Entanglement between two spatially separated atomic modes

Entanglement th.: G. Vitagliano ${ }^{1}$, I. Apellaniz ${ }^{1}$, M. Kleinmann ${ }^{1}$, G. Tóth ${ }^{1,2,3}$,

Cold gas exp.: K. Lange ${ }^{4}$, J. Peise ${ }^{4}$, B. Lücke ${ }^{4}$, I. Kruse ${ }^{4}$, C. Klempt ${ }^{4}$
> ${ }^{1}$ Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain ${ }^{2}$ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ${ }^{3}$ Wigner Research Centre for Physics, Budapest, Hungary ${ }^{4}$ Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Why multipartite entanglement is important?

- Many experiments are aiming to create entangled states with many atoms.
- Full tomography is not possible, we still have to say something meaningful.
- Only collective quantities can be measured.
- Thus, entanglement detection seems to be a good idea ...

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Entanglement

A bipartite state is separable if it can be written as

$$
\sum_{k} p_{k} \varrho_{1}^{(\mathrm{a})} \otimes \varrho_{2}^{(\mathrm{b})}
$$

If a state is not separable then it is entangled.

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Many-particle systems for $\mathrm{j}=1 / 2$

- For spin- $\frac{1}{2}$ particles, we can measure the collective angular momentum operators:

$$
J_{l}:=\frac{1}{2} \sum_{k=1}^{N} \sigma_{l}^{(k)},
$$

where $I=x, y, z$ and $\sigma_{I}^{(k)}$ a Pauli spin matrices.

- We measure the expectation values $\left\langle J_{l}\right\rangle$.
- We can also measure the variances

$$
\left(\Delta J_{l}\right)^{2}:=\left\langle J_{l}^{2}\right\rangle-\left\langle J_{l}\right\rangle^{2} .
$$

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Dicke states

- Dicke states: eigenstates of $\vec{J}^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ and J_{z}.
- Symmetric Dicke states with $\left\langle J_{z}\right\rangle=\left\langle J_{z}^{2}\right\rangle=0$. Due to symmetry, $\left\langle\vec{J}^{2}\right\rangle$ is maximal. Explicit form:

$$
\left|D_{N}\right\rangle=\binom{N}{\frac{N}{2}}^{-\frac{1}{2}} \sum_{k} \mathcal{P}_{k}\left(|0\rangle^{\otimes \frac{N}{2}} \otimes|1\rangle^{\otimes \frac{N}{2}}\right)
$$

where \mathcal{P}_{k} denotes permutations.

- E.g., for four qubits they look like

$$
\left|D_{4}\right\rangle=\frac{1}{\sqrt{6}}(|0011\rangle+|0101\rangle+|1001\rangle+|0110\rangle+|1010\rangle+|1100\rangle)
$$

[photons: Kiesel et al., PRL 2007; Wieczorek et al., PRL 2009;
Prevedel et al., PRL 2009.]
[cold atoms: Lücke et al., Science 2011; Hamley et al., Nat. Phys. 2012.]

Dicke states are
 interesting because they ...

- ... possess strong multipartite entanglement, like GHZ states. [GT, JOSAB 2007.]
- ... are optimal for quantum metrology, similarly to GHZ states.
[Hyllus et al., PRA 2012; Lücke et al., Science 2011.] [GT, PRA 2012;
GT and Apellaniz, J. Phys. A, special issue for " 50 year of Bell's theorem", 2014.]
- ... are macroscopically entangled, like GHZ states.
[Fröwis, Dür, PRL 2011]

Collective uncertainties of Dicke states

- Dicke states

$$
\begin{aligned}
\left\langle J_{x}^{2}+J_{y}^{2}\right\rangle & =\frac{N}{2}\left(\frac{N}{2}+1\right)=\max . \\
\left\langle J_{z}^{2}\right\rangle & =0
\end{aligned}
$$

- "Pancake" like uncertainty ellipse.

