Current topics in foundations of quantum mechanics
Bell inequalities, Kochen-Specker theorem, and generalized probabilistic models

Matthias Kleinmann
University of the Basque Country UPV/EHU, Bilbao

P A R T 1: Contextuality

(1) axioms of Kolmogorov vs. Specker's contextuality
(2) a proof of the Kochen-Specker theorem
(3) connection to Bell-inequalities

Ernst Specker, Simon Kochen, Adán Cabello

Rolling dice

ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE
HERAUSGEGEBEN VON DER SCHRIFTLEITUNG DES
"ZENTRALBLATT FAR MATHEMATIK" ZWEITER BAND
\title{ GRUNDBEGRIFFE DER WAHRSCHEINLICHKEITS RECHNUNG }
VON
A. KOLMOGOROFF

Rolling dice

ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE
 HERAUSGEGEBEN VON DER SCHRIFTLEITUNG DES
 "ZENTRALBLATT FUR MATHEMATIK" ZWEITER BAND
 GRUNDBEGRIFFE DER WAHRSCHEINLICHKEITS RECHNUNG
 von
 A. KOLMOGOROFF

- the sample space Ω contains all outcomes, e.g. $\Omega=\{1,2,3,4,5,6\}$
- the event space is $\mathcal{F}=\{A \mid A \subset \Omega\}$
- the probability $P: \mathcal{F} \rightarrow[0,1]$ obeys $P(\Omega)=1$ and $P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots$ for disjoint sets.

"The logic of non-simultaneously decidable propositions"

- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

What happens if $\mathcal{F} \subsetneq\{A \mid A \subset \Omega\}$?
"The logic of non-simultaneously decidable propositions"

- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

What happens if $\mathcal{F} \subsetneq\{A \mid A \subset \Omega\}$?

Specker's parable of the over-protective seer

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P\left(\})=0, P(\{i\})=\frac{1}{2}\right.$, and $P(\{i, j\})=1$.
[Specker, Dialektika (1960)]
"The logic of non-simultaneously decidable propositions"
- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

What happens if $\mathcal{F} \subsetneq\{A \mid A \subset \Omega\}$?

Specker's parable of the over-protective seer

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P\left(\})=0, P(\{i\})=\frac{1}{2}\right.$, and $P(\{i, j\})=1$.
[Specker, Dialektika (1960)]
This device contradicts logic!
"The logic of non-simultaneously decidable propositions"
- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

What happens if $\mathcal{F} \subsetneq\{A \mid A \subset \Omega\}$?

Specker's parable of the over-protective seer

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P\left(\})=0, P(\{i\})=\frac{1}{2}\right.$, and $P(\{i, j\})=1$.
[Specker, Dialektika (1960)]
This device contradicts logic!
... At least, this device does not exist!
"The logic of non-simultaneously decidable propositions"
- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

What happens if $\mathcal{F} \subsetneq\{A \mid A \subset \Omega\}$?

Specker's parable of the over-protective seer

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P\left(\})=0, P(\{i\})=\frac{1}{2}\right.$, and $P(\{i, j\})=1$.
[Specker, Dialektika (1960)]
This device contradicts logic!
... At least, this device does not exist!
... Does it?

Quantum mechanics predicts contextual correlations

[Original proof: Kochen and Specker, J. Math. Mech. (1967)]

Current topics in foundations of quantum mechanics, p. 5

Quantum mechanics predicts contextual correlations

[Original proof: Kochen and Specker, J. Math. Mech. (1967)]

Peres-Mermin square

$\left[\begin{array}{lll}A & B & C \\ a & b & c \\ \alpha & \beta & \gamma\end{array}\right]$

- A, B, etc. have outcomes $\{-1,+1\}$.
- Only values within one row or one column can be accessed simultaneously.

$$
\chi=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\underset{\text { [Cabello, Phys. Rev. Lett. (2008)] }}{\langle B b \beta\rangle-\langle C c \gamma\rangle}
$$

Quantum mechanics predicts contextual correlations

[Original proof: Kochen and Specker, J. Math. Mech. (1967)]

Peres-Mermin square

$\left[\begin{array}{lll}A & B & C \\ a & b & c \\ \alpha & \beta & \gamma\end{array}\right]$

- A, B, etc. have outcomes $\{-1,+1\}$.
- Only values within one row or one column can be accessed simultaneously.

$$
\chi=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\underset{\text { [Cabello, Phys. Rev. Lett. (2008)] }}{\langle B b \beta\rangle-\langle C c \gamma}
$$

- using probability theory $\chi \leq 4$.

