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P A R T 1: Contextuality

1 axioms of Kolmogorov vs. Specker’s contextuality

2 a proof of the Kochen-Specker theorem

3 connection to Bell-inequalities

Ernst Specker, Simon Kochen, Adán Cabello
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Rolling dice

• the sample space Ω contains all outcomes, e.g. Ω = { 1, 2, 3, 4, 5, 6 }
• the event space is F = {A | A ⊂ Ω }
• the probability P : F → [0, 1] obeys P (Ω) = 1 and
P (A1 ∪A2 ∪ · · · ) = P (A1) + P (A2) + · · · for disjoint sets.
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“The logic of non-simultaneously decidable propositions”

• sample space Ω
• events F = {A | A ⊂ Ω }
• probability P

What happens if F ( {A | A ⊂ Ω }?

Specker’s parable of the over-protective seer

• Ω = { 1, 2, 3 },
• F = {A | A ⊂ Ω } \Ω
• P ({ }) = 0, P ({ i }) = 1

2 , and P ({ i, j }) = 1.

[Specker, Dialektika (1960)]

This device contradicts logic!
. . . At least, this device does not exist!

. . . Does it?
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Quantum mechanics predicts contextual correlations
[Original proof: Kochen and Specker, J. Math. Mech. (1967)]

Peres-Mermin squareA B C
a b c
α β γ

 • A,B, etc. have outcomes {−1,+1 }.
• Only values within one row or one column can

be accessed simultaneously.

χ = 〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉
[Cabello, Phys. Rev. Lett. (2008)]

• using probability theory χ ≤ 4.

• in quantum mechanics χ = 6:

〈ABC〉 = 〈abc〉 = 〈αβγ〉 = 〈Aaα〉 = 〈Bbβ〉 = 1 but 〈Ccγ〉 = −1.
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Are there contextual correlations in Nature?

Experimental result

χ = 5.46± 0.04 > 4
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Why is it called contextuality?

Kolmogorov:

• sample space Ω
• events F = {A | A ⊂ Ω }
• probability P

Specker:

• Ω = { 1, 2, 3 },
• F = {A | A ⊂ Ω } \Ω
• P ({ i }) = 1

2 , and P ({ i, j }) = 1

Saving Kolmogorov’s axioms

• three sample spaces ΩA = { 1, 2 }, ΩB = { 1, 3 }, ΩC = { 2, 3 }.
• each outcome { 1, 2, 3 } participates in two contexts,

ΩA,ΩB 3 1, ΩA,ΩC 3 2, and ΩB,ΩC 3 3.

↪→ global sample space Ω = { 1A, 1B, 2A, 2C , 3B, 3C }.

Are we forced to identify 1A ≡ 1B ≡ 1?
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An open debate

Are we forced to identify 1A ≡ 1B ≡ 1?

• finite precision problem [Meyer, Phys. Rev. Lett. (1999);

Cabello, Phys. Rev. A (2002)]

• non-disturbance [Gühne, MK, Cabello, et. al., Phys. Rev. A (2010)]

• non-contextual noise [Szangolies, MK, Gühne, Phys. Rev. A (2013)]

• memory cost [MK, Gühne, Portillo, et. al., New J. Phys. (2011)]

. . .
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What is the simplest inequality?

Record holder: 13 rays in C3.
[Yu, Oh, Phys. Rev. Lett. (2012)

MK, Budroni, Larsson, et al., Phys. Rev. Lett. (2012)

Cabello, MK, Budroni, preprint (2015)]
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Spacial separation: Bell inequalities

The CHSH-inequality:

χ = 〈A⊗ a〉+ 〈A⊗ b〉+ 〈B ⊗ a〉 − 〈B ⊗ b〉

[Bell, Physics (1964); Clauser, Horne, Shimony, Holt, Phys. Rev. Lett. (1969)]

classical value: χ ≤ 2 quantum value: χ ≤ 2
√

2.

Spacial separation:
A,B and a, b are measured in different laboratories.

Ongoing experiments.
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P A R T 2: Generalized probabilistic models

1 driving question: Why is quantum mechanics so particular?

2 quantum mechanics

3 generalized probabilistic models

4 quantum mechanics as an emergent theory

5 the triple slit experiment

The CHSH-inequality:

χ = 〈A⊗ a〉+ 〈A⊗ b〉+ 〈B ⊗ a〉 − 〈B ⊗ b〉

classical value: χ ≤ 2 quantum value: χ ≤ 2
√

2.

• Why is quantum mechanics better?

• Why 2
√

2 but not 4?
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Quantum mechanics

The underlying structure is a complex Hilbert space H.

Measurements

A measurement with outcomes (1, 2, . . . ) is described by operators
(E1, E2, . . . ) on H with Ek ≥ 0 and

∑
k Ek = 1.

Preparations

A state is a linear map ω : B(H)→ C with ω(1) = 1 and
ω(E) ≥ 0 for all operators E ≥ 0.

Interpretation: ω(Ek) is the probability to obtain outcome k.
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Example

Let H = C2 and define

A+ =

(
1 0
0 0

)
, and B+ =

1

2

(
1 1
1 1

)
.

Both are projections:
A+A+ = A+, i.e., A+ ≥ 0, A− = 1−A+ ≥ 0, and
B+B+ = B+, i.e., B+ ≥ 0, B− = 1−B+ ≥ 0.

