Coherent Sequences of Measurements and a Triple-Slit Interference

(with 3 figures)

Matthias Kleinmann
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

I N T R O D U C T I O N

$\varrho \mapsto ~ П \varrho П$

A theory-independent notion of coherent sequences of measurements.

I N T R O D U C T I O N

$\varrho \mapsto ~ П \varrho П$

A theory-independent notion of coherent sequences of measurements. Why?

Text book example: The double-slit experiment

Text book example: The double-slit experiment

Superposition principle

$$
\Psi(\mathbf{x}, t)=\psi_{1}(\mathbf{x}, t)+\psi_{2}(\mathbf{x}, t)
$$

Schrödinger equation

$$
i \partial_{t} \psi_{j}=-\frac{1}{2 m} \partial_{\mathbf{x}}^{2} \psi_{j} \quad \hookrightarrow \quad \psi_{j}(\mathbf{x}, t)=\int \mathrm{e}^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{r}_{j}-t \mathbf{k} / 2 m\right)} \Phi(\mathbf{k}) \mathrm{d} \mathbf{k}
$$

Born rule

$$
\begin{aligned}
I_{12}(\mathbf{x}) & =|\Psi(\mathbf{x}, t)|^{2} \\
& =\left|\psi_{1}(\mathbf{x}, t)\right|^{2}+\left|\psi_{2}(\mathbf{x}, t)\right|^{2}+2 \operatorname{Re}\left[\psi_{1}(\mathbf{x}, t)^{*} \psi_{2}(\mathbf{x}, t)\right] \\
& =I_{1}(\mathbf{x})+I_{2}(\mathbf{x})+\mathfrak{I}_{12}(\mathbf{x})
\end{aligned}
$$

Pure double-slit correlations

There is a measurement $\left(\Pi_{1}, \Pi_{2}\right)$, such that

$$
\left|\psi_{k}\right\rangle=\Pi_{k}|\Psi\rangle .
$$

Write $\Delta_{\mathbf{x}}$ for detection at \mathbf{x}. Then

- single-slit: $I_{k}(\mathbf{x})=\left\langle\psi_{k}\right| \Delta_{\mathbf{x}}\left|\psi_{k}\right\rangle=\langle\Psi| \Pi_{k} \Delta_{\mathbf{x}} \Pi_{k}|\Psi\rangle$
- double-slit: $I_{12}(\mathbf{x})=\langle\Psi| \Delta_{\mathbf{x}}|\Psi\rangle$

Double-slit interference

With $\phi_{k}: A \mapsto \Pi_{k} A \Pi_{k}$ we have

$$
\mathfrak{I}_{12}(\mathbf{x}) \equiv I_{12}(\mathbf{x})-I_{1}(\mathbf{x})-I_{2}(\mathbf{x})=\langle\Psi|\left(\mathrm{id}-\phi_{1}-\phi_{2}\right)\left[\Delta_{\mathbf{x}}\right]|\Psi\rangle
$$

When double-slit correlations are universal
n-slit measurement
For $\alpha \subset\{1, \ldots, n\}$ let

$$
\Pi_{\alpha}=\sum_{j \in \alpha} \Pi_{j} \quad \text { and } \quad \phi_{\alpha}[A]=\Pi_{\alpha} A \Pi_{\alpha} .
$$

Then: $\left(\phi_{\alpha}-\sum_{j \in \alpha} \phi_{\{j\}}\right)[A]=\sum_{i<j ; i, j \in \alpha}\left(\phi_{\{i, j\}}-\phi_{\{i\}}-\phi_{\{j\}}\right)[A]$

When double-slit correlations are universal
n-slit measurement
For $\alpha \subset\{1, \ldots, n\}$ let

$$
\Pi_{\alpha}=\sum_{j \in \alpha} \Pi_{j} \quad \text { and } \quad \phi_{\alpha}[A]=\Pi_{\alpha} A \Pi_{\alpha}
$$

Then: $\left(\phi_{\alpha}-\sum_{j \in \alpha} \phi_{\{j\}}\right)[A]=\sum_{i<j ; i, j \in \alpha}\left(\phi_{\{i, j\}}-\phi_{\{i\}}-\phi_{\{j\}}\right)[A]$
Fact [Sorkin, Mod. Phys. Lett. (1995); Sinha et al., Science (2007)]
There are no n-slit correlations in quantum mechanics for $n>2$.

