k-stretchability of entanglement,

 and the duality of k-separability and k-producibility Seminar of the Department of Theoretical Physics, UPV/EHU, Bilbao
Szilárd Szalay

Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, Budapest, Hungary.

June 20, 2019

NATIONAL RESEARCH, DEVELOPMENT and InNovation Office HUNGARY

Introduction

Bipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC)
- uncorrelated/correlated, and separable/entangled

Introduction

Bipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC)
- uncorrelated/correlated, and separable/entangled

Multipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC) too involved
- "partial correlation/entanglement": finite, LO(CC)-compatible

Introduction

Bipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC)
- uncorrelated/correlated, and separable/entangled

Multipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC) too involved
- "partial correlation/entanglement": finite, LO(CC)-compatible
- w.r.t. a splitting of the system (Level I.)
- w.r.t. possible splittings of the system (Level II.)
- disjoint classification of these (Level III.)

Introduction

Bipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC)
- uncorrelated/correlated, and separable/entangled

Multipartite correlation and entanglement

- classification/qualification/quantification: (S)LO(CC) too involved
- "partial correlation/entanglement" : finite, LO(CC)-compatible
- w.r.t. a splitting of the system (Level I.)
- w.r.t. possible splittings of the system (Level II.)
- disjoint classification of these (Level III.)

Permutation invariant properties

- three-level structure, Young-diagrams
- k-partitionability (k-separability), k-producibility (ent. depth), duality
- k-stretchability

(1) Introduction

(2) Bipartite correlation and entanglement

(3) Multipartite correlation and entanglement

(4) Permutation symmetric properties
(5) Summary

Quantum states

States of discrete finite quantum systems

- state vector: $|\psi\rangle \in \mathcal{H}$ (normalized) superposition
- pure state: $\pi=|\psi\rangle\langle\psi| \in \mathcal{P}$ we are uncertain about the outcomes of the measurement, pure states encode the probabilities of those

Quantum states

States of discrete finite quantum systems

- state vector: $|\psi\rangle \in \mathcal{H}$ (normalized) superposition
- pure state: $\pi=|\psi\rangle\langle\psi| \in \mathcal{P}$ we are uncertain about the outcomes of the measurement, pure states encode the probabilities of those
- mixed state (ensemble): $\varrho=\sum_{j} p_{j} \pi_{j} \in \mathcal{D}=\operatorname{Conv} \mathcal{P}$ we are uncertain about the pure state too
- \mathcal{D} is convex, moreover, $\mathcal{P}=\operatorname{Extr} \mathcal{D}$

Quantum states

States of discrete finite quantum systems

- state vector: $|\psi\rangle \in \mathcal{H}$ (normalized) superposition
- pure state: $\pi=|\psi\rangle\langle\psi| \in \mathcal{P}$ we are uncertain about the outcomes of the measurement, pure states encode the probabilities of those
- mixed state (ensemble): $\varrho=\sum_{j} p_{j} \pi_{j} \in \mathcal{D}=\operatorname{Conv} \mathcal{P}$ we are uncertain about the pure state too
- \mathcal{D} is convex, moreover, $\mathcal{P}=\operatorname{Extr} \mathcal{D}$
- the decomposition is not unique

Mixedness and distinguishability

Measure of mixedness:

- von Neumann entropy: $S(\varrho)=-\operatorname{Tr} \varrho \ln \varrho$
- concave, nonnegative, vanishes iff ϱ pure
- Schur-concavity: entropy $=$ mixedness
- increasing in bistochastic quantum channels
- Schumacher's noiseless coding thm:
von Neumann entropy $=$ quantum information content

Mixedness and distinguishability

Measure of mixedness:

- von Neumann entropy: $S(\varrho)=-\operatorname{Tr} \varrho \ln \varrho$
- concave, nonnegative, vanishes iff ϱ pure
- Schur-concavity: entropy $=$ mixedness
- increasing in bistochastic quantum channels
- Schumacher's noiseless coding thm:
von Neumann entropy $=$ quantum information content
Measure of distinguishability:
- (Umegaki's) quantum relative entropy: $D(\varrho \| \sigma)=\operatorname{Tr} \varrho(\ln \varrho-\ln \sigma)$
- jointly convex, nonnegative, vanishes iff $\varrho=\omega$
- quantum Stein's lemma: relative entropy $=$ distinguishability

$$
\begin{aligned}
& \text { (rate of decaying of the probability of error } \\
& \text { in hypothesis testing, Hiai \& Petz) }
\end{aligned}
$$

- decreasing in quantum channels

(1) Introduction

(2) Bipartite correlation and entanglement

(3) Multipartite correlation and entanglement

4 Permutation symmetric properties
(5) Summary

Bipartite correlation

Notions of correlation:

- two events are correlated, if they occur more/less probably simultaneously than on their own: $p_{12} \neq p_{1} p_{2}$

Bipartite correlation

Notions of correlation:

- two events are correlated, if they occur more/less probably simultaneously than on their own: $p_{12} \neq p_{1} p_{2}$
- measure of correlation of two prob.vars.:
$\operatorname{COV}(A, B)=\langle(A-\langle A\rangle)(B-\langle B\rangle)\rangle=\langle A B\rangle-\langle A\rangle\langle B\rangle$ $-1 \leq \operatorname{CORR}(A, B)=\operatorname{COV}(A, B) / \sqrt{\operatorname{VAR}(A) \operatorname{VAR}(B)} \leq 1$

Bipartite correlation

Notions of correlation:

- two events are correlated, if they occur more/less probably simultaneously than on their own: $p_{12} \neq p_{1} p_{2}$
- measure of correlation of two prob.vars.:
$\operatorname{COV}(A, B)=\langle(A-\langle A\rangle)(B-\langle B\rangle)\rangle=\langle A B\rangle-\langle A\rangle\langle B\rangle$ $-1 \leq \operatorname{CORR}(A, B)=\operatorname{COV}(A, B) / \sqrt{\operatorname{VAR}(A) \operatorname{VAR}(B)} \leq 1$
- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(A, B)=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$

Bipartite correlation

Notions of correlation:

- two events are correlated, if they occur more/less probably simultaneously than on their own: $p_{12} \neq p_{1} p_{2}$
- measure of correlation of two prob.vars.:
$\operatorname{COV}(A, B)=\langle(A-\langle A\rangle)(B-\langle B\rangle)\rangle=\langle A B\rangle-\langle A\rangle\langle B\rangle$ $-1 \leq \operatorname{CORR}(A, B)=\operatorname{COV}(A, B) / \sqrt{\operatorname{VAR}(A) \operatorname{VAR}(B)} \leq 1$
- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(A, B)=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- in q.m. there are many (nontrivially) different observables in a system
- 「 remains meaningful even if there are no values, only events

Bipartite correlation

Notions of correlation:

- two events are correlated, if they occur more/less probably simultaneously than on their own: $p_{12} \neq p_{1} p_{2}$
- measure of correlation of two prob.vars.:
$\operatorname{COV}(A, B)=\langle(A-\langle A\rangle)(B-\langle B\rangle)\rangle=\langle A B\rangle-\langle A\rangle\langle B\rangle$ $-1 \leq \operatorname{CORR}(A, B)=\operatorname{COV}(A, B) / \sqrt{\operatorname{VAR}(A) \operatorname{VAR}(B)} \leq 1$
- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(A, B)=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- in q.m. there are many (nontrivially) different observables in a system
- 「 remains meaningful even if there are no values, only events
- the state is uncorrelated iff $\operatorname{COV}(A, B)=0$ for all A, B, iff $\langle A B\rangle=\langle A\rangle\langle B\rangle$ for all A, B, iff $\varrho=\varrho_{1} \otimes \varrho_{2}$, iff $\Gamma=0$