Quantum mechanics predicts contextual correlations

[Original proof: Kochen and Specker, J. Math. Mech. (1967)]

Peres-Mermin square

$\left[\begin{array}{lll}A & B & C \\ a & b & c \\ \alpha & \beta & \gamma\end{array}\right]$

- A, B, etc. have outcomes $\{-1,+1\}$.
- Only values within one row or one column can be accessed simultaneously.

$$
\chi=\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\underset{\text { [Cabello, Phys. Rev. Lett. (2008)] }}{\langle B b \beta\rangle-\langle C c \gamma\rangle}
$$

- using probability theory $\chi \leq 4$.
- in quantum mechanics $\chi=6$:

$$
\langle A B C\rangle=\langle a b c\rangle=\langle\alpha \beta \gamma\rangle=\langle A a \alpha\rangle=\langle B b \beta\rangle=1 \text { but }\langle C c \gamma\rangle=-1 .
$$

Are there contextual correlations in Nature?

Experimental result

$$
\chi=5.46 \pm 0.04>4
$$

Are there contextual correlations in Nature?

Experimental result

$$
\chi=5.46 \pm 0.04>4
$$

nature
LETTERS

State-independent experimental test of quantum contextuality

Why is it called contextuality?

Kolmogorov:

- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

Specker:

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P(\{i\})=\frac{1}{2}$, and $P(\{i, j\})=1$

Why is it called contextuality?

Kolmogorov:

- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

Specker:

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P(\{i\})=\frac{1}{2}$, and $P(\{i, j\})=1$

Saving Kolmogorov's axioms

- three sample spaces $\Omega_{A}=\{1,2\}, \Omega_{B}=\{1,3\}, \Omega_{C}=\{2,3\}$.
- each outcome $\{1,2,3\}$ participates in two contexts,

$$
\Omega_{A}, \Omega_{B} \ni 1, \Omega_{A}, \Omega_{C} \ni 2, \text { and } \Omega_{B}, \Omega_{C} \ni 3 .
$$

\hookrightarrow global sample space $\Omega=\left\{1_{A}, 1_{B}, 2_{A}, 2_{C}, 3_{B}, 3_{C}\right\}$.

Why is it called contextuality?

Kolmogorov:

- sample space Ω
- events $\mathcal{F}=\{A \mid A \subset \Omega\}$
- probability P

Specker:

- $\Omega=\{1,2,3\}$,
- $\mathcal{F}=\{A \mid A \subset \Omega\} \backslash \Omega$
- $P(\{i\})=\frac{1}{2}$, and $P(\{i, j\})=1$

Saving Kolmogorov's axioms

- three sample spaces $\Omega_{A}=\{1,2\}, \Omega_{B}=\{1,3\}, \Omega_{C}=\{2,3\}$.
- each outcome $\{1,2,3\}$ participates in two contexts,

$$
\Omega_{A}, \Omega_{B} \ni 1, \Omega_{A}, \Omega_{C} \ni 2, \text { and } \Omega_{B}, \Omega_{C} \ni 3 .
$$

\hookrightarrow global sample space $\Omega=\left\{1_{A}, 1_{B}, 2_{A}, 2_{C}, 3_{B}, 3_{C}\right\}$.

Are we forced to identify $1_{A} \equiv 1_{B} \equiv 1$?

An open debate

Are we forced to identify $1_{A} \equiv 1_{B} \equiv 1$?