When double-slit correlations are universal

n-slit measurement

For $\alpha \subset\{1, \ldots, n\}$ let

$$
\Pi_{\alpha}=\sum_{j \in \alpha} \Pi_{j} \quad \text { and } \quad \phi_{\alpha}[A]=\Pi_{\alpha} A \Pi_{\alpha} .
$$

Then: $\left(\phi_{\alpha}-\sum_{j \in \alpha} \phi_{\{j\}}\right)[A]=\sum_{i<j ; i, j \in \alpha}\left(\phi_{\{i, j\}}-\phi_{\{i\}}-\phi_{\{j\}}\right)[A]$
Fact [Sorkin, Mod. Phys. Lett. (1995); Sinha et al., Science (2007)]
There are no n-slit correlations in quantum mechanics for $n>2$.

Example (triple-slit correlations)
Choose $F_{1}=\mathbb{1} / 2, F_{2}=|0\rangle\langle 0| / 2$, and $F_{3}=|1\rangle\langle 1| / 2$.

The existence of projective measurements: Lüders' rule
Lüders' rule [Ann. Phys., 1951]
For $A=\sum_{a} a \Pi_{a}$ there exists an implementation, so that

$$
\begin{aligned}
\langle B \mid A=a\rangle & =\operatorname{tr}\left(\varrho \Pi_{a} B \Pi_{a}\right) / \operatorname{tr}\left(\varrho \Pi_{a}\right) \\
& =\operatorname{tr}\left[\varrho \phi_{a}(B)\right] / \operatorname{tr}\left[\varrho \phi_{a}(\mathbb{1})\right],
\end{aligned}
$$

with $\phi_{a}(B)=\Pi_{a} B \Pi_{a}$.

Differs from suggestion by von Neumann, where

$$
\phi_{a}(B)=\sum_{k}\left|\phi_{k}^{a}\right\rangle\left\langle\phi_{k}^{a}\right| B\left|\phi_{k}^{a}\right\rangle\left\langle\phi_{k}^{a}\right|
$$

with $\left(\left|\phi_{k}^{a}\right\rangle\right)_{k}$ is an orthonormal basis of range Π_{a}.

Is Lüders' rule an axiom?

Ozawas theorem [JMP, 1984]

For a collection of quantum maps ϕ_{a} with $\sum_{a} \phi_{a}(\mathbb{1})=\mathbb{1}$ there exists $|\mathrm{anc}\rangle, U$, and an orthonormal basis $\left(|a\rangle_{\mathrm{anc}}\right)$, so that

$$
\operatorname{tr}\left(\varrho \phi_{a}[B]\right)=\operatorname{tr}\left[(|\operatorname{anc}\rangle\langle\text { anc }| \otimes \varrho) U(|a\rangle\langle a| \otimes B) U^{\dagger}\right] .
$$

for all B.
\hookrightarrow Existence of Lüders' rule is guaranteed by existence of non-local unitaries (and pure state preparation).

Use of a general definition of Lüders' rule

- When is a measurement projective?
- What makes a map ϕ_{k} a Lüders' rule?
- How to describe sequential measurements without enrolling Hilbert space formalism?

Use of a general definition of Lüders' rule

- When is a measurement projective?
- What makes a map ϕ_{k} a Lüders' rule?
- How to describe sequential measurements without enrolling Hilbert space formalism?

Concepts premising projective sequential measurements:

- no triple-slit correlations
- macro-realism
- contextuality
- exclusivity principle (orthomodularity)

FORMALISM

Quantum mechanics and positivity (i)

What do we need for quantum mechanics?
Measurements. A general measurement is a POVM,

$$
\left(E_{1}, E_{2}, \ldots\right) \text { obeying } E_{k} \geq 0 \text { and } \sum_{k} E_{k}=\mathbb{1} .
$$

States. A general state is an ensemble ϱ or a map

$$
\omega: A \mapsto \operatorname{tr}(\varrho A) \text { so that } \omega\left(E_{k}\right)=p_{k} .
$$

In particular $\omega(E) \geq 0$ for any $E \geq 0$ and $\omega(\mathbb{1})=1$.
Channels. A linear map ϕ is a quantum channel, if

$$
\phi(E) \geq 0 \text { for all } E \geq 0 \text {, and }(\mathrm{id} \otimes \phi)\left(E_{\mathrm{AB}}\right) \geq 0 \text { for all extensions. }
$$

Positivity

Positivity

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \geq 0$,
- what is the identity $\mathbb{1}$,

Positivity

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \geq 0$,
- what is the identity $\mathbb{1}$,

Order unit vector space

An order unit vector space is a triple (V, \geq, e) obeying

- V is a real vector space.
- \geq is a partial order on V with
- $f+v \geq g+v$ if $f \geq g$
- $\lambda f \geq 0$ if $f \geq 0$ and $\lambda \in \mathbb{R}_{0}^{+}$
- e is an order unit, i.e., for any $v \in V$ there exists a $\lambda>0$ with $\lambda e \geq v$.