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms

4 Detecting bipartite entanglement of Dicke states

- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Experiment in the group of Carsten Klempt at the University of Hannover

- Rubidium BEC, spin-1 atoms.
- Initially all atoms in state $|0\rangle$.
- Dynamics

$$
H=a_{0}^{2} a_{+1}^{\dagger} a_{-1}^{\dagger}+\left(a_{0}^{\dagger}\right)^{2} a_{+1} a_{-1}
$$

Tunneling from mode 0 to the mode +1 and -1 .

- Understanding the tunneling process

$$
|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|1,-1\rangle+|-1,1\rangle)=\text { Dicke state of } 2 \text { particles. }
$$

Experiment in the group of Carsten Klempt at the University of Hannover II

- After some time, we have a state

$$
\left|n_{0}, n_{-1}, n_{+1}\right\rangle=|N-2 n, n, n\rangle .
$$

- That is, $N-2 n$ particles remained in the 0 state, while $2 n$ particles form a symmetric Dicke state.

Experiment in the group of Carsten Klempt at the University of Hannover III

- Important: first excited spatial mode of the trap was used, not the ground state mode.
- It has two "bumps" rather than one, hence they had a split Dicke state.

[K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).]

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms

4 Detecting bipartite entanglement of Dicke states

- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Very simple entanglement criterion for singlets

- For separable states of two large spins

$$
\left[\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}+J_{\mathrm{x}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}+J_{\mathrm{y}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} \geq \frac{N}{2}
$$

hold. For singlets, the LHS is zero.

- Proof. For product states $\left|\Psi_{\mathrm{a}}\right\rangle \otimes\left|\Psi_{\mathrm{b}}\right\rangle$

$$
\sum_{m=x, y, z}\left[\Delta\left(J_{m}^{(\mathrm{a})}+J_{m}^{(\mathrm{b})}\right)\right]^{2}=\sum_{m=x, \mathrm{y}, \mathrm{z}}\left(\Delta J_{m}^{(\mathrm{a})}\right)^{2}+\sum_{m=\mathrm{x}, \mathrm{y}, \mathrm{z}}\left(\Delta J_{m}^{(\mathrm{a})}\right)^{2} \geq \frac{N_{\mathrm{a}}}{2}+\frac{N_{\mathrm{b}}}{2}
$$

holds.

- True also for separable states due to the concavity of the variance. [GT, Phys. Rev. A (2004).]

Very simple entanglement criterion for Dicke states

- For separable states of two large spins

$$
\left[\Delta\left(J_{x}^{(\mathrm{a})}-J_{\mathrm{x}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{y}^{(\mathrm{a})}-J_{y}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} \geq \frac{N}{2} .
$$

- For Dicke states, the LHS is around $\frac{N}{4}$ for large N, since

$$
\begin{aligned}
{\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} } & =0, \\
{\left[\Delta\left(J_{\mathrm{m}}^{(\mathrm{a})}+J_{\mathrm{m}}^{(\mathrm{b})}\right)\right]^{2} } & =\text { large, } \\
{\left[\Delta\left(J_{\mathrm{m}}^{(\mathrm{a})}-J_{\mathrm{m}}^{(\mathrm{b})}\right)\right]^{2} } & \approx \frac{N}{8}=\text { small }
\end{aligned}
$$

for $m=x, y$.

- Not a practical criterion since small noise makes the state undetectable, and it assumes symmetry.

Our condition: we use normalized variables

- Normalized variables

$$
\tilde{J}_{m}^{(n)}=\frac{J_{m}^{(n)} / j_{n}}{\mathcal{J}^{(n)}}
$$

where $m=x, y$ and $n=\mathrm{a}, \mathrm{b}$ (i.e., left well, right well).

- The total spin is

$$
j_{n}=\frac{N_{n}}{2}
$$

and

$$
\mathcal{J}^{(n)}=\left\langle\frac{\left(J_{\mathrm{x}}^{(n)}\right)^{2}+\left(J_{\mathrm{y}}^{(n)}\right)^{2}}{j_{n}^{2}}\right\rangle^{\frac{1}{2}}
$$

- $\mathcal{J}^{(n)} \approx 1$: close to be symmetric. In general, $\mathcal{J}^{(n)} \leq 1$.