Bipartite correlation and entanglement

Pure states

- in the classical case, pure states are uncorrelated automatically, in the quantum case, they are not!
- if a pure state is correlated, then this correlation is of quantum origin, and this is what we call entanglement

Bipartite correlation and entanglement

Pure states

- in the classical case, pure states are uncorrelated automatically, in the quantum case, they are not!
- if a pure state is correlated, then this correlation is of quantum origin, and this is what we call entanglement
- $|\psi\rangle \in \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

$$
\rightsquigarrow \quad|\psi\rangle\langle\psi|=\pi \in \mathcal{P}
$$

- uncorrelated: separable
$|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$
$\rightsquigarrow \quad \pi=\pi_{1} \otimes \pi_{2} \in \mathcal{P}_{\text {sep }} \subset \mathcal{P}$

Bipartite correlation and entanglement

Pure states

- in the classical case, pure states are uncorrelated automatically, in the quantum case, they are not!
- if a pure state is correlated, then this correlation is of quantum origin, and this is what we call entanglement
- $|\psi\rangle \in \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \quad \rightsquigarrow \quad|\psi\rangle\langle\psi|=\pi \in \mathcal{P}$
- uncorrelated: separable $|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \quad \rightsquigarrow \quad \pi=\pi_{1} \otimes \pi_{2} \in \mathcal{P}_{\text {sep }} \subset \mathcal{P}$
- correlated: entangled ($\mathcal{P} \backslash \mathcal{P}_{\text {sep }}$) Then measurement on a subsystem "causes"? the collapse of the state of the other. (worry of EPR)

Bipartite correlation and entanglement

Pure states

- in the classical case, pure states are uncorrelated automatically, in the quantum case, they are not!
- if a pure state is correlated, then this correlation is of quantum origin, and this is what we call entanglement
- $|\psi\rangle \in \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \quad \rightsquigarrow \quad|\psi\rangle\langle\psi|=\pi \in \mathcal{P}$
- uncorrelated: separable

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \quad \rightsquigarrow \quad \pi=\pi_{1} \otimes \pi_{2} \in \mathcal{P}_{\text {sep }} \subset \mathcal{P}
$$

- correlated: entangled ($\mathcal{P} \backslash \mathcal{P}_{\text {sep }}$)

Then measurement on a subsystem "causes"? the collapse of the state of the other. (worry of EPR)

- state of subsystem (e.g., $\operatorname{Tr}_{2} \pi \in \mathcal{D}_{1}$) not necessarily pure
- π is entangled if (and only if) $\operatorname{Tr}_{2} \pi$ and $\operatorname{Tr}_{1} \pi$ are mixed In this case, "the best possible knowledge of the whole does not involve the best possible knowledge of its parts." (Schrödinger)

Bipartite correlation and entanglement

Mixed states: correlation

- uncorrelated: $\Gamma=0$ (product), $\varrho=\varrho_{1} \otimes \varrho_{2} \in \mathcal{D}_{\text {unc }}$, else correlated ($\mathcal{D} \backslash \mathcal{D}_{\text {unc }}$)
- easy to decide

Bipartite correlation and entanglement

Mixed states: correlation

- uncorrelated: $\Gamma=0$ (product), $\varrho=\varrho_{1} \otimes \varrho_{2} \in \mathcal{D}_{\text {unc }}$, else correlated ($\mathcal{D} \backslash \mathcal{D}_{\text {unc }}$)
- easy to decide

Mixed states: entanglement

- separable: there exists separable decomposition:

$$
\varrho=\sum_{i} p_{i} \pi_{1, i} \otimes \pi_{2, i} \in \mathcal{D}_{\text {sep }}=\operatorname{Conv} \mathcal{P}_{\text {sep }}=\operatorname{Conv} \mathcal{D}_{\mathrm{unc}} \subset \mathcal{D}
$$

- classically correlated sources produce states of this kind (Werner) preparable by Local Operations and Classical Communication (LOCC), else entangled ($\mathcal{D} \backslash \mathcal{D}_{\text {sep }}$)

Bipartite correlation and entanglement

Mixed states: correlation

- uncorrelated: $\Gamma=0$ (product), $\varrho=\varrho_{1} \otimes \varrho_{2} \in \mathcal{D}_{\text {unc }}$, else correlated ($\mathcal{D} \backslash \mathcal{D}_{\text {unc }}$)
- easy to decide

Mixed states: entanglement

- separable: there exists separable decomposition:

$$
\varrho=\sum_{i} p_{i} \pi_{1, i} \otimes \pi_{2, i} \in \mathcal{D}_{\text {sep }}=\operatorname{Conv} \mathcal{P}_{\text {sep }}=\operatorname{Conv} \mathcal{D}_{\mathrm{unc}} \subset \mathcal{D}
$$

- classically correlated sources produce states of this kind (Werner) preparable by Local Operations and Classical Communication (LOCC), else entangled ($\mathcal{D} \backslash \mathcal{D}_{\text {sep }}$)
- the decomposition is not unique
- deciding separability is difficult

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$
- correlation measures, based on geometry: by distance (metric from norm): $\quad C_{q}(\varrho)=\|\Gamma\|_{q}=D_{q}\left(\varrho, \varrho_{1} \otimes \varrho_{2}\right)$

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$
- correlation measures, based on geometry: by distance (metric from norm): $\quad C_{q}(\varrho)=\|\Gamma\|_{q}=D_{q}\left(\varrho, \varrho_{1} \otimes \varrho_{2}\right)$ or by distinguishability (rel. entr.):

$$
C(\varrho)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)
$$

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$
- correlation measures, based on geometry: by distance (metric from norm): $\quad C_{q}(\varrho)=\|\Gamma\|_{q}=D_{q}\left(\varrho, \varrho_{1} \otimes \varrho_{2}\right)$ or by distinguishability (rel. entr.): $\quad C(\varrho)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)=$ leads to the mutual information $=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)=I_{1 \mid 2}(\varrho)$

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$
- correlation measures, based on geometry: by distance (metric from norm): $\quad C_{q}(\varrho)=\|\Gamma\|_{q}=D_{q}\left(\varrho, \varrho_{1} \otimes \varrho_{2}\right)$ or by distinguishability (rel. entr.): $\quad C(\varrho)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)=$ leads to the mutual information $=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)=I_{1 \mid 2}(\varrho)$
- for the latter one, we have another, stronger motivation:

$$
\min _{\sigma \in \mathcal{D}_{\text {unc }}} D(\varrho \| \sigma)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)
$$

"how correlated $=$ how not uncorrelated $=$ how distinguishable from the uncorrelated ones"