Positivity

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \geq 0$,
- what is the identity $\mathbb{1}$,

Order unit vector space

An order unit vector space is a triple (V, \geq, e) obeying

- V is a real vector space.
- \geq is a partial order on V with
- $f+v \geq g+v$ if $f \geq g$
- $\lambda f \geq 0$ if $f \geq 0$ and $\lambda \in \mathbb{R}_{0}^{+}$
- e is an order unit, i.e., for any $v \in V$ there exists a $\lambda>0$ with $\lambda e \geq v$.

The set of states is

$$
\mathcal{S}=\left\{\omega \in V^{*} \mid \omega(f) \geq 0 \text { for all } f \geq 0, \quad \omega(e)=1\right\}
$$

Generalized probabilistic theories

How does an order unit vector space define a theory?
Measurements. A family $\left(f_{1}, f_{2}, \ldots\right)$ is a measurement only if $f_{k} \geq 0$ and $\sum_{k} f_{k}=e$.

States. A state $\omega \in \mathcal{S}$ yields probabilities $\omega\left(f_{k}\right)=p_{k}$.
Channels. $\phi: V \rightarrow V$ is a channel only if

$$
\phi(f) \geq 0 \text { for all } f \geq 0 \text { (positivity) }
$$

DEFINITION

Coherent Lüders' rule for order unit vector spaces

Definition

A positive linear map f^{\sharp} is a Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp} e=f$, and
- repeatable, $f^{\sharp} f=f$.

Example (Failure!)

The von-Neumann measurements are repeatable.

Coherent Lüders' rule for order unit vector spaces

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp} e=f$, and
- coherent, i.e., $f^{\sharp} g=g$ for all $0 \leq g \leq f$.
- In quantum mechanics, a CLR for E exists iff $E E=E$. In addition

$$
E^{\sharp}(B)=E B E .
$$

Coherent Lüders' rule for order unit vector spaces

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp} e=f$, and
- coherent, i.e., $f^{\sharp} g=g$ for all $0 \leq g \leq f$.
- In quantum mechanics, a CLR for E exists iff $E E=E$. In addition

$$
E^{\sharp}(B)=E B E .
$$

- The effects $0, e$, and all extremal rays admit a CLR:
- $0^{\sharp}(x)=0$,
- $e^{\sharp}(x)=x$,
- f extremal: $f^{\sharp}(x)=f \omega(x)$ with $\omega(f)=1$.

Coherent Lüders' rule for order unit vector spaces

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp} e=f$, and
- coherent, i.e., $f^{\sharp} g=g$ for all $0 \leq g \leq f$.
- In quantum mechanics, a CLR for E exists iff $E E=E$. In addition

$$
E^{\sharp}(B)=E B E .
$$

- The effects $0, e$, and all extremal rays admit a CLR:
- $0^{\sharp}(x)=0$,
- $e^{\sharp}(x)=x$,
- f extremal: $f^{\sharp}(x)=f \omega(x)$ with $\omega(f)=1$.
- In general, a CLR is not unique.

More properties of CLRs

Repeatability, exclusivity, and compatibility

- $f^{\sharp} \circ f^{\sharp}=f^{\sharp}$.
- If $f+g \leq e$, then $f^{\sharp} \circ g^{\sharp}=0$.
- If $g \leq f$, then $f^{\sharp}(g)=g^{\sharp}(f)$

More properties of CLRs

Repeatability, exclusivity, and compatibility

- $f^{\sharp} \circ f^{\sharp}=f^{\sharp}$.
- If $f+g \leq e$, then $f^{\sharp} \circ g^{\sharp}=0$.
- If $g \leq f$, then $f^{\sharp}(g)=g^{\sharp}(f)$

Assume some appropriate cone \mathcal{C} of positive maps.

Theorem

An f-compatible positive map ϕ is a CLR for f if and only if $\phi \circ \psi=\psi$ holds for all f-compatible maps $\psi \in \mathcal{C}$.

More properties of CLRs

Repeatability, exclusivity, and compatibility

- $f^{\sharp} \circ f^{\sharp}=f^{\sharp}$.
- If $f+g \leq e$, then $f^{\sharp} \circ g^{\sharp}=0$.
- If $g \leq f$, then $f^{\sharp}(g)=g^{\sharp}(f)$

Assume some appropriate cone \mathcal{C} of positive maps.

Theorem

An f-compatible positive map ϕ is a CLR for f if and only if $\phi \circ \psi=\psi$ holds for all f-compatible maps $\psi \in \mathcal{C}$.

Robustness under sections:
If $\tau: W \rightarrow V$ with $W \subset V$, then $\tau^{-1} \circ \tau(f)^{\sharp} \circ \tau$ is a CLR for $\tau(f)$.