The two-well entanglement criterion

Main result

For separable states,

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left\langle\left(\tilde{J}_{\mathrm{x}}^{-}\right)^{2}+\left(\tilde{J}_{\mathrm{y}}^{-}\right)^{2}\right\rangle\right] \geq f\left(\mathcal{J}^{(\mathrm{a})}, \mathcal{J}^{(\mathrm{b})}\right)
$$

holds, where $f(x, y)=\frac{\left(x^{2}+y^{2}-1\right)^{2}}{x y}$.
Any state violating the inequality is entangled.

Here we define

$$
\begin{aligned}
& J_{\mathrm{z}}^{+}=J_{\mathrm{z}}^{(a)}+J_{\mathrm{z}}^{(b)}, \\
& \tilde{J}_{m}^{-}=\tilde{J}_{m}^{(a)}-\tilde{J}_{m}^{(b)}
\end{aligned}
$$

Correlations for Dicke states

- For the Dicke state

$$
\begin{aligned}
\left(\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}-J_{\mathrm{x}}^{(\mathrm{b})}\right)\right)^{2} & \approx 0 \\
\left(\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}-J_{\mathrm{y}}^{(\mathrm{b})}\right)\right)^{2} & \approx 0 \\
\left(\Delta J_{\mathrm{z}}\right)^{2} & =0
\end{aligned}
$$

- Measurement results on well "b" can be predicted from measurements on "a"

$$
\begin{array}{lll}
J_{\mathrm{x}}^{(\mathrm{b})} \approx J_{\mathrm{x}}^{(\mathrm{a})}, & \leftarrow \text { correlated } \\
J_{\mathrm{y}}^{(\mathrm{b})} \approx J_{\mathrm{y}}^{(\mathrm{a})}, & \leftarrow \text { anticorrelated } \\
J_{\mathrm{z}}^{(\mathrm{b})}=-J_{\mathrm{z}}^{(\mathrm{a})}, & \leftarrow \text { anticorrelated }
\end{array}
$$

Outline

(1) Motivation

- Why entanglement is important?
(2) How to detect entanglement in a large ensemble?
- Entanglement
- Collective measurements
(3) Dicke states
- Dicke state realized with two-state atoms

4 Detecting bipartite entanglement of Dicke states

- Dicke state in a BEC
- Entanglement criterion
- Experimental results

Correlations for Dicke states - experimental results

Here, $J_{\perp}^{(n)}=\cos \alpha J_{\mathrm{x}}^{(n)}+\sin \alpha J_{\mathrm{y}}^{(n)}$.

Violation of the criterion: entanglement is detected

For separable states,

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left\langle\left(\tilde{J}_{\mathrm{x}}^{-}\right)^{2}+\left(\tilde{J}_{\mathrm{y}}^{-}\right)^{2}\right\rangle\right] \geq f\left(\mathcal{J}^{(\mathrm{a})}, \mathcal{J}^{(\mathrm{b})}\right)
$$

holds, where $f(x, y)=\frac{\left(x^{2}+y^{2}-1\right)^{2}}{x y}$.

Collaborators on entanglement conditions for Dicke states

C. Klempt, I. Kruse, J. Peise, K. Lange, B. Lücke

Hannover

M. Kleinmann

Summary

- Detection of bipartite entanglement close to Dicke states.
K. Lange, J. Peise, B. Lücke, I. Kruse,
G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt,

Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).