Bipartite correlation and entanglement - measures

- correlation "of the state itself": $\Gamma:=\varrho-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(\varrho ; A, B)=\langle A B\rangle-\langle A\rangle\langle B\rangle=\operatorname{Tr} \Gamma A \otimes B=\langle\Gamma \mid A \otimes B\rangle_{\mathrm{HS}}$
- uncorrelated: $\Gamma=0$
- correlation measures, based on geometry: by distance (metric from norm): $\quad C_{q}(\varrho)=\|\Gamma\|_{q}=D_{q}\left(\varrho, \varrho_{1} \otimes \varrho_{2}\right)$ or by distinguishability (rel. entr.): $\quad C(\varrho)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)=$ leads to the mutual information $=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)=I_{1 \mid 2}(\varrho)$
- for the latter one, we have another, stronger motivation:

$$
\min _{\sigma \in \mathcal{D}_{\text {unc }}} D(\varrho \| \sigma)=D\left(\varrho \| \varrho_{1} \otimes \varrho_{2}\right)
$$

"how correlated $=$ how not uncorrelated $=$ how distinguishable from the uncorrelated ones"

- correlation might not be seen well from COV, but for all A, B,

$$
\frac{1}{2} \operatorname{CoV}(\varrho ; \hat{A}, \hat{B})^{2} \leq C(\varrho), \quad \hat{A}=A /\|A\|_{\infty}, \hat{B}=B /\|B\|_{\infty}
$$

Bipartite correlation and entanglement - measures

- correlation (mutual information):

$$
C(\varrho)=\min _{\sigma \in \mathcal{D}_{\text {unc }}} D(\varrho \| \sigma)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)
$$

"how correlated $=$ how not uncorrelated"

Bipartite correlation and entanglement - measures

- correlation (mutual information):

$$
C(\varrho)=\min _{\sigma \in \mathcal{D}_{\mathrm{unc}}} D(\varrho \| \sigma)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)
$$

"how correlated $=$ how not uncorrelated"

- entanglement (for pure states):

$$
E(\pi)=\left.C\right|_{\mathcal{P}}(\pi)
$$

for pure states: entanglement $=$ correlation

LOCC-monotone (proper entanglement measure)

Bipartite correlation and entanglement - measures

- correlation (mutual information):

$$
C(\varrho)=\min _{\sigma \in \mathcal{D}_{\mathrm{unc}}} D(\varrho \| \sigma)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)
$$

"how correlated $=$ how not uncorrelated"

- entanglement (for pure states):

$$
E(\pi)=\left.C\right|_{\mathcal{P}}(\pi)
$$

for pure states: entanglement $=$ correlation

$$
E(\pi)=2 S\left(\pi_{1}\right)=2 S\left(\pi_{2}\right), \quad " 2 \times \text { entanglement entropy" }
$$

LOCC-monotone (proper entanglement measure)

Bipartite correlation and entanglement - measures

- correlation (mutual information):

$$
C(\varrho)=\min _{\sigma \in \mathcal{D}_{\mathrm{unc}}} D(\varrho \| \sigma)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)
$$

"how correlated $=$ how not uncorrelated"

- entanglement (for pure) entanglement of formation (for mixed states):

$$
E(\pi)=\left.C\right|_{\mathcal{P}}(\pi), \quad E(\varrho)=\min \left\{\sum_{i} p_{i} E\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

for pure states: entanglement $=$ correlation

$$
E(\pi)=2 S\left(\pi_{1}\right)=2 S\left(\pi_{2}\right), " 2 \times \text { entanglement entropy" }
$$

for mixed states: average entanglement of the optimal decomposition LOCC-monotone (proper entanglement measure)

Bipartite correlation and entanglement - measures

- correlation (mutual information):

$$
C(\varrho)=\min _{\sigma \in \mathcal{D}_{\mathrm{unc}}} D(\varrho \| \sigma)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S(\varrho)
$$

"how correlated $=$ how not uncorrelated"

- entanglement (for pure) entanglement of formation (for mixed states):

$$
E(\pi)=\left.C\right|_{\mathcal{P}}(\pi), \quad E(\varrho)=\min \left\{\sum_{i} p_{i} E\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

for pure states: entanglement $=$ correlation

$$
E(\pi)=2 S\left(\pi_{1}\right)=2 S\left(\pi_{2}\right), " 2 \times \text { entanglement entropy" }
$$

for mixed states: average entanglement of the optimal decomposition LOCC-monotone (proper entanglement measure)

- faithful: $C(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\text {unc }}, E(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\text {sep }}$
- $E(\varrho)$ is hard to calculate

(1) Introduction

(2) Bipartite correlation and entanglement

(3) Multipartite correlation and entanglement

4 Permutation symmetric properties

Multipartite correlation and entanglement - structure

Level 0.: subsystems
Boolean lattice structure: $P_{0}=2^{L}$

- whole system: $L=\{1,2, \ldots, n\}$
- subsystem: $X \subseteq L$, then $\mathcal{H}_{X}, \mathcal{P}_{X}, \mathcal{D}_{X}$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012)
Seevinck, Uffink, PRA 78, 032101 (2008)
Dür, Cirac, Tarrach, PRL 83, 3562 (1999)
```


Multipartite correlation and entanglement - structure

Level 0.: subsystems
Boolean lattice structure: $P_{0}=2^{L}$

- whole system: $L=\{1,2, \ldots, n\}$
- subsystem: $X \subseteq L$, then $\mathcal{H}_{X}, \mathcal{P}_{X}, \mathcal{D}_{X}$

Level I.: partitions
lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, }2237\mathrm{ (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012)
Seevinck, Uffink, PRA 78, 032101 (2008)
Dür, Cirac, Tarrach, PRL 83, 3562 (1999)
```


Multipartite correlation and entanglement - structure

Level I.: partitions
lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$

$$
n=2:
$$

- 0

Multipartite correlation and entanglement - structure

Level I.: partitions
lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$ $n=3$:

- \circ

Multipartite correlation and entanglement - structure

Level I.: partitions

$$
\text { lattice structure: } P_{1}=\Pi(L)
$$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$ $n=4$:

Multipartite correlation and entanglement - structure

Level 0.: subsystems
Boolean lattice structure: $P_{0}=2^{L}$

- whole system: $L=\{1,2, \ldots, n\}$
- subsystem: $X \subseteq L$, then $\mathcal{H}_{X}, \mathcal{P}_{X}, \mathcal{D}_{X}$

Level I.: partitions
lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, }2237\mathrm{ (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012)
Seevinck, Uffink, PRA 78, 032101 (2008)
Dür, Cirac, Tarrach, PRL 83, 3562 (1999)
```


Multipartite correlation and entanglement - structure

Level 0.: subsystems
Boolean lattice structure: $P_{0}=2^{L}$

- whole system: $L=\{1,2, \ldots, n\}$
- subsystem: $X \subseteq L$, then $\mathcal{H}_{X}, \mathcal{P}_{X}, \mathcal{D}_{X}$

Level I.: partitions
lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- partition: $\xi=\left\{X_{1}, X_{2}, \ldots, X_{|\xi|}\right\} \in \Pi(L)$
- refinement (partial order): $v \preceq \xi$ def.: $\forall Y \in v, \exists X \in \xi: Y \subseteq X$
- ξ-uncorrelated states: $\mathcal{D}_{\xi \text {-unc }}=\left\{\bigotimes_{X \in \xi} \varrho x\right\}$ LO-closed

$$
v \preceq \xi \Leftrightarrow \mathcal{D}_{v \text {-unc }} \subseteq \mathcal{D}_{\xi \text {-unc }}
$$

- ξ-separable states: $\mathcal{D}_{\xi \text {-sep }}=\operatorname{Conv} \mathcal{D}_{\xi \text {-unc }}$ LOCC-closed

$$
v \preceq \xi \Leftrightarrow \mathcal{D}_{v \text {-sep }} \subseteq \mathcal{D}_{\xi \text {-sep }}
$$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, }2237\mathrm{ (2017)
Szalay, PRA 92, 042329 (2015) Seevinck, Uffink, PRA 78, 032101 (2008)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012) Dür, Cirac, Tarrach, PRL 83, }3562\mathrm{ (1999)
```