- finite precision problem [Meyer, Phys. Rev. Lett. (1999);

Cabello, Phys. Rev. A (2002)]

- non-disturbance [Gühne, MK, Cabello, et. al., Phys. Rev. A (2010)]
- non-contextual noise [Szangolies, MK, Gühne, Phys. Rev. A (2013)]
- memory cost [MK, Gühne, Portillo, et. al., New J. Phys. (2011)]

What is the simplest inequality?

Record holder: 13 rays in \mathbb{C}^{3}

[Yu, Oh, Phys. Rev. Lett. (2012)
MK, Budroni, Larsson, et al., Phys. Rev. Lett. (2012)
Cabello, MK, Budroni, preprint (2015)]

Current topics in foundations of quantum mechanics, p. 9

Spacial separation: Bell inequalities

The CHSH-inequality:

$$
\chi=\langle A \otimes a\rangle+\langle A \otimes b\rangle+\langle B \otimes a\rangle-\langle B \otimes b\rangle
$$

[Bell, Physics (1964); Clauser, Horne, Shimony, Holt, Phys. Rev. Lett. (1969)]
classical value: $\chi \leq 2$
quantum value: $\chi \leq 2 \sqrt{2}$.

Spacial separation: Bell inequalities

The CHSH-inequality:

$$
\chi=\langle A \otimes a\rangle+\langle A \otimes b\rangle+\langle B \otimes a\rangle-\langle B \otimes b\rangle
$$

[Bell, Physics (1964); Clauser, Horne, Shimony, Holt, Phys. Rev. Lett. (1969)]
classical value: $\chi \leq 2$
quantum value: $\chi \leq 2 \sqrt{2}$.

Spacial separation:

A, B and a, b are measured in different laboratories.

Ongoing experiments.

P A R T 2: Generalized probabilistic models

(1) driving question: Why is quantum mechanics so particular?
(2) quantum mechanics
(3) generalized probabilistic models
(4) quantum mechanics as an emergent theory
(5) the triple slit experiment

P A R T 2: Generalized probabilistic models

(1) driving question: Why is quantum mechanics so particular?
(2) quantum mechanics
(3) generalized probabilistic models
(4) quantum mechanics as an emergent theory
(5) the triple slit experiment

The CHSH-inequality:

$$
\chi=\langle A \otimes a\rangle+\langle A \otimes b\rangle+\langle B \otimes a\rangle-\langle B \otimes b\rangle
$$

- Why is quantum mechanics better?
- Why $2 \sqrt{2}$ but not 4 ?

Quantum mechanics

The underlying structure is a complex Hilbert space \mathcal{H}.

Measurements

A measurement with outcomes $(1,2, \ldots)$ is described by operators $\left(E_{1}, E_{2}, \ldots\right)$ on \mathcal{H} with $E_{k} \geq 0$ and $\sum_{k} E_{k}=\mathbb{1}$.

Quantum mechanics

The underlying structure is a complex Hilbert space \mathcal{H}.

Measurements

A measurement with outcomes $(1,2, \ldots)$ is described by operators $\left(E_{1}, E_{2}, \ldots\right)$ on \mathcal{H} with $E_{k} \geq 0$ and $\sum_{k} E_{k}=\mathbb{1}$.

Preparations

A state is a linear map $\omega: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ with $\omega(\mathbb{1})=1$ and $\omega(E) \geq 0$ for all operators $E \geq 0$.

Quantum mechanics

The underlying structure is a complex Hilbert space \mathcal{H}.

Measurements

A measurement with outcomes $(1,2, \ldots)$ is described by operators $\left(E_{1}, E_{2}, \ldots\right)$ on \mathcal{H} with $E_{k} \geq 0$ and $\sum_{k} E_{k}=\mathbb{1}$.

Preparations

A state is a linear map $\omega: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ with $\omega(\mathbb{1})=1$ and $\omega(E) \geq 0$ for all operators $E \geq 0$.

Interpretation: $\omega\left(E_{k}\right)$ is the probability to obtain outcome k.