THANK YOU FOR YOUR ATTENTION! FOR TRANSPARENCIES, PLEASE SEE www.gtoth.eu

Appendix

Proof

Product states. For states of the form $\left|\psi^{(\mathrm{a})}\right\rangle \otimes\left|\psi^{(\mathrm{b})}\right\rangle$.

$$
\begin{aligned}
& {\left[\left(\Delta J_{z}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left(\Delta \tilde{J}_{x}^{-}\right)^{2}+\left(\Delta \tilde{J}_{y}^{-}\right)^{2}\right]} \\
& \quad=\left[\left(\mathcal{U}^{(\mathrm{a})}+\frac{1}{4}\right)+\left(\mathcal{U}^{(\mathrm{b})}+\frac{1}{4}\right)\right] \cdot\left(\mathcal{V}^{(\mathrm{a})}+\mathcal{V}^{(\mathrm{b})}\right) \\
& \quad \geq 4 \sqrt{\left(\mathcal{U}^{(\mathrm{a})}+\frac{1}{4}\right)\left(\mathcal{U}^{(\mathrm{b})}+\frac{1}{4}\right) \mathcal{V}^{(\mathrm{a})} \mathcal{V}^{(\mathrm{b})}} \geq 1
\end{aligned}
$$

holds, where we used the notation

$$
\mathcal{U}^{(n)}=\left(\Delta J_{z}^{(n)}\right)^{2}, \quad \mathcal{V}^{(n)}=\left(\Delta \tilde{J}_{x}^{(n)}\right)^{2}+\left(\Delta \tilde{J}_{y}^{(n)}\right)^{2}
$$

for $n=\mathrm{a}, \mathrm{b}$. We used that
(i) $\left[\Delta\left(A^{(\mathrm{a})}+A^{(\mathrm{b})}\right)\right]^{2}=\left(\Delta A^{(\mathrm{a})}\right)^{2}+\left(\Delta A^{(\mathrm{b})}\right)^{2}$,
(ii) Inequality between the arithmetic and the geometric mean,
(iii) Our number-phase like uncertainty.

Proof II

Using $\left\langle\left(\tilde{J}_{\mathrm{x}}^{(n)}\right)^{2}\right\rangle+\left\langle\left(\tilde{J}_{\mathrm{y}}^{(n)}\right)^{2}\right\rangle=1$ for $n=\mathrm{a}, \mathrm{b}$, our inequality for product states yields

$$
2\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right](\mathcal{S}-\mathcal{C}) \geq \mathcal{S},
$$

where correlations between the two subsystems are characterized by

$$
C=\left\langle\frac{J_{\mathrm{x}}^{(\mathrm{a})} J_{\mathrm{x}}^{(\mathrm{b})}+J_{\mathrm{y}}^{(\mathrm{a})} J_{\mathrm{y}}^{(\mathrm{b})}}{j_{\mathrm{a}} j_{\mathrm{b}}}\right\rangle,
$$

and

$$
\left.\mathcal{S}=\mathcal{J}^{(\mathrm{a})} \mathcal{J}^{(\mathrm{b}}\right) .
$$

\mathcal{C} can be negative and $|\mathcal{C}| \leq \mathcal{S}$.
The normalization with the total spin will make it easier to adapt our criterion to experiments with a varying particle number in the ensembles.

Proof III

Separable states. We now consider a mixed separable state of the form $\varrho_{\text {sep }}=\sum_{k} p_{k}\left|\Psi_{k}^{(\mathrm{a})}\right\rangle \otimes\left|\Psi_{k}^{(\mathrm{b})}\right\rangle$. For such states, we can write the following series of inequalities

$$
\begin{gathered}
2\left[\left(\Delta J_{z}^{+}\right)^{2}+\frac{1}{2}\right](\mathcal{S}-C) \geq 2\left[\sum_{k} p_{k}\left(\Delta J_{z}\right)^{2}{ }_{k}+\frac{1}{2}\right]\left[\sum_{k} p_{k}\left(\mathcal{S}_{k}-C_{k}\right)\right] \\
\geq 2\left[\sum_{k} p_{k} \sqrt{\left(\left(\Delta J_{z}\right)^{2}{ }_{k}+\frac{1}{2}\right)\left(\mathcal{S}_{k}-C_{k}\right)}\right]^{2} \geq\left(\sum_{k} p_{k} \sqrt{S_{k}}\right)^{2},
\end{gathered}
$$

Subscript k refers to the $k^{\text {th }}$ sub-ensemble $\left|\Psi_{k}^{(\mathrm{a})}\right\rangle \otimes\left|\Psi