Multipartite correlation and entanglement - measures

Level I.: partitions lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- ξ-correlation (ξ-mutual information):

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text {-unc }}} D(\varrho \| \sigma)=\sum_{X \in \xi} S(\varrho x)-S(\varrho)
$$

LO-monotone (proper correlation measure)

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
```

Szalay, PRA 92, 042329 (2015)

Multipartite correlation and entanglement - measures

Level I.: partitions lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- ξ-correlation (ξ-mutual information):

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text {-unc }}} D(\varrho \| \sigma)=\sum_{x \in \xi} S(\varrho x)-S(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=C_{\xi} \mid \mathcal{P}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

Multipartite correlation and entanglement - measures

Level I.: partitions lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- ξ-correlation (ξ-mutual information):

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text {-unc }}} D(\varrho \| \sigma)=\sum_{x \in \xi} S(\varrho x)-S(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=C_{\xi} \mid \mathcal{P}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

- faithful: $C_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-unc }}, E_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-sep }}$

Multipartite correlation and entanglement - measures

Level I.: partitions lattice structure: $P_{\mathrm{I}}=\Pi(L)$

- ξ-correlation (ξ-mutual information):

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text {-unc }}} D(\varrho \| \sigma)=\sum_{X \in \xi} S(\varrho x)-S(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=C_{\xi} \mid \mathcal{P}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

- faithful: $C_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-unc }}, E_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-sep }}$
- multipartite monotone: $v \preceq \xi \Leftrightarrow C_{v} \geq C_{\xi}, E_{v} \geq E_{\xi}$

Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\xi|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012)
```


Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\boldsymbol{\xi}|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$ $n=3$:

- 0

- 0

Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\xi|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$
- ξ-uncorrelated states: $\mathcal{D}_{\xi \text {-unc }}=\cup_{\xi \in \xi} \mathcal{D}_{\xi \text {-unc }}$ LO-closed
ξ-separable states: $\mathcal{D}_{\xi-\text {-sep }}=\operatorname{Conv} \mathcal{D}_{\xi \text {-unc }}$

$$
\boldsymbol{v} \preceq \boldsymbol{\xi} \Leftrightarrow \mathcal{D}_{v \text {-unc }} \subseteq \mathcal{D}_{\xi-\text {-unc }}
$$ LOCC-closed

$$
\boldsymbol{v} \preceq \boldsymbol{\xi} \Leftrightarrow \mathcal{D}_{v \text {-sep }} \subseteq \mathcal{D}_{\xi \text {-sep }}
$$

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, }032341\mathrm{ (2012)
```


Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\xi|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$
- ξ-uncorrelated states: $\mathcal{D}_{\xi \text {-unc }}=\cup_{\xi \in \xi} \mathcal{D}_{\xi \text {-unc }}$ LO-closed

$$
\boldsymbol{v} \preceq \boldsymbol{\xi} \Leftrightarrow \mathcal{D}_{v \text {-unc }} \subseteq \mathcal{D}_{\xi-\text {-unc }}
$$

- ξ-separable states: $\mathcal{D}_{\xi \text {-sep }}=\operatorname{Conv} \mathcal{D}_{\xi \text {-unc }}$ LOCC-closed

$$
v \preceq \xi \Leftrightarrow \mathcal{D}_{v \text {-sep }} \subseteq \mathcal{D}_{\xi \text {-sep }}
$$

- spec.: k-partitionable and k-producible (chains)

$$
\boldsymbol{\mu}_{k}=\left\{\mu \in P_{\mathbf{I}}| | \mu \mid \geq k\right\}, \quad \boldsymbol{\nu}_{k}=\left\{\nu \in P_{\mathbf{I}}|\forall N \in \nu:|N| \leq k\}\right.
$$

Multipartite correlation and entanglement - structure

- spec.: k-partitionable and k-producible (chains)

$$
\begin{aligned}
& \mu_{k}=\left\{\mu \in P_{1}| | \mu \mid \geq k\right\}, \quad \nu_{k}=\left\{\nu \in P_{1}|\forall N \in \nu:|N| \leq k\}\right. \\
& n=2 \text { : } \\
& \text { - } 0
\end{aligned}
$$

Multipartite correlation and entanglement - structure

- spec.: k-partitionable and k-producible (chains)

$$
\begin{array}{ll}
\boldsymbol{\mu}_{k}=\left\{\mu \in P_{\mathbf{1}}| | \mu \mid \geq k\right\}, \quad \boldsymbol{\nu}_{k}=\left\{\nu \in P_{\mathbf{l}}|\forall N \in \nu:|N| \leq k\}\right. \\
n=3:
\end{array}
$$

Multipartite correlation and entanglement - structure

- spec.: k-partitionable and k-producible (chains)

Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\xi|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$
- ξ-uncorrelated states: $\mathcal{D}_{\xi \text {-unc }}=\cup_{\xi \in \xi} \mathcal{D}_{\xi \text {-unc }}$ LO-closed

$$
\boldsymbol{v} \preceq \boldsymbol{\xi} \Leftrightarrow \mathcal{D}_{v \text {-unc }} \subseteq \mathcal{D}_{\xi-\text {-unc }}
$$

- ξ-separable states: $\mathcal{D}_{\xi \text {-sep }}=\operatorname{Conv} \mathcal{D}_{\xi \text {-unc }}$ LOCC-closed

$$
v \preceq \xi \Leftrightarrow \mathcal{D}_{v \text {-sep }} \subseteq \mathcal{D}_{\xi \text {-sep }}
$$

- spec.: k-partitionable and k-producible (chains)

$$
\boldsymbol{\mu}_{k}=\left\{\mu \in P_{\mathbf{I}}| | \mu \mid \geq k\right\}, \quad \boldsymbol{\nu}_{k}=\left\{\nu \in P_{\mathbf{I}}|\forall N \in \nu:|N| \leq k\}\right.
$$

Multipartite correlation and entanglement - structure

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- partition ideal: $\boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{|\xi|}\right\} \subseteq P_{1}$, closed downwards w.r.t. \preceq
- partial order: $\boldsymbol{v} \preceq \boldsymbol{\xi}$ def.: $\boldsymbol{v} \subseteq \boldsymbol{\xi}$
- ξ-uncorrelated states: $\mathcal{D}_{\xi \text {-unc }}=\cup_{\xi \in \xi} \mathcal{D}_{\xi \text {-unc }}$ LO-closed

$$
\boldsymbol{v} \preceq \boldsymbol{\xi} \Leftrightarrow \mathcal{D}_{v \text {-unc }} \subseteq \mathcal{D}_{\xi \text {-unc }}
$$

- ξ-separable states: $\mathcal{D}_{\xi-\text {-sep }}=\operatorname{Conv} \mathcal{D}_{\xi \text {-unc }}$ LOCC-closed $\quad v \preceq \xi \Leftrightarrow \mathcal{D}_{v \text {-sep }} \subseteq \mathcal{D}_{\xi \text {-sep }}$
- spec.: k-partitionable and k-producible (chains)

$$
\boldsymbol{\mu}_{k}=\left\{\mu \in P_{\mathbf{1}}| | \mu \mid \geq k\right\}, \quad \boldsymbol{\nu}_{k}=\left\{\nu \in P_{\mathbf{1}}|\forall N \in \nu:|N| \leq k\}\right.
$$

- with these:
k-partitionably and k-producibly uncorrelated
k-partitionably and k-producibly separable states
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
Szalay, PRA 92, 042329 (2015)
Szalay, Kökényesi, PRA 86, 032341 (2012)

Multipartite correlation and entanglement - measures

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- ξ-correlation:

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text { unc }}} D(\varrho \| \sigma)=\min _{\xi \in \xi} C_{\xi}(\varrho)
$$

LO-monotone (proper correlation measure)

