Coherent Sequences of Measurements and a Triple-Slit Interference

(with 3 figures)

Matthias Kleinmann

Universidade Federal de Minas Gerais Belo Horizonte, Brazil

INTRODUCTION

$\varrho\mapsto\Pi\varrho\Pi$

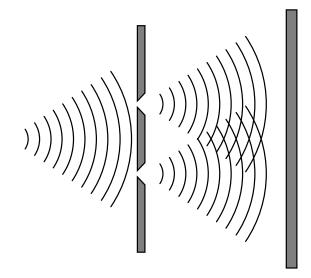
A theory-independent notion of coherent sequences of measurements.

INTRODUCTION

$\varrho\mapsto\Pi\varrho\Pi$

A theory-independent notion of coherent sequences of measurements. Why?

Text book example: The double-slit experiment



Text book example: The double-slit experiment

Superposition principle

$$\Psi(\mathbf{x},t) = \psi_1(\mathbf{x},t) + \psi_2(\mathbf{x},t)$$

Schrödinger equation

$$i\partial_t\psi_j = -\frac{1}{2m}\partial_{\mathbf{x}}^2\psi_j \quad \hookrightarrow \quad \psi_j(\mathbf{x},t) = \int e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{r}_j-t\mathbf{k}/2m)}\Phi(\mathbf{k})\mathrm{d}\mathbf{k}$$

Born rule

$$I_{12}(\mathbf{x}) = |\Psi(\mathbf{x}, t)|^2$$

= $|\psi_1(\mathbf{x}, t)|^2 + |\psi_2(\mathbf{x}, t)|^2 + 2 \operatorname{Re}[\psi_1(\mathbf{x}, t)^* \psi_2(\mathbf{x}, t)]$
= $I_1(\mathbf{x}) + I_2(\mathbf{x}) + \Im_{12}(\mathbf{x})$

Pure double-slit correlations

There is a measurement (Π_1, Π_2) , such that

 $|\psi_k\rangle = \Pi_k |\Psi\rangle.$

Write $\Delta_{\mathbf{x}}$ for detection at \mathbf{x} . Then

- single-slit: $I_k(\mathbf{x}) = \langle \psi_k | \Delta_{\mathbf{x}} | \psi_k \rangle = \langle \Psi | \Pi_k \Delta_{\mathbf{x}} \Pi_k | \Psi \rangle$
- double-slit: $I_{12}(\mathbf{x}) = \langle \Psi | \Delta_{\mathbf{x}} | \Psi
 angle$

Double-slit interference With $\phi_k : A \mapsto \prod_k A \prod_k$ we have

 $\Im_{12}(\mathbf{x}) \equiv I_{12}(\mathbf{x}) - I_1(\mathbf{x}) - I_2(\mathbf{x}) = \langle \Psi | (\mathrm{id} - \phi_1 - \phi_2) [\Delta_{\mathbf{x}}] | \Psi \rangle$

When double-slit correlations are universal

n-slit measurement

For $\alpha \subset \{1, \dots, n\}$ let $\Pi_{\alpha} = \sum_{j \in \alpha} \Pi_j \quad \text{and} \quad \phi_{\alpha}[A] = \Pi_{\alpha} A \Pi_{\alpha}.$

Then:
$$(\phi_{\alpha} - \sum_{j \in \alpha} \phi_{\{j\}})[A] = \sum_{i < j; \ i, j \in \alpha} (\phi_{\{i, j\}} - \phi_{\{i\}} - \phi_{\{j\}})[A]$$

When double-slit correlations are universal

n-slit measurement

For $\alpha \subset \{1, \ldots, n\}$ let

$$\Pi_{\alpha} = \sum_{j \in \alpha} \Pi_j \quad \text{ and } \quad \phi_{\alpha}[A] = \Pi_{\alpha} A \Pi_{\alpha}.$$

Then:
$$(\phi_{\alpha} - \sum_{j \in \alpha} \phi_{\{j\}})[A] = \sum_{i < j; \ i, j \in \alpha} (\phi_{\{i, j\}} - \phi_{\{i\}} - \phi_{\{j\}})[A]$$

Fact [Sorkin, Mod. Phys. Lett. (1995); Sinha et al., Science (2007)]

There are no *n*-slit correlations in quantum mechanics for n > 2.

