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Why is the quantum Fisher information important?

Many experiments are aiming to carry out a metrological task.

If we can estimate the quantum Fisher information, we know how
well this task could be carried out.

Estimating the quantum Fisher information can be much simpler
than carrying out the metrological task.
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Quantum metrology

Fundamental task in metrology

ϱθϱ U (θ )=exp (−iAθ )

We have to estimate θ in the dynamics

U = exp(−iAθ).



Precision of parameter estimation

Measure an operator M to get the estimate θ. The precision is

(∆θ)2 = (∆M)2

|∂θ〈M〉|2
.

〈M 〉

θ

√(ΔM )2

tanα=∂θ 〈M 〉∣θ =0

α

Δθ



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

(∆θ)2 ≥ 1
FQ[%,A]

, (∆θ)−2 ≤ FQ[%,A].

where FQ[%,A] is the quantum Fisher information.

The quantum Fisher information is

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.



Special case A = Jl

The operator A is defined as

A = Jl =
N∑

n=1

j(n)
l , l ∈ {x , y , z}.

Magnetometry with a linear interferometer
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Properties of the Fisher information

Many bounds on the quantum Fisher information can be derived from
these simple properties:

For pure states, it equals four times the variance,
F [|Ψ〉〈Ψ|,A] = 4(∆A)2

Ψ.

For mixed states, it is convex.



The quantum Fisher information vs. entanglement
For separable states

FQ[%, Jl ] ≤ N, l = x , y , z.

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

For states with at most k -particle entanglement (k is divisor of N)

FQ[%, Jl ] ≤ kN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

Macroscopic superpositions (e.g, GHZ states, Dicke states)

FQ[%, Jl ] ∝ N2,

[F. Fröwis, W. Dür, New J. Phys. 14 093039 (2012).]



Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance

FQ[%,A] = 4 min
pk ,Ψk

∑
k

pk (∆A)2
k ,

where
% =

∑
k

pk |Ψk 〉〈Ψk |.

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

Thus, it is similar to entanglement measures that are also defined
by convex roofs.



Witnessing the quantum Fisher information based
on few measurements

The bound based on w = Tr(%W ) is given as

FQ[%, Jz ] ≥ sup
r

[
rw − F̂Q (rW )

]
.

The Legendre transform is

F̂Q(W ) = sup
%

(〈W 〉% − FQ[%, Jz ]).

Due to the properties of FQ mentioned above, it can be simplified

F̂Q(W ) = sup
µ

{
λmax

[
W − 4(Jz − µ)2

]}
.

[I. Apellaniz, M. Kleinmann, O. Gühne, and G. Tóth, Phys. Rev. A 95, 032330 (2017),
Editors’ Suggestion.]



Example: bound based on fidelity

Let us bound the quantum Fisher information based on some
measurements.
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Quantum Fisher information vs. Fidelity with respect to
(a) GHZ states and (b) Dicke states for N = 4,6,12.

F max
Q = N2.

[Apellaniz et al., Phys. Rev. A 2017]

FQ = N2(1 − 2FGHZ)
2

if FGHZ > 1
2



Variance

The variance is the concave roof of the itself

(∆A)2
% = sup

{pk ,Ψk}

∑
k

pk (∆A)2
Ψk
,

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013)]

For 2× 2 covariance matrices there is always {Ψk ,pk} such that

C% = sup
{pk ,Ψk}

∑
k

pkCΨk ,

[Z. Léka and D. Petz, Prob. and Math. Stat. 33, 191 (2013)]

For 3× 3 covariance matrices, this is not always possible.
Necessary and sufficient conditions for an arbitrary dimension.
[D. Petz and D. Virosztek, Acta Sci. Math. (Szeged) 80, 681 (2014)]
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Bound based on the variance

Let us define the quantity

V (%,A) := (∆A)2 − 1
4

FQ[%,A].

It is well known that V (%,A) = 0 for pure states.

For states sufficiently pure V (%,A) is small.

For states that are far from pure, the difference can be larger.



Generalized variance

Generalized variances are defined as

varf
%(A) =

∑
ij

mf (λi , λj)|Aij |2 −
(∑

λiAii

)2
,

where f : R+ → R+ is a matrix monotone function, and
mf (a,b) = bf (b/a) is a corresponding mean.
[Petz, J. Phys. A 35, 929 (2002); Gibilisco, Hiai, and Petz, IEEE Trans. Inf.
Theory 55, 439 (2009)]

We can define a large set of generalized variances, including for
example the usual variance 〈A2〉 − 〈A〉2.

Consider fhar = 2x/(1 + x). The corresponding mean is the
harmonic mean mfhar

(a,b) = 2ab/(a + b). Direct calculations yield

varfhar
% (A) ≡ V (%,A).



Bound based on the variance, rank-2

Observation 1.—For rank-2 states %,

(∆A)2 − 1
4FQ[%,A] = 1

2 [1− Tr(%2)](σ̃1 − σ̃2)2

holds, where σ̃k are the nonzero eigenvalues of the matrix

Akl = 〈k |A|l〉.

Here |k〉 are the two eigenvectors of % with nonzero eigenvalues. Thus,
σ̃k are the eigenvalues of A on the range of %.

Note
Slin(%) = 1− Tr(%2) = 1−

∑
k

λ2
k =

∑
k 6=l

λkλl .