```
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, }2237\mathrm{ (2017)
Szalay, PRA 92, 042329 (2015)
```


Multipartite correlation and entanglement - measures

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- ξ-correlation:

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text { unc }}} D(\varrho \| \sigma)=\min _{\xi \in \xi} C_{\xi}(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=\left.C_{\xi}\right|_{\mathcal{P}}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

Multipartite correlation and entanglement - measures

Level II.: multiple partitions lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- ξ-correlation:

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text { unc }}} D(\varrho \| \sigma)=\min _{\xi \in \xi} C_{\xi}(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=\left.C_{\xi}\right|_{\mathcal{P}}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

- faithful: $C_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-unc }}, E_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi-\text { sep }}$

Multipartite correlation and entanglement - measures

Level II.: multiple partitions
lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- ξ-correlation:

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text { unc }}} D(\varrho \| \sigma)=\min _{\xi \in \xi} C_{\xi}(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=\left.C_{\xi}\right|_{\mathcal{P}}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

- faithful: $C_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-unc }}, E_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-sep }}$
- multipartite monotone: $v \preceq \xi \Leftrightarrow C_{v} \geq C_{\xi}, E_{v} \geq E_{\xi}$

Multipartite correlation and entanglement - measures

Level II.: multiple partitions
lattice structure: $P_{\mathrm{II}}=\mathcal{O}_{\downarrow}\left(P_{\mathrm{I}}\right) \backslash\{\emptyset\}$

- ξ-correlation:

$$
C_{\xi}(\varrho)=\min _{\sigma \in \mathcal{D}_{\xi-\text { unc }}} D(\varrho \| \sigma)=\min _{\xi \in \xi} C_{\xi}(\varrho)
$$

LO-monotone (proper correlation measure)

- ξ-entanglement (of formation):

$$
E_{\xi}(\pi)=\left.C_{\xi}\right|_{\mathcal{P}}(\pi), \quad E_{\xi}(\varrho)=\min \left\{\sum_{i} p_{i} E_{\xi}\left(\pi_{i}\right) \mid \sum_{i} p_{i} \pi_{i}=\varrho\right\}
$$

LOCC-monotone (proper entanglement measure)

- faithful: $C_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-unc }}, E_{\xi}(\varrho)=0 \Leftrightarrow \varrho \in \mathcal{D}_{\xi \text {-sep }}$
- multipartite monotone: $v \preceq \xi \Leftrightarrow C_{v} \geq C_{\xi}, E_{v} \geq E_{\xi}$
- spec.: k-particionability and k-producibility k-partitionability and k-producibility correlation k-partitionability and k-producibility entanglement

Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
Szalay, PRA 92, 042329 (2015)

Example: Electron system of molecules

- elementary subsystems: localized atomic orbitals (Pipek-Mezey)
- "atomic split": $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{|\alpha|}\right\}$ (blue)
- "bond split": $\beta=\left\{B_{1}, B_{2}, \ldots, B_{|\beta|}\right\}$ (red)

Example: Electron system of molecules

- elementary subsystems: localized atomic orbitals (Pipek-Mezey)
- "atomic split": $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{|\alpha|}\right\}$ (blue)
- "bond split": $\beta=\left\{B_{1}, B_{2}, \ldots, B_{|\beta|}\right\}$ (red)
benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$:

$$
C_{\alpha}=29.52, C_{\beta}=2.33
$$

(in units $\ln 4$)
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)

Example: Electron system of molecules

- elementary subsystems: localized atomic orbitals (Pipek-Mezey)
- "atomic split": $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{|\alpha|}\right\}$ (blue)
- "bond split": $\beta=\left\{B_{1}, B_{2}, \ldots, B_{|\beta|}\right\}$ (red)
cyclobutadiene $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$:

$$
C_{\alpha}=19.48, C_{\beta}=3.17
$$

(in units $\ln 4$)
Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)

Entanglement classes

Level III: Entanglement classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- ideal filter: $\underline{\boldsymbol{\xi}}=\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{|\underline{\xi}|}\right\} \subseteq P_{\mathrm{II}}$ (closed upwards w.r.t. \preceq)
- partial order: $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$ def.: $\underline{\boldsymbol{v}} \subseteq \underline{\boldsymbol{\xi}}$

Entanglement classes

Level III: Entanglen

- ideal filter: $\underline{\boldsymbol{\xi}}=$
- partial order: $\underline{\imath}$

Szalay, PRA 92, 042329

Entanglement classes

Level III: Entanglement classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- ideal filter: $\underline{\boldsymbol{\xi}}=\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{|\underline{\boldsymbol{\xi}}|}\right\} \subseteq P_{\mathrm{II}}$ (closed upwards w.r.t. \preceq)
- partial order: $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$ def.: $\underline{\boldsymbol{v}} \subseteq \underline{\boldsymbol{\xi}}$
- partial separability classes: intersections of $\mathcal{D}_{\xi \text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\xi \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text { sep }}} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi \text {-sep }}
$$

Szalay, PRA 92, 042329 (2015)

Entanglement classes

Level III: Entanglen

- ideal filter: $\underline{\boldsymbol{\xi}}=$
- partial order: $\underline{1}$
- partial separab

Entanglement classes

Level III: Entanglement classes
lattice structure: $P_{\mathrm{III}}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- ideal filter: $\underline{\boldsymbol{\xi}}=\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{|\underline{\boldsymbol{\xi}}|}\right\} \subseteq P_{\mathrm{II}}$ (closed upwards w.r.t. \preceq)
- partial order: $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$ def.: $\underline{\boldsymbol{v}} \subseteq \underline{\boldsymbol{\xi}}$
- partial separability classes: intersections of $\mathcal{D}_{\xi-\text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\xi \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text {-sep }}} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi \text {-sep }}
$$

- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\boldsymbol{v}}}, \exists \Lambda$ LOCC map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\boldsymbol{\xi}}}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

Szalay, PRA 92, 042329 (2015)

Entanglement classes

Level III: Entanglen

- ideal filter: $\underline{\boldsymbol{\xi}}=$
- partial order: $\underline{1}$
- partial separab

Szalay, PRA 92, 042329

Correlation classes

Level III: Corr./Ent. classes lattice structure: $P_{\mathrm{III}}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- partial separability classes: intersections of $\mathcal{D}_{\xi \text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\xi \notin \underline{\xi}} \overline{\mathcal{D}_{\xi} \text {-sep }} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi-\text {-sep }}
$$

- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}} \text {-sep }}, \exists \Lambda$ LOCC map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\xi} \text {-sep }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

Correlation classes

Level III: Corr./Ent. classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- partial correlation classes: intersections of \mathcal{D}_{ξ}-unc

$$
\mathcal{C}_{\underline{\xi} \text {-unc }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text {-unc }}} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi \text {-unc }}
$$

- partial separability classes: intersections of $\mathcal{D}_{\xi-\text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\xi \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text { sep }}} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi-\text {-sep }}
$$

- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}} \text {-sep }}, \exists \Lambda$ LOCC map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\underline{\xi}} \text {-sep }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

Correlation classes

Level III: Corr./Ent. classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- partial correlation classes: intersections of \mathcal{D}_{ξ}-unc

$$
\mathcal{C}_{\underline{\xi} \text {-unc }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\boldsymbol{\xi}}} \overline{\mathcal{D}_{\xi-\text {-unc }}} \cap \bigcap_{\boldsymbol{\xi} \in \underline{\boldsymbol{\xi}}} \mathcal{D}_{\xi \text {-unc }}
$$

- partial separability classes: intersections of $\mathcal{D}_{\xi-\text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\xi \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text { sep }}} \cap \bigcap_{\xi \in \underline{\xi}} \mathcal{D}_{\xi-\text { sep }}
$$

- LO convertibility: if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}} \text {-unc }}, \exists \Lambda \operatorname{LO}$ map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\xi} \text {-unc }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$
- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}} \text {-sep }}, \exists \Lambda$ LOCC map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\xi} \text {-sep }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

Correlation classes

Level III: Corr./Ent. classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- partial correlation classes: intersections of \mathcal{D}_{ξ}-unc

$$
\mathcal{C}_{\underline{\xi} \text {-unc }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\boldsymbol{\xi}}} \overline{\mathcal{D}_{\xi-\text {-unc }}} \cap \bigcap_{\boldsymbol{\xi} \in \underline{\boldsymbol{\xi}}} \mathcal{D}_{\xi \text {-unc }}
$$

- partial separability classes: intersections of $\mathcal{D}_{\xi \text {-sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\xi}} \overline{\mathcal{D}_{\xi-\text { sep }}} \cap \bigcap_{\boldsymbol{\xi} \in \underline{\xi}} \mathcal{D}_{\xi-\text { sep }} \neq \emptyset \quad \text { for all } \underline{\xi} \text { (conjectured) }
$$

proven constructively for $n=3$
Han, Kye, PRA 99, 032304 (2019)

- LO convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{v} \text {-unc }}, \exists \Lambda \operatorname{LO}$ map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\xi} \text {-unc }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$
- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}} \text {-sep }}, \exists \Lambda$ LOCC map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\underline{\xi}} \text {-sep }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

Correlation classes

Level III: Corr./Ent. classes lattice structure: $P_{\text {III }}=\mathcal{O}_{\uparrow}\left(P_{\mathrm{II}}\right) \backslash\{\emptyset\}$

- partial correlation classes: intersections of $\mathcal{D}_{\xi-\text {-unc }}$

$$
\mathcal{C}_{\underline{\boldsymbol{\xi}} \text {-unc }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\boldsymbol{\xi}}} \overline{\mathcal{D}_{\boldsymbol{\xi}} \text {-unc }} \cap \bigcap_{\boldsymbol{\xi} \in \underline{\boldsymbol{\xi}}} \mathcal{D}_{\boldsymbol{\xi} \text {-unc }} \neq \emptyset \quad \text { iff } \underline{\boldsymbol{\xi}}=\uparrow\{\downarrow\{\xi\}\} \text { (proven) }
$$

Szalay, JPhysA 51, 485302 (2018)

- partial separability classes: intersections of $\mathcal{D}_{\xi-\text { sep }}$

$$
\mathcal{C}_{\underline{\xi} \text {-sep }}:=\bigcap_{\boldsymbol{\xi} \notin \underline{\boldsymbol{\xi}}} \overline{\mathcal{D}_{\boldsymbol{\xi} \text {-sep }}} \cap \bigcap_{\boldsymbol{\xi} \in \underline{\boldsymbol{\xi}}} \mathcal{D}_{\boldsymbol{\xi} \text {-sep }} \neq \emptyset \quad \text { for all } \underline{\boldsymbol{\xi}} \text { (conjectured) }
$$

proven constructively for $n=3$
Han, Kye, PRA 99, 032304 (2019)

- LO convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{v} \text {-unc }}, \exists \Lambda$ LO map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\xi} \text {-unc }}$ then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$
- LOCC convertibility:
if $\exists \varrho \in \mathcal{C}_{\underline{\underline{v}}}$-sep,$\exists \Lambda \operatorname{LOCC}$ map s.t. $\Lambda(\varrho) \in \mathcal{C}_{\underline{\underline{\xi}}}$-sep then $\underline{\boldsymbol{v}} \preceq \underline{\boldsymbol{\xi}}$

(1) Introduction

(2) Bipartite correlation and entanglement

(3) Multipartite correlation and entanglement
(4) Permutation symmetric properties

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

$$
n=2:
$$

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

$$
n=3:
$$

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems
$n=4$:

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

- integer partition $\hat{\xi}=\left\{x_{1}, x_{2}, \ldots, x_{|\hat{\xi}|}\right\}$ of n (multiset)
$n=4$:

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

- integer partition $\hat{\xi}=\left\{x_{1}, x_{2}, \ldots, x_{|\hat{\xi}|}\right\}$ of n (multiset) (Young diag.)
- coarser/finer: \preceq partial order: $\hat{v} \preceq \hat{\xi}$ if exist $v \preceq \xi$ of those types
- this is a new partial order, \top, \perp, not a lattice \hat{P}_{1}
$n=2$:

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

- integer partition $\hat{\xi}=\left\{x_{1}, x_{2}, \ldots, x_{|\hat{\xi}|}\right\}$ of n (multiset) (Young diag.)
- coarser/finer: \preceq partial order: $\hat{v} \preceq \hat{\xi}$ if exist $v \preceq \xi$ of those types
- this is a new partial order, \top, \perp, not a lattice \hat{P}_{1}
$n=3$:

Permutation symmetric correlation and entanglement

Level I.: splitting type of the system of n elementary subsystems

- integer partition $\hat{\xi}=\left\{x_{1}, x_{2}, \ldots, x_{|\hat{\xi}|}\right\}$ of n (multiset) (Young diag.)
- coarser/finer: \preceq partial order: $\hat{v} \preceq \hat{\xi}$ if exist $v \preceq \xi$ of those types
- this is a new partial order, \top, \perp, not a lattice \hat{P}_{1}

$$
n=4
$$

Permutation symmetric correlation and entanglement

Structure of k-partitionability and k-producibility

- P_{1} graded lattice, gradation $=$ partitionability

Permutation symmetric correlation and entanglement

Structure of k-partitionability and k-producibility

- P_{1} graded lattice, gradation $=$ partitionability