When double-slit correlations are universal

n-slit measurement

For $\alpha \subset \{1, \ldots, n\}$ let

$$\Pi_{\alpha} = \sum_{j \in \alpha} \Pi_j \quad \text{ and } \quad \phi_{\alpha}[A] = \Pi_{\alpha} A \Pi_{\alpha}.$$

Then:
$$(\phi_{\alpha} - \sum_{j \in \alpha} \phi_{\{j\}})[A] = \sum_{i < j; \ i, j \in \alpha} (\phi_{\{i, j\}} - \phi_{\{i\}} - \phi_{\{j\}})[A]$$

Fact [Sorkin, Mod. Phys. Lett. (1995); Sinha et al., Science (2007)]

There are no *n*-slit correlations in quantum mechanics for n > 2.

Example (triple-slit correlations) Choose $F_1 = 1/2$, $F_2 = |0\rangle\langle 0|/2$, and $F_3 = |1\rangle\langle 1|/2$.

The existence of projective measurements: Lüders' rule

Lüders' rule [Ann. Phys., 1951]

For $A = \sum_a a \Pi_a$ there exists an implementation, so that

$$\langle B|A = a \rangle = \operatorname{tr}(\varrho \,\Pi_a B \Pi_a) / \operatorname{tr}(\varrho \,\Pi_a) = \operatorname{tr}[\varrho \,\phi_a(B)] / \operatorname{tr}[\varrho \,\phi_a(\mathbb{1})],$$

with $\phi_a(B) = \Pi_a B \Pi_a$.

Differs from suggestion by von Neumann, where

$$\phi_a(B) = \sum_k |\phi_k^a\rangle\!\langle\phi_k^a|B|\phi_k^a\rangle\!\langle\phi_k^a|$$

with $(|\phi_k^a\rangle)_k$ is an orthonormal basis of range Π_a .

Is Lüders' rule an axiom?

Ozawas theorem [JMP, 1984]

For a collection of quantum maps ϕ_a with $\sum_a \phi_a(1) = 1$ there exists $|anc\rangle$, U, and an orthonormal basis $(|a\rangle_{anc})$, so that

 $\operatorname{tr}(\varrho \, \phi_a[B]) = \operatorname{tr}[(|\operatorname{anc}\rangle \langle \operatorname{anc}| \otimes \varrho) U(|a\rangle \langle a| \otimes B) U^{\dagger}].$

for all B.

 → Existence of Lüders' rule is guaranteed by existence of non-local unitaries (and pure state preparation).

Use of a general definition of Lüders' rule

- When is a measurement projective?
- What makes a map ϕ_k a Lüders' rule?
- How to describe sequential measurements without enrolling Hilbert space formalism?

Use of a general definition of Lüders' rule

- When is a measurement projective?
- What makes a map ϕ_k a Lüders' rule?
- How to describe sequential measurements without enrolling Hilbert space formalism?

Concepts premising projective sequential measurements:

- no triple-slit correlations
- macro-realism
- contextuality
- exclusivity principle (orthomodularity)

FORMALISM

Quantum mechanics and positivity (i)

What do we need for quantum mechanics?

Measurements. A general measurement is a POVM,

 (E_1, E_2, \dots) obeying $E_k \ge 0$ and $\sum_k E_k = \mathbb{1}$.

States. A general state is an ensemble ϱ or a map

 $\omega \colon A \mapsto \operatorname{tr}(\varrho A)$ so that $\omega(E_k) = p_k$.

In particular $\omega(E) \ge 0$ for any $E \ge 0$ and $\omega(\mathbb{1}) = 1$.

Channels. A linear map ϕ is a quantum channel, if

 $\phi(E) \ge 0$ for all $E \ge 0$, and $(id \otimes \phi)(E_{AB}) \ge 0$ for all extensions.

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \ge 0$,
- what is the identity 1,

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \ge 0$,
- what is the identity 1,

Order unit vector space

An order unit vector space is a triple (V, \geq, e) obeying

- V is a real vector space.
- \geq is a partial order on V with

•
$$f + v \ge g + v$$
 if $f \ge g$

- $\lambda f \ge 0$ if $f \ge 0$ and $\lambda \in \mathbb{R}^+_0$
- e is an order unit, i.e., for any $v \in V$ there exists a $\lambda > 0$ with $\lambda e \ge v$.

Operational picture of quantum mechanics, once we know

- when an operator is positive, $E \ge 0$,
- what is the identity 1,

Order unit vector space

An order unit vector space is a triple (V, \geq, e) obeying

- V is a real vector space.
- \geq is a partial order on V with

•
$$f + v \ge g + v$$
 if $f \ge g$

- $\lambda f \ge 0$ if $f \ge 0$ and $\lambda \in \mathbb{R}^+_0$
- e is an order unit, i.e., for any $v \in V$ there exists a $\lambda > 0$ with $\lambda e \ge v$.

