{x} \geq 0, \sum_{x} M_{x}=\mathbb{I}
$$

$$
\left[M_{x}, H_{s}\right]=0
$$

s, s' cannot \mid violate Bell inequalities
prove that their state is entangled

Example: quantum optics

$H_{T}=H_{S} \otimes \mathbb{I}_{B}+\mathbb{I}_{S} \otimes H_{B}$

How far can we go with this model?

$\left\{M_{x}\right\}$

$\exists H_{B}, \rho^{(n)}$, U, s.t.
$=\left\{M_{x}\right\}$

Problems

H_{B}, infinite dimensional
$\lim _{n \rightarrow \infty} \operatorname{tr}\left(\rho^{(n)} H_{B}\right) \rightarrow \infty$

What can we measure under reasonable assumptions on the energy spectrum of the battery?
dimension d

How is a measurement device limited by the energy spectrum of its battery?

How is a measurement device limited by the energy spectrum of its battery?

M^{0}, M^{1}

$$
\left(\begin{array}{c}
\left\{M_{x}^{a}\right\}_{x=1,2,3, \ldots} \\
M_{x}^{a} \geq 0, \sum_{x} M_{x}^{a}=\mathbb{I}
\end{array}\right.
$$

With probability ${ }^{1 / 2}, M_{x}^{1}$ ($a=1$)

What is the value of a ?

Classical Strategy

Quantum Strategy

Trivia

$\operatorname{dist}_{Q}\left(M^{0}, M^{1}\right), \operatorname{dist}_{C}\left(M^{0}, M^{1}\right)$, distances

Trivia

$$
1 \geq \operatorname{dist}_{Q}\left(M^{0}, M^{1}\right) \geq \operatorname{dist}_{C}\left(M^{0}, M^{1}\right) \geq 0
$$

Trivia

$\operatorname{dist}_{C}\left(M^{0}, M^{1}\right)=\operatorname{dist}_{Q}\left(M^{0}, M^{1}\right)$

$\epsilon_{C, Q}=\max \left\{\operatorname{dist}_{C, Q}(M, \mathcal{M}): M \in \mathcal{M}(d)\right\}$

$\mathcal{M}, \mathcal{M}(d)$

$\epsilon_{C, Q}=\max \left\{d i s t_{C, Q}(M, \mathcal{M}): M \in \mathcal{M}(d)\right\}$

The qubit case

H_{s}
$\Delta \begin{cases}\square & \mid e> \\ & \mid g>\end{cases}$

H_{s}

$$
\tau=\max \int_{0}^{\infty} \rho^{\frac{1}{2}}(E) \rho^{\frac{1}{2}}(E+\Delta) d E
$$

"The closer to 1 , the more we can measure"

$$
\tau=\max \int_{0}^{\infty} \rho^{\frac{1}{2}}(E) \rho^{\frac{1}{2}}(E+\Delta) d E
$$

Case of interest: battery with finitely many energy levels

$$
\mathrm{H}_{\mathrm{B}}
$$

H_{s}

Case of interest: battery with finitely many energy levels

Case of interest: battery with finitely many energy levels

$$
\varepsilon_{C, Q}=\frac{1}{2}\left\{1-\cos \left(\frac{\pi}{D+1}\right)\right\} \approx O\left(\frac{1}{D^{2}}\right)
$$

YES?

You Called?

Case of interest: battery with finite average energy

Case of interest: battery with finite average energy

Case of interest: battery with finite average energy

$$
\tau=\varphi\left(\frac{\bar{E}}{\Delta}\right)
$$

Case of interest: battery with finite average energy

$\varphi(z)=\min _{\lambda \geq 0} \frac{z+\mu(\lambda)}{2 \lambda}$

Case of interest: battery with finite average energy

Case of interest: battery with finite average energy

$j_{n, 1} \equiv 1^{\text {st }}$ positive zero of $J_{n}(x)$

Case of interest: battery with finite average energy

$$
\tau=\bigcap\left(\frac{\bar{E}}{\Delta}\right)
$$

$$
\begin{aligned}
& \varphi(z) \approx 1-\frac{0.9468}{z^{2}} \\
& z \gg 1
\end{aligned}
$$

Case of interest: battery with finite average energy

$$
\varepsilon_{C, Q}=\frac{1}{2}\left\{1-\varphi\left(\frac{\bar{E}}{\Delta}\right)\right\} \approx \frac{0.4734 \Delta^{2}}{\bar{E}^{2}}
$$

Case of interest: battery with finite average energy

Case of interest: battery with finite average energy

Power states
 H_{B}
 $$
\boldsymbol{\ell}\left|\psi_{\bar{E}}\right\rangle
$$

$$
\left|\psi_{\bar{E}}>=\sum_{k=0}^{\infty} c_{k}\right| k>
$$

$$
H_{B}|k>=\Delta k| k>
$$

$$
E_{0}=0
$$

$$
c_{k+1}=\frac{k+\mu\left(\lambda^{*}\right)}{\lambda^{*}} c_{k}-c_{k-1}
$$

Comparison with coherent states

$$
\begin{gathered}
\left|\psi_{\bar{E}}>=\sum_{k=0}^{\infty} c_{k}\right| k>\quad \tau \approx 1-\frac{0.9468 \Delta^{2}}{\bar{E}^{2}} \\
\left|\alpha>=e^{-|\alpha|^{2} / 2} \sum_{k=0}^{\infty} \frac{\alpha^{k}}{\sqrt{k!}}\right| k>\quad \tau \approx 1-\frac{\Delta}{8 \bar{E}} \\
|\alpha|^{2}=\bar{E}
\end{gathered}
$$

Characterizations

Can I realize M with the battery restriction \mathcal{B} ?

The membership problem can be decided by a single semidefinite program (SDP).

Our algorithm also returns an implementation of M.

It is highly efficient: it allowed us to perform optimizations involving more than 4000 energy levels in a normal desktop.

$$
\int_{0}^{\infty} \varrho(E) E d E \leq \bar{E}
$$

$$
E_{0}=0
$$

Most likely, the membership problem cannot be decided by a single semidefinite program (SDP).

$$
\int_{0}^{\infty} \varrho(E) E d E \leq \bar{E}
$$

\qquad
\qquad

$$
E_{0}=0
$$

Hierarchies of SDPs
$\mathcal{M}(2)$

Hierarchies of SDPs

$$
\varepsilon_{Q}\left[\mathcal{M}_{d}(\bar{E}, 2), \mathcal{M}^{d}(\bar{E}, 2)\right] \leq O\left(\frac{\Delta}{\bar{E} d}\right)
$$

Higher dimensions

The membership problem can be decided by a single semidefinite program (SDP).

Hierarchy of SDPs

$$
\int_{0}^{\infty} \varrho(E) E d E \leq \bar{E}
$$

Conclusions

1) We have quantified how measurements of a qubit depend on the energy spectrum of the measurement device.

2) We have characterized measurements generated by measurement devices with reasonable assumptions on the energy spectrum, like finite energy or finite dimensionality.

3) Study measurements in a qudit.

Effects of self-resonances?
2) Characterize thermodynamical operations

2) Characterize thermodynamical operations

2) Characterize thermodynamical operations

2) Characterize thermodynamical operations