- what is producibility?

Permutation symmetric correlation and entanglement

Structure of k-partitionability and k-producibility

- P_{1} graded lattice, gradation $=$ partitionability
- what is producibility? a kind of dual property: natural conjugation

Permutation symmetric correlation and entanglement

Structure of k-partitionability and k-producibility

- P_{1} graded lattice, gradation $=$ partitionability
- what is producibility? a kind of dual property: natural conjugation

- note: \preceq is not respected by the conjugation

Permutation symmetric correlation and entanglement

Construction

- perm. symmetric properties, not only for perm. symmetric states

Permutation symmetric correlation and entanglement

Construction

- perm. symmetric properties, not only for perm. symmetric states
- $s(X):=|X|$, and elementwisely on P_{l}, works also for P_{II} and P_{III}
- the construction is well-defined

$$
\begin{aligned}
& \left(P_{\mathrm{III}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{III}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \\
& \left(P_{\mathrm{II}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{II}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\downarrow} \backslash\{\theta\} \\
& \left(P_{1}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{1}, \preceq\right)
\end{aligned}
$$

Permutation symmetric correlation and entanglement

Construction

- perm. symmetric properties, not only for perm. symmetric states
- $s(X):=|X|$, and elementwisely on P_{l}, works also for P_{II} and P_{III}
- the construction is well-defined

$$
\begin{aligned}
& \left(P_{\mathrm{III}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{III}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \\
& \left(P_{\mathrm{II}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{II}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \\
& \left(P_{1}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{1}, \preceq\right)
\end{aligned}
$$

- state sets $\mathcal{D}_{\hat{\xi} \text {-unc }}, \mathcal{D}_{\hat{\xi} \text {-sep }}$, inclusion hierarchy works well

Permutation symmetric correlation and entanglement

Construction

- perm. symmetric properties, not only for perm. symmetric states
- $s(X):=|X|$, and elementwisely on P_{l}, works also for P_{II} and P_{III}
- the construction is well-defined

$$
\begin{aligned}
& \left(P_{\mathrm{III}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{III}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \\
& \left(P_{\mathrm{II}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{II}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \\
& \left(P_{1}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{1}, \preceq\right)
\end{aligned}
$$

- state sets $\mathcal{D}_{\hat{\xi} \text {-unc }}, \mathcal{D}_{\hat{\xi} \text {-sep }}$,
- measures $C_{\hat{\xi}}(\varrho), E_{\hat{\xi}}(\varrho)$,
inclusion hierarchy works well multipartite monotonicity works well

Permutation symmetric correlation and entanglement

Construction

- perm. symmetric properties, not only for perm. symmetric states
- $s(X):=|X|$, and elementwisely on P_{l}, works also for P_{II} and P_{III}
- the construction is well-defined

$$
\begin{aligned}
& \left(P_{\mathrm{III}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{III}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\uparrow} \backslash\{\emptyset\} \\
& \left(P_{\mathrm{II}}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{\mathrm{II}}, \preceq\right) \\
& \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \quad \uparrow \mathcal{O}_{\downarrow} \backslash\{\emptyset\} \\
& \left(P_{1}, \preceq\right) \xrightarrow{s}\left(\hat{P}_{1}, \preceq\right)
\end{aligned}
$$

- state sets $\mathcal{D}_{\hat{\xi} \text {-unc }}, \mathcal{D}_{\hat{\xi} \text {-sep }}$,
- measures $C_{\hat{\xi}}(\varrho), E_{\hat{\xi}}(\varrho)$,
- classes $\mathcal{C}_{\hat{\xi} \text {-unc }}, \mathcal{C}_{\hat{\xi} \text {-sep }}$,
inclusion hierarchy works well multipartite monotonicity works well LO(CC) convertibility works well

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram

$$
\begin{aligned}
h(\hat{\xi}) & :=|\hat{\xi}| \\
w(\hat{\xi}) & :=\max \hat{\xi} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi})
\end{aligned}
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram

$$
\begin{aligned}
h(\hat{\xi}) & :=|\hat{\xi}| \\
w(\hat{\xi}) & :=\max \hat{\xi} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi})
\end{aligned}
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram

$$
\begin{aligned}
h(\hat{\xi}) & :=|\hat{\xi}| \\
w(\hat{\xi}) & :=\max \hat{\xi} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi})
\end{aligned}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>h(\hat{\xi}), \quad w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi}) .
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram

$$
\begin{aligned}
h(\hat{\xi}) & :=|\hat{\xi}| \\
w(\hat{\xi}) & :=\max \hat{\xi} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi})
\end{aligned}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{array}{rlrl}
h(\hat{\xi}) & :=|\hat{\xi}| & \hat{\boldsymbol{\mu}}_{k} & =\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
w(\hat{\xi}) & :=\max \hat{\xi} & \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi}) & \hat{\boldsymbol{\tau}}_{k}=\left\{\hat{\tau} \in \hat{P}_{1} \mid r(\hat{\tau}) \leq k\right\}
\end{array}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>h(\hat{\xi}), \quad w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi}) .
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{aligned}
& \hat{\boldsymbol{\mu}}_{k}=\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
& \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
& \hat{\boldsymbol{\tau}}_{k}=\left\{\hat{\tau} \in \hat{P}_{I} \mid r(\hat{\tau}) \leq k\right\}
\end{aligned}
$$

$$
w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi})
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{array}{rlrl}
h(\hat{\xi}) & :=|\hat{\xi}| & \hat{\boldsymbol{\mu}}_{k} & =\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
w(\hat{\xi}) & :=\max \hat{\xi} & \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi}) & \hat{\boldsymbol{\tau}}_{k} & =\left\{\hat{\tau} \in \hat{P}_{1} \mid r(\hat{\tau}) \leq k\right\}
\end{array}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>h(\hat{\xi}), \quad w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi}) .
$$

- chains

$$
\hat{\boldsymbol{\mu}}_{I} \preceq \hat{\boldsymbol{\mu}}_{k} \quad \Longleftrightarrow \quad I \geq k \quad \hat{\boldsymbol{\nu}}_{I} \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\boldsymbol{\tau}}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{aligned}
& \hat{\boldsymbol{\mu}}_{k}=\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
& \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
& \hat{\boldsymbol{\tau}}_{k}=\left\{\hat{\tau} \in \hat{P}_{I} \mid r(\hat{\tau}) \leq k\right\}
\end{aligned}
$$

$$
w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi})
$$

$$
I \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\tau}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{array}{rlrl}