The set of states is

$$\mathcal{S} = \{ \omega \in V^* \mid \omega(f) \geq 0 \text{ for all } f \geq 0, \quad \omega(e) = 1 \}.$$

Generalized probabilistic theories

How does an order unit vector space define a theory?

Measurements. A family $(f_1, f_2, ...)$ is a measurement only if $f_k \ge 0$ and $\sum_k f_k = e$.

States. A state $\omega \in S$ yields probabilities $\omega(f_k) = p_k$.

Channels. $\phi \colon V \to V$ is a channel only if

 $\phi(f) \ge 0$ for all $f \ge 0$ (positivity)

DEFINITION

Definition

A positive linear map f^{\sharp} is a Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp}e = f$, and
- repeatable, $f^{\sharp}f = f$.

Example (Failure!)

The von-Neumann measurements are repeatable.

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp}e = f$, and
- coherent, i.e., $f^{\sharp}g = g$ for all $0 \le g \le f$.
- In quantum mechanics, a CLR for E exists iff EE = E. In addition

 $E^{\sharp}(B) = EBE.$

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp}e = f$, and
- coherent, i.e., $f^{\sharp}g = g$ for all $0 \le g \le f$.
- In quantum mechanics, a CLR for E exists iff EE = E. In addition

$$E^{\sharp}(B) = EBE.$$

- The effects 0, e, and all extremal rays admit a CLR:
 - $0^{\sharp}(x) = 0$,
 - $e^{\sharp}(x) = x$,
 - f extremal: $f^{\sharp}(x) = f\omega(x)$ with $\omega(f) = 1$.

Definition (CLR)

A positive linear map f^{\sharp} is a coherent Lüders' rule for $0 \leq f \leq e$ if it is

- f-compatible, i.e., $f^{\sharp}e = f$, and
- coherent, i.e., $f^{\sharp}g = g$ for all $0 \le g \le f$.
- In quantum mechanics, a CLR for E exists iff EE = E. In addition

$$E^{\sharp}(B) = EBE.$$

- The effects 0, e, and all extremal rays admit a CLR:
 - $0^{\sharp}(x) = 0$,
 - $e^{\sharp}(x) = x$,
 - f extremal: $f^{\sharp}(x) = f\omega(x)$ with $\omega(f) = 1$.
- In general, a CLR is not unique.

More properties of CLRs

Repeatability, exclusivity, and compatibility

•
$$f^{\sharp} \circ f^{\sharp} = f^{\sharp}$$
.

• If
$$f + g \le e$$
, then $f^{\sharp} \circ g^{\sharp} = 0$.

• If
$$g \leq f$$
, then $f^{\sharp}(g) = g^{\sharp}(f)$

More properties of CLRs

Repeatability, exclusivity, and compatibility

•
$$f^{\sharp} \circ f^{\sharp} = f^{\sharp}.$$

• If
$$f + g \le e$$
, then $f^{\sharp} \circ g^{\sharp} = 0$.

• If
$$g \leq f$$
, then $f^{\sharp}(g) = g^{\sharp}(f)$

Assume some appropriate cone $\mathcal C$ of positive maps.

Theorem

An *f*-compatible positive map ϕ is a CLR for *f* if and only if $\phi \circ \psi = \psi$ holds for all *f*-compatible maps $\psi \in C$.

More properties of CLRs

Repeatability, exclusivity, and compatibility

•
$$f^{\sharp} \circ f^{\sharp} = f^{\sharp}.$$

• If
$$f + g \le e$$
, then $f^{\sharp} \circ g^{\sharp} = 0$.

• If
$$g \leq f$$
, then $f^{\sharp}(g) = g^{\sharp}(f)$

Assume some appropriate cone $\mathcal C$ of positive maps.

Theorem

An *f*-compatible positive map ϕ is a CLR for *f* if and only if $\phi \circ \psi = \psi$ holds for all *f*-compatible maps $\psi \in C$.

Robustness under sections: If $\tau: W \to V$ with $W \subset V$, then $\tau^{-1} \circ \tau(f)^{\sharp} \circ \tau$ is a CLR for $\tau(f)$.

Alternative: Filters

Definition (Araki, CMP, 1980)

A positive linear map f^{\natural} is a filter for $0 \leq f \leq e$ if it is

- *f*-compatible
- projective, i.e., $f^{\natural} \circ f^{\natural} = f^{\natural}$, and
- neutral, $\omega \circ f^{\natural} = \omega$ if $\omega(f) = 1$.

See also Alfsen & Shultz (since 1980'ies), Niestegge (since 2008), Ududec & Barnum & Emerson (2011).