Then: 〈A〉 ≡ P (A+)− P (A−) = ω(A+ −A−) ≡ ω(A)
↪→ A = a = A+ −A− and B = b = B+ −B−

CHSH-inequality:

χ = 〈A⊗ a〉+ 〈A⊗ b〉+ 〈B ⊗ a〉 − 〈B ⊗ b〉
attains the value

ω(X) with X = A⊗ a+A⊗ b+B ⊗ a−B ⊗ b
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Example (continued)

Remember: ω(E) ≥ 0 for all E ≥ 0 and ω(1) = 1.
Hence, χ ≤ sup {ω(X) | ω } = ‖X‖ = 2

√
2.

Theorem (Tsirelson)

For any choice of measurements and any separable Hilbert space,

|12χ| ≤ kR(2),

where kR(2) =
√

2 is Grothendieck’s constant.

• Grothendieck’s constant relates Grothendieck’s inequality (for tensor
norms)

|
∑

aij 〈φi|ψj〉| ≤ k‖(aij)‖1.

• Assumes Connes’ embedding conjecture (for von-Neumann algebras),
which implies that [A,B] = 0 only if A = A′ ⊗ 1 and B = 1⊗B′.
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Beyond quantum mechanics

“The underlying structure is a complex Hilbert space H. . . ”

Assume a real (Archimedean) order-unit vector space (V,≤, e):

• V is a real vector space

• ≤ is a partial ordering

• for any a, a ≤ re for some r ∈ R+.

Measurements

A measurement is a family (f1, f2, . . . ), with fk ≥ 0 and
∑

k fk = e.

Preparations

A state is a linear map ω : V → R with ω(e) = 1 and
ω(a) ⊂ R+ for all a ≥ 0.

Interpretation: ω(fk) is the probability to obtain outcome k.
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Examples of order-unit vector spaces

1 V = C(X), f ≥ 0 if f(X) ⊂ R+, and e : x 7→ 1.
• order lattice
• all order lattices are of this form (Stone, Kakutani, Krein, and Yosida)
• the set of states is a simplex
• corresponds to Kolmogorovian probability theory
• all order-unit vector spaces can be embedded into C(X) (Kadison)

2 V = B(H), E ≥ 0, and e = 1.
• this is quantum mechanics

3 V = R× R2, (t,x) ≥ 0 if t ≥ ‖x‖1, and e = (1,0).
• achieves χ = 4
• called “Popescu-Rohrlich” box

Current topics in foundations of quantum mechanics, p. 16



Quantum correlations are the emergent correlations

Theorem (Dvoretzky)

If η : Sn−1 → R is a Lipschitz function with constant L and central value
1, then for every ε > 0, if E ⊂ Rn is a random subspace of dimension
k ≤ k0 = c0ε

2 n/L2, we have, that

P

[
sup

Sn−1∩E
|η(~x)− 1| > ε

]
≤ c1e−c2k0 ,

where c0, c1, and c2 are absolute constants.

Theorem

For a bipartite scenario, if the local measurements are chosen from a
typical section of all possible measurements then, with a high degree of
accuracy, the predicted correlations agree with quantum predictions.

[MK, Osborne, Scholz, Werner, Phys. Rev. Lett. (2013)]
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Sequential measurements: the double slit experiment

In quantum mechanics, the intensities on the screen are not the sum of the
intensities of the individual slits.
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Sequential measurements: the triple slit experiment

The screen

• segment the screen into discrete intervals { 1, 2, . . . }
• finding a particle in interval k corresponds to an outcome fk

↪→ measurement (f1, f2, . . . ).

The slits

• opening one, two, or three of the slits { 1, 2, 3 } changes the
measurement according to φα : V → V , α ⊂ { 1, 2, 3 }.

• double slit correlations:
ψ1,2 = φ{ 1,2 } − (φ{ 1 } + φ{ 2 })

• triple slit correlations:
ψ1,2,3 = φ{ 1,2,3 } − (φ{ 1 } + φ{ 2 } + φ{ 3 })

Theorem (Sorkin)

In quantum mechanics there are no triple-slit (or higher order)
correlations, ψ1,2,3 = ψ1,2 + ψ1,3 + ψ2,3.
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Sequential measurements in generalized models

In quantum mechanics, the action of the slits φα is given by Lüders’ rule:

φα : E 7→ ΠαEΠα, where

• Πα is a projection

• Πα∪β = Πα + Πβ for disjoint sets

Definition

For order-unit vector spaces, a Lüders’ rule φ : V → V obeys

1 φ(a) ≥ 0 for all a ≥ 0

2 φ(e) ≤ e
3 if 0 ≤ g ≤ φ(e), then φ(g) = g.

[MK, J. Phys. A (2014)]
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Example: triple-slit correlations

There exists a generalized probabilistic model, so that

• ψk,j = 0 for all k 6= j,

• but ψ1,2,3 6= 0.

↪→ strong triple-slit correlations

set of states

Current topics in foundations of quantum mechanics, p. 21



Summary

• Classical probability theory is insufficient to describe general
correlations.

• Nature did not choose to obey Kolmogorov’s axioms.

• Quantum mechanics is a very particular theory.

• But its correlation are emergent from any generalized model.

Current topics in foundations of quantum mechanics, p. 22