Example

Let $\mathcal{H}=\mathbb{C}^{2}$ and define

$$
A_{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { and } B_{+}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Example

Let $\mathcal{H}=\mathbb{C}^{2}$ and define

$$
A_{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { and } B_{+}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Both are projections:

$$
\begin{aligned}
& A_{+} A_{+}=A_{+} \text {, i.e., } A_{+} \geq 0, A_{-}=\mathbb{1}-A_{+} \geq 0, \text { and } \\
& B_{+} B_{+}=B_{+} \text {, i.e., } B_{+} \geq 0, B_{-}=\mathbb{1}-B_{+} \geq 0 .
\end{aligned}
$$

Example

Let $\mathcal{H}=\mathbb{C}^{2}$ and define

$$
A_{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { and } B_{+}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Both are projections:

$$
\begin{aligned}
& A_{+} A_{+}=A_{+} \text {, i.e., } A_{+} \geq 0, A_{-}=\mathbb{1}-A_{+} \geq 0, \text { and } \\
& B_{+} B_{+}=B_{+} \text {, i.e., } B_{+} \geq 0, B_{-}=\mathbb{1}-B_{+} \geq 0 .
\end{aligned}
$$

Then: $\langle A\rangle \equiv P\left(A_{+}\right)-P\left(A_{-}\right)=\omega\left(A_{+}-A_{-}\right) \equiv \omega(A)$
$\hookrightarrow A=a=A_{+}-A_{-}$and $B=b=B_{+}-B_{-}$

Example

Let $\mathcal{H}=\mathbb{C}^{2}$ and define

$$
A_{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { and } B_{+}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Both are projections:

$$
\begin{aligned}
& A_{+} A_{+}=A_{+} \text {, i.e., } A_{+} \geq 0, A_{-}=\mathbb{1}-A_{+} \geq 0, \text { and } \\
& B_{+} B_{+}=B_{+} \text {, i.e., } B_{+} \geq 0, B_{-}=\mathbb{1}-B_{+} \geq 0 .
\end{aligned}
$$

Then: $\langle A\rangle \equiv P\left(A_{+}\right)-P\left(A_{-}\right)=\omega\left(A_{+}-A_{-}\right) \equiv \omega(A)$

$$
\hookrightarrow A=a=A_{+}-A_{-} \text {and } B=b=B_{+}-B_{-}
$$

CHSH-inequality:

$$
\chi=\langle A \otimes a\rangle+\langle A \otimes b\rangle+\langle B \otimes a\rangle-\langle B \otimes b\rangle
$$

attains the value

$$
\omega(X) \text { with } X=A \otimes a+A \otimes b+B \otimes a-B \otimes b
$$

Example (continued)

Remember: $\omega(E) \geq 0$ for all $E \geq 0$ and $\omega(\mathbb{1})=1$. Hence, $\chi \leq \sup \{\omega(X) \mid \omega\}=\|X\|=2 \sqrt{2}$.

Example (continued)

Remember: $\omega(E) \geq 0$ for all $E \geq 0$ and $\omega(\mathbb{1})=1$. Hence, $\chi \leq \sup \{\omega(X) \mid \omega\}=\|X\|=2 \sqrt{2}$.

Theorem (Tsirelson)
For any choice of measurements and any separable Hilbert space,

$$
\left|\frac{1}{2} \chi\right| \leq k_{\mathbb{R}}(2)
$$

where $k_{\mathbb{R}}(2)=\sqrt{2}$ is Grothendieck's constant.

Example (continued)

Remember: $\omega(E) \geq 0$ for all $E \geq 0$ and $\omega(\mathbb{1})=1$. Hence, $\chi \leq \sup \{\omega(X) \mid \omega\}=\|X\|=2 \sqrt{2}$.

Theorem (Tsirelson)
For any choice of measurements and any separable Hilbert space,

$$
\left|\frac{1}{2} \chi\right| \leq k_{\mathbb{R}}(2)
$$

where $k_{\mathbb{R}}(2)=\sqrt{2}$ is Grothendieck's constant.