Alternative: Filters

Definition (Araki, CMP, 1980)

A positive linear map f^{\natural} is a filter for $0 \leq f \leq e$ if it is

- *f*-compatible
- projective, i.e., $f^{\natural} \circ f^{\natural} = f^{\natural}$, and
- neutral, $\omega \circ f^{\natural} = \omega$ if $\omega(f) = 1$.

See also Alfsen & Shultz (since 1980'ies), Niestegge (since 2008), Ududec & Barnum & Emerson (2011).

Objections:

- Origin in theory of propositions (\hookrightarrow Gleason's theorem).
- Robustness under sections unclear.
- Some elements from the extreme boundary may not admit a filter (e.g. for Popescu-Rohrlich boxes).
- Spekkens toy model has a CLR.

Example: Dichotomic norm cones

Generalized Bloch sphere

Assume $V = \mathbb{R} \times \mathbb{R}^d$, $(t, \mathbf{x}) \ge 0$ if $t \ge ||\mathbf{x}||$, and $e = (1, \mathbf{0})$. Then only 0, e, and the extremal elements admit a CLR.

Embraces classical bit, qubit, hyperbits, gbit, and Spekkens toy model.

Example: Dichotomic norm cones

Generalized Bloch sphere

Assume $V = \mathbb{R} \times \mathbb{R}^d$, $(t, \mathbf{x}) \ge 0$ if $t \ge ||\mathbf{x}||$, and $e = (1, \mathbf{0})$. Then only 0, e, and the extremal elements admit a CLR.

Embraces classical bit, qubit, hyperbits, gbit, and Spekkens toy model.

Simplified Leggett-Garg inequality

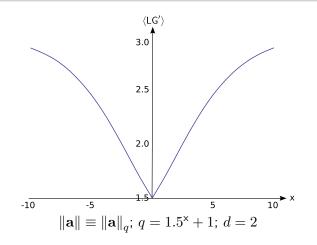
$$\langle \mathsf{LG}' \rangle = \langle AB \rangle_{\mathrm{seq}} + \langle B \rangle - \langle A \rangle$$

- macro-realistic bound $\langle \mathsf{LG}' \rangle \leq 1$
- quantum bound $\langle {\rm LG}'\rangle \leq 3/2$
- "algebraic" bound $\langle {\rm LG}' \rangle \leq 3$

Example: Dichotomic norm cones

$$\langle \mathsf{L}\mathsf{G}' \rangle \leq \|\mathbf{a} - \mathbf{b}\| + \mathbf{a}' \cdot \mathbf{b}$$

with $\|\mathbf{a}\| = \|\mathbf{b}\| = \|\mathbf{a}'\|_* = \mathbf{a}' \cdot \mathbf{a} = 1.$

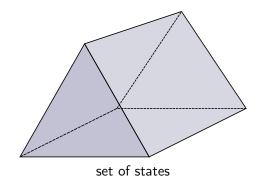


Example: Triple-slit correlations

There exists an order unit vector space with maps $\phi_{\alpha}, \ \alpha \subset \{1,2,3\},$ such that

•
$$\phi_{\{k,j\}} - \phi_{\{k\}} - \phi_{\{j\}} = 0$$
, for all $k < j$,

• but
$$\phi_{\{1,2,3\}} - \sum_k \phi_{\{k\}} \neq 0$$



Are the elements with CLR projections?

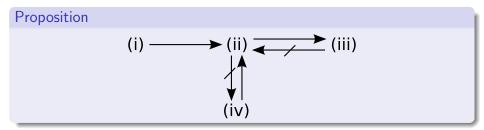
In quantum mechanics each of the following requires f to be a projection:

- (i) f admits a CLR.
- (ii) $g \leq f$ implies $g \leq f \|g\|$
- (iii) $g \leq f \leq e g$ only for g = 0
- (iv) $f = \sum g_k$ with g_k extremal

Are the elements with CLR projections?

In quantum mechanics each of the following requires f to be a projection:

- (i) f admits a CLR.
- (ii) $g \leq f$ implies $g \leq f ||g||$
- (iii) $g \leq f \leq e g$ only for g = 0
- (iv) $f = \sum g_k$ with g_k extremal



SUMMARY

- Fundamental quantum features are based on coherent sequential measurements.
- Incoherent sequential quantum measurements may cause spurious post-quantum effects.
- Axiomatic description via coherent Lüders' rule or via filters.
- Sequential measurements in toy-theories exhibit post-quantum effects.

 \hookrightarrow arXiv:1402.3583

• related work by Chiribella & Yuan, arXiv:1404.3348.