h(\hat{\xi}) & :=|\hat{\xi}| & \hat{\boldsymbol{\mu}}_{k} & =\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
w(\hat{\xi}) & :=\max \hat{\xi} & \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{I} \mid w(\hat{\nu}) \leq k\right\} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi}) & \hat{\boldsymbol{\tau}}_{k} & =\left\{\hat{\tau} \in \hat{P}_{1} \mid r(\hat{\tau}) \leq k\right\}
\end{array}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>h(\hat{\xi}), \quad w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi}) .
$$

- chains

$$
\hat{\boldsymbol{\mu}}_{I} \preceq \hat{\boldsymbol{\mu}}_{k} \quad \Longleftrightarrow \quad I \geq k \quad \hat{\boldsymbol{\nu}}_{I} \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\boldsymbol{\tau}}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

- bounds among properties: $\hat{\boldsymbol{\mu}}_{k} \preceq \hat{\boldsymbol{\nu}}_{n+1-k}, \hat{\boldsymbol{\nu}}_{k} \preceq \hat{\boldsymbol{\mu}}_{\lceil n / k\rceil}$, from

$$
\lceil n / w\rceil \leq h \leq n-w+1 \quad\lceil n / h\rceil \leq w \leq n-h+1
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{aligned}
& \hat{\boldsymbol{\mu}}_{k}=\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
& \hat{\boldsymbol{\nu}}_{k}=\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
& \hat{\boldsymbol{\tau}}_{k}=\left\{\hat{\tau} \in \hat{P}_{I} \mid r(\hat{\tau}) \leq k\right\}
\end{aligned}
$$

$$
w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi})
$$

$$
I \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\tau}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

$$
+1-k, \hat{\boldsymbol{\nu}}_{k} \preceq \hat{\boldsymbol{\mu}}_{\lceil n / k\rceil}, \text { from }
$$

$$
\lceil n / h\rceil \leq w \leq n-h+1
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{aligned}
h(\hat{\xi}) & :=|\hat{\xi}| & \hat{\boldsymbol{\mu}}_{k} & =\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
w(\hat{\xi}) & :=\max \hat{\xi} & \hat{\boldsymbol{\nu}}_{k} & =\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
r(\hat{\xi}) & :=w(\hat{\xi})-h(\hat{\xi}) & \hat{\boldsymbol{\tau}}_{k} & =\left\{\hat{\tau} \in \hat{P}_{1} \mid r(\hat{\tau}) \leq k\right\}
\end{aligned}
$$

- monotones

$$
\hat{v} \prec \hat{\xi} \quad \Longrightarrow \quad h(\hat{v})>h(\hat{\xi}), \quad w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi}) .
$$

- chains

$$
\hat{\boldsymbol{\mu}}_{I} \preceq \hat{\boldsymbol{\mu}}_{k} \quad \Longleftrightarrow \quad I \geq k \quad \hat{\boldsymbol{\nu}}_{I} \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\boldsymbol{\tau}}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

- bounds among properties: $\hat{\boldsymbol{\mu}}_{k} \preceq \hat{\boldsymbol{\nu}}_{n+1-k}, \hat{\boldsymbol{\nu}}_{k} \preceq \hat{\boldsymbol{\mu}}_{\lceil n / k\rceil}$, from

$$
\lceil n / w\rceil \leq h \leq n-w+1 \quad\lceil n / h\rceil \leq w \leq n-h+1
$$

- duality

$$
h\left(\hat{\xi}^{\dagger}\right)=w(\hat{\xi}), \quad w\left(\hat{\xi}^{\dagger}\right)=h(\hat{\xi}), \quad r\left(\hat{\xi}^{\dagger}\right)=-r(\hat{\xi}),
$$

k-partitionability, k-producibility and k-stretchability

height, width and rank of a Young diagram \Longrightarrow properties

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}_{k} & =\left\{\hat{\mu} \in \hat{P}_{1} \mid h(\hat{\mu}) \geq k\right\} \\
\hat{\boldsymbol{\nu}}_{k} & =\left\{\hat{\nu} \in \hat{P}_{1} \mid w(\hat{\nu}) \leq k\right\} \\
\hat{\tau}_{k} & =\left\{\hat{\tau} \in \hat{P}_{1} \mid r(\hat{\tau}) \leq k\right\}
\end{aligned}
$$

$$
w(\hat{v}) \leq w(\hat{\xi}), \quad r(\hat{v})<r(\hat{\xi})
$$

$$
I \preceq \hat{\boldsymbol{\nu}}_{k}, \quad \hat{\tau}_{I} \preceq \hat{\boldsymbol{\tau}}_{k} \quad \Longleftrightarrow \quad I \leq k
$$

$$
+1-k, \hat{\boldsymbol{\nu}}_{k} \preceq \hat{\boldsymbol{\mu}}_{\lceil n / k\rceil}, \text { from }
$$

$$
\lceil n / h\rceil \leq w \leq n-h+1
$$

$$
h\left(\hat{\xi}^{\dagger}\right)=w(\hat{\xi}), \quad w\left(\hat{\xi}^{\dagger}\right)=h(\hat{\xi}), \quad r\left(\hat{\xi}^{\dagger}\right)=-r(\hat{\xi}),
$$

(1) Introduction

(2) Bipartite correlation and entanglement

(3) Multipartite correlation and entanglement

4 Permutation symmetric properties
(5) Summary

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones
Correlation measures:
- correlation: "how correlated $=$ how not uncorrelated"

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones

Correlation measures:

- correlation: "how correlated $=$ how not uncorrelated"
- pure states: entanglement $=$ correlation, mixed states: e.g., average entanglement of the optimal decomp.

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones
Correlation measures:
- correlation: "how correlated $=$ how not uncorrelated"
- pure states: entanglement $=$ correlation, mixed states: e.g., average entanglement of the optimal decomp.
These principles were applied for multipartite systems painlessly.

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones

Correlation measures:

- correlation: "how correlated $=$ how not uncorrelated"
- pure states: entanglement $=$ correlation, mixed states: e.g., average entanglement of the optimal decomp.
These principles were applied for multipartite systems painlessly.
- general case: partitions, three-level structure

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones

Correlation measures:

- correlation: "how correlated $=$ how not uncorrelated"
- pure states: entanglement $=$ correlation, mixed states: e.g., average entanglement of the optimal decomp.
These principles were applied for multipartite systems painlessly.
- general case: partitions, three-level structure
- permutation invariant case: Young diagrams, conjugation

Take home message

Notions of correlations:

- pure states of classical systems are uncorrelated (product)
- correlation in pure states is of quantum origin, this is what we call entanglement
- mixed states: uncorrelated/correlated; separable/entangled, if it can/cannot be mixed from uncorrelated ones Correlation measures:
- correlation: "how correlated $=$ how not uncorrelated"
- pure states: entanglement $=$ correlation, mixed states: e.g., average entanglement of the optimal decomp.
These principles were applied for multipartite systems painlessly.
- general case: partitions, three-level structure
- permutation invariant case: Young diagrams, conjugation
- partitionability/producibility/stretchability: height/width/rank

Thank you for your attention!

Szalay, arXiv:1906.10798 [quant-ph] (submitted after the talk) Szalay, JPhysA 51, 485302 (2018)
 Szalay, Barcza, Szilvási, Veis, Legeza, SciRep 7, 2237 (2017)
 Szalay, PRA 92, 042329 (2015)

This research is/was financially supported by the Researcher-initiated Research Program (NKFIH-K120569) and the Quantum Technology National Excellence Program (2017-1.2.1-NKP-2017-00001 "HunQuTech") of the National Research, Development and Innovation Fund of Hungary; the János Bolyai Research Scholarship and the "Lendület" Program of the Hungarian Academy of Sciences; and the New National Excellence Program (UNKP-18-4-BME-389) of the Ministry of Human Capacities.

MINISTRY
of Human Capacities

PROJECT
FINANCED FROM
THE NRDI FUND
MOMENTUM OF INNOVATION