Alternative: Filters

Definition (Araki, CMP, 1980)

A positive linear map f^{\natural} is a filter for $0 \leq f \leq e$ if it is

- f-compatible
- projective, i.e., $f^{\natural} \circ f^{\natural}=f^{\natural}$, and
- neutral, $\omega \circ f^{\natural}=\omega$ if $\omega(f)=1$.

See also Alfsen \& Shultz (since 1980'ies), Niestegge (since 2008), Ududec \& Barnum \& Emerson (2011).

Alternative: Filters

Definition (Araki, CMP, 1980)

A positive linear map f^{\natural} is a filter for $0 \leq f \leq e$ if it is

- f-compatible
- projective, i.e., $f^{\natural} \circ f^{\natural}=f^{\natural}$, and
- neutral, $\omega \circ f^{\natural}=\omega$ if $\omega(f)=1$.

See also Alfsen \& Shultz (since 1980'ies), Niestegge (since 2008), Ududec \& Barnum \& Emerson (2011).

Objections:

- Origin in theory of propositions (\hookrightarrow Gleason's theorem).
- Robustness under sections unclear.
- Some elements from the extreme boundary may not admit a filter (e.g. for Popescu-Rohrlich boxes).
- Spekkens toy model has a CLR.

Example: Dichotomic norm cones

Generalized Bloch sphere

Assume $V=\mathbb{R} \times \mathbb{R}^{d},(t, \mathbf{x}) \geq 0$ if $t \geq\|\mathbf{x}\|$, and $e=(1, \mathbf{0})$. Then only $0, e$, and the extremal elements admit a CLR.

Embraces classical bit, qubit, hyperbits, gbit, and Spekkens toy model.

Example: Dichotomic norm cones

Generalized Bloch sphere

Assume $V=\mathbb{R} \times \mathbb{R}^{d},(t, \mathbf{x}) \geq 0$ if $t \geq\|\mathbf{x}\|$, and $e=(1, \mathbf{0})$.
Then only $0, e$, and the extremal elements admit a CLR.
Embraces classical bit, qubit, hyperbits, gbit, and Spekkens toy model.

Simplified Leggett-Garg inequality

$$
\left\langle\mathrm{LG}^{\prime}\right\rangle=\langle A B\rangle_{\mathrm{seq}}+\langle B\rangle-\langle A\rangle
$$

- macro-realistic bound $\left\langle\mathrm{LG}^{\prime}\right\rangle \leq 1$
- quantum bound $\left\langle\mathrm{LG}^{\prime}\right\rangle \leq 3 / 2$
- "algebraic" bound $\left\langle\mathrm{LG}^{\prime}\right\rangle \leq 3$

Example: Dichotomic norm cones

$$
\begin{gathered}
\left\langle\mathrm{LG} G^{\prime}\right\rangle \leq\|\mathbf{a}-\mathbf{b}\|+\mathbf{a}^{\prime} \cdot \mathbf{b} \\
\text { with }\|\mathbf{a}\|=\|\mathbf{b}\|=\left\|\mathbf{a}^{\prime}\right\|_{*}=\mathbf{a}^{\prime} \cdot \mathbf{a}=1 .
\end{gathered}
$$

Example: Triple-slit correlations

There exists an order unit vector space with maps $\phi_{\alpha}, \alpha \subset\{1,2,3\}$, such that

- $\phi_{\{k, j\}}-\phi_{\{k\}}-\phi_{\{j\}}=0$, for all $k<j$,
- but $\phi_{\{1,2,3\}}-\sum_{k} \phi_{\{k\}} \neq 0$.

Are the elements with CLR projections?

In quantum mechanics each of the following requires f to be a projection:
(i) f admits a CLR.
(ii) $g \leq f$ implies $g \leq f\|g\|$
(iii) $g \leq f \leq e-g$ only for $g=0$
(iv) $f=\sum g_{k}$ with g_{k} extremal

Are the elements with CLR projections?

In quantum mechanics each of the following requires f to be a projection:
(i) f admits a CLR.
(ii) $g \leq f$ implies $g \leq f\|g\|$
(iii) $g \leq f \leq e-g$ only for $g=0$
(iv) $f=\sum g_{k}$ with g_{k} extremal

Proposition

S U M M A R Y

- Fundamental quantum features are based on coherent sequential measurements.
- Incoherent sequential quantum measurements may cause spurious post-quantum effects.
- Axiomatic description via coherent Lüders' rule or via filters.
- Sequential measurements in toy-theories exhibit post-quantum effects.
\hookrightarrow arXiv:1402.3583
- related work by Chiribella \& Yuan, arXiv:1404.3348.