- Grothendieck's constant relates Grothendieck's inequality (for tensor norms)

$$
\left|\sum a_{i j}\left\langle\phi_{i} \mid \psi_{j}\right\rangle\right| \leq k\left\|\left(a_{i j}\right)\right\|_{1} .
$$

Example (continued)

Remember: $\omega(E) \geq 0$ for all $E \geq 0$ and $\omega(\mathbb{1})=1$. Hence, $\chi \leq \sup \{\omega(X) \mid \omega\}=\|X\|=2 \sqrt{2}$.

Theorem (Tsirelson)

For any choice of measurements and any separable Hilbert space,

$$
\left|\frac{1}{2} \chi\right| \leq k_{\mathbb{R}}(2)
$$

where $k_{\mathbb{R}}(2)=\sqrt{2}$ is Grothendieck's constant.

- Grothendieck's constant relates Grothendieck's inequality (for tensor norms)

$$
\left|\sum a_{i j}\left\langle\phi_{i} \mid \psi_{j}\right\rangle\right| \leq k\left\|\left(a_{i j}\right)\right\|_{1} .
$$

- Assumes Connes' embedding conjecture (for von-Neumann algebras), which implies that $[A, B]=0$ only if $A=A^{\prime} \otimes \mathbb{1}$ and $B=\mathbb{1} \otimes B^{\prime}$.

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}. . ."

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}. . ."
Why?

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}..."

Drop!

Assume a real (Archimedean) order-unit vector space (V, \leq, e):

- V is a real vector space
- \leq is a partial ordering
- for any $a, a \leq r e$ for some $r \in \mathbb{R}^{+}$.

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}. . ."

Drop!

Assume a real (Archimedean) order-unit vector space (V, \leq, e):

- V is a real vector space
- \leq is a partial ordering
- for any $a, a \leq r e$ for some $r \in \mathbb{R}^{+}$.

Measurements

A measurement is a family $\left(f_{1}, f_{2}, \ldots\right)$, with $f_{k} \geq 0$ and $\sum_{k} f_{k}=e$.

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}. . ."

Drop!

Assume a real (Archimedean) order-unit vector space (V, \leq, e):

- V is a real vector space
- \leq is a partial ordering
- for any $a, a \leq r e$ for some $r \in \mathbb{R}^{+}$.

Measurements

A measurement is a family $\left(f_{1}, f_{2}, \ldots\right)$, with $f_{k} \geq 0$ and $\sum_{k} f_{k}=e$.

Preparations

A state is a linear map $\omega: V \rightarrow \mathbb{R}$ with $\omega(e)=1$ and $\omega(a) \subset \mathbb{R}^{+}$for all $a \geq 0$.

Beyond quantum mechanics

"The underlying structure is a complex Hilbert space \mathcal{H}. . ."

Drop!

Assume a real (Archimedean) order-unit vector space (V, \leq, e):

- V is a real vector space
- \leq is a partial ordering
- for any $a, a \leq r e$ for some $r \in \mathbb{R}^{+}$.

Measurements

A measurement is a family $\left(f_{1}, f_{2}, \ldots\right)$, with $f_{k} \geq 0$ and $\sum_{k} f_{k}=e$.

Preparations

A state is a linear map $\omega: V \rightarrow \mathbb{R}$ with $\omega(e)=1$ and $\omega(a) \subset \mathbb{R}^{+}$for all $a \geq 0$.

Interpretation: $\omega\left(f_{k}\right)$ is the probability to obtain outcome k.

Examples of order-unit vector spaces

(1) $V=C(X), f \geq 0$ if $f(X) \subset \mathbb{R}^{+}$, and $e: x \mapsto 1$.