Bound based on the variance, arbitrary rank

Observation 2.—For states % with an arbitrary rank we have

(∆A)2 − 1
4FQ[%,A] ≤ 2Slin(%)σmax(A2),

where σmax(A2) is the largest eigenvalue of A2.

Estimate FQ:

1 Measure the variance.

2 Estimate the purity.

3 Find a lower bound on FQ.



Bound based on the variance, arbitrary rank II

Numerical verification of the bound
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Quantities Averaged over SU(d) generators

Traceless Hermitian matrices

A~n := ~AT~n,

where ~A = [A(1),A(2),A(3), ...]T are the SU(d) generators.

Average over unit vectors

avg~nf (~n) =

∫
f (~n)M(d~n)∫

M(d~n)
.

Compute average of V for operators.

It is zero only for pure states. → Similar to entropies.



Bound on the average V

Observation 3.—The average of V over traceless Hermitian matrices
with a fixed norm is given as

avg
A:A=A†,

Tr(A)=0,

Tr(A2)=2

V (%,A) =
2

d2 − 1

[
Slin(%) + H(%)− 1

]
,

where d is the dimension of the system, and

H(%) = 2
∑
k ,l

λkλl

λk + λl
= 1 + 2

∑
k 6=l

λkλl

λk + λl
.



Average quantum Fisher information

The average of the quantum Fisher information can be obtained
as

avg~nFQ[%,A~n] =
8

Ng
[d − H(ρ)].

It is maximal for pure states.



Bound based on the variance II
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Figure: The relation between the von-Neumann entropy and H(%) for d = 3
and 10.
(filled area) Physical quantum states.
(dot) Pure states.
(square) Completely mixed state.

We see that
H(%) ∼ exp[S(%)].



What if we try the linear entropy

The relation between the two seems to be less strong.



Other type of quantum Fisher information
The alternative form of the quantum Fisher information is defined
as

FQ(%; A) = 2
∑
k ,l

1
λk + λl

|Akl |2

=
∑

k

1
λk
|Akk |2 + 2

∑
k 6=l

1
λk + λl

|Akl |2.

The quantum Fisher information defined above corresponds to
estimating the parameter φ for the dynamics

%φ = %0 + φA.

The Cramér-Rao bound in this case is

(∆φ)2 ≥ 1
FQ(%; A)

.



Other type of quantum Fisher information

In contrast, FQ[%,A] corresponds to estimating the parameter θ of
the unitary evolution

%θ = exp(−iJzθ)%0 exp(+iJzθ),

as discussed in the introduction.

The relation of the two types of quantum Fisher information is
given by

FQ[%,A] = FQ(%; i[%,A]).



Other type of quantum Fisher information II
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Figure: The relation between the von-Neumann entropy S(%) and the
average F (%; A) defined in for d = 3 and 10.
(solid) Points corresponding to the states giving the minimum
(pure state mixed with white noise).
(square) Completely mixed state.



Generalized quantum Fisher information (D. Petz)

The gerealized QFI is defined as

F f
Q(%; A) =

∑
k ,l

1
mf (λk , λl)

|Akl |2, (1)

where f : R+ → R+ is a matrix monotone function, and
mf (a,b) = bf (b/a) is a corresponding mean.

Similarly, as before we can define

F f
Q[%,A] = F f

Q(%; i[%,A]).



Kubo-Mori-Bogoliubov quantum Fisher
information

Let us consider flog(x) = (x − 1)/ ln x , which corresponds to the
logarithmic mean

mflog(a,b) =
a− b

ln a− ln b
.

The corresponding genetralized quantum Fisher information is
defined as

F log
Q (%; A) =

∑
k ,l

log(λk )− log(λl)

λk − λl
|Akl |2

=
∑
k 6=l

log(λk )− log(λl)

λk − λl
|Akl |2 +

∑
k

1
λk
.



Kubo-Mori-Bogoliubov quantum Fisher
information II
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Figure: The relation between the von-Neumann entropy S(%) and the
average F log(%; A) for d = 3 and 10.
(solid) Points corresponding to the states giving the minimum
(pure state mixed with white noise).
(square) Completely mixed state.



Kubo-Mori-Bogoliubov quantum Fisher
information III

Let us calculate
F log

Q [%,A] = F log
Q (%; i[%,A]).

We obtain

F log
Q [%,A] =

∑
k ,l

[log(λk )− log(λl)](λk − λl)|Akl |2.

With this one can show that

d2

d2θ
S(%||e−iAθ%e+iAθ)|θ=0 = F log

Q [%,A],

and
avg~nF log

Q [%,A~n] = − 2
Ng

(2dS + 2
∑

k

logλk ).

We get a similar curve for the minimum.



Kubo-Mori-Bogoliubov quantum Fisher
information IV

Relation to other works in the literature.

S. Huber, R. Koenig, and A. Vershynina, Geometric inequalities
from phase space translations, arxiv:1606.08603.

They establish a quantum version of the classical isoperimetric
inequality relating the Fisher information and the entropy power of
a quantum state.

C. Rouze, N. Datta, and Y. Pautrat, Contractivity properties of a
quantum diffusion semigrou, arxiv:1607.04242.



Summary

We discussed how to find lower bounds on the quantum Fisher
information and entropies.

See:
G. Tóth,

Lower bounds on the quantum Fisher information based on the
variance and various types of entropies, arxiv:1701.07461.

THANK YOU FOR YOUR ATTENTION!

https://arxiv.org/abs/1701.07461
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