- order lattice
- all order lattices are of this form (Stone, Kakutani, Krein, and Yosida)
- the set of states is a simplex
- corresponds to Kolmogorovian probability theory
- all order-unit vector spaces can be embedded into $C(X)$ (Kadison)
(2) $V=\mathcal{B}(\mathcal{H}), E \geq 0$, and $e=\mathbb{1}$.
- this is quantum mechanics
(3) $V=\mathbb{R} \times \mathbb{R}^{2},(t, \mathbf{x}) \geq 0$ if $t \geq\|\mathbf{x}\|_{1}$, and $e=(1, \mathbf{0})$.
- achieves $\chi=4$
- called "Popescu-Rohrlich" box

Quantum correlations are the emergent correlations

Theorem (Dvoretzky)

If $\eta: S^{n-1} \rightarrow \mathbb{R}$ is a Lipschitz function with constant L and central value 1 , then for every $\varepsilon>0$, if $E \subset \mathbb{R}^{n}$ is a random subspace of dimension $k \leq k_{0}=c_{0} \varepsilon^{2} n / L^{2}$, we have, that

$$
P\left[\sup _{S^{n-1} \cap E}|\eta(\vec{x})-1|>\varepsilon\right] \leq c_{1} \mathrm{e}^{-c_{2} k_{0}},
$$

where c_{0}, c_{1}, and c_{2} are absolute constants.

Quantum correlations are the emergent correlations

Dim

Quantum correlations are the emergent correlations

Dim

Theorem

For a bipartite scenario, if the local measurements are chosen from a typical section of all possible measurements then, with a high degree of accuracy, the predicted correlations agree with quantum predictions.

Sequential measurements: the double slit experiment

Sequential measurements: the triple slit experiment

The screen

- segment the screen into discrete intervals $\{1,2, \ldots\}$
- finding a particle in interval k corresponds to an outcome f_{k} \hookrightarrow measurement $\left(f_{1}, f_{2}, \ldots\right)$.
The slits
- opening one, two, or three of the slits $\{1,2,3\}$ changes the measurement according to $\phi_{\alpha}: V \rightarrow V, \alpha \subset\{1,2,3\}$.
- double slit correlations:

$$
\psi_{1,2}=\phi_{\{1,2\}}-\left(\phi_{\{1\}}+\phi_{\{2\}}\right)
$$

- triple slit correlations:

$$
\psi_{1,2,3}=\phi_{\{1,2,3\}}-\left(\phi_{\{1\}}+\phi_{\{2\}}+\phi_{\{3\}}\right)
$$

Theorem (Sorkin)

In quantum mechanics there are no triple-slit (or higher order) correlations, $\psi_{1,2,3}=\psi_{1,2}+\psi_{1,3}+\psi_{2,3}$.

Sequential measurements in generalized models

In quantum mechanics, the action of the slits ϕ_{α} is given by Lüders' rule:

$$
\phi_{\alpha}: E \mapsto \Pi_{\alpha} E \Pi_{\alpha}, \text { where }
$$

- Π_{α} is a projection
- $\Pi_{\alpha \cup \beta}=\Pi_{\alpha}+\Pi_{\beta}$ for disjoint sets

Sequential measurements in generalized models

In quantum mechanics, the action of the slits ϕ_{α} is given by Lüders' rule:

$$
\phi_{\alpha}: E \mapsto \Pi_{\alpha} E \Pi_{\alpha}, \text { where }
$$

- Π_{α} is a projection
- $\Pi_{\alpha \cup \beta}=\Pi_{\alpha}+\Pi_{\beta}$ for disjoint sets

Definition

For order-unit vector spaces, a Lüders' rule $\phi: V \rightarrow V$ obeys
(1) $\phi(a) \geq 0$ for all $a \geq 0$
(2) $\phi(e) \leq e$
(3) if $0 \leq g \leq \phi(e)$, then $\phi(g)=g$.
[MK, J. Phys. A (2014)]

Example: triple-slit correlations

There exists a generalized probabilistic model, so that

- $\psi_{k, j}=0$ for all $k \neq j$,
- but $\psi_{1,2,3} \neq 0$.
\hookrightarrow strong triple-slit correlations

Summary

- Classical probability theory is insufficient to describe general correlations.
- Nature did not choose to obey Kolmogorov's axioms.
- Quantum mechanics is a very particular theory.
- But its correlation are emergent from any generalized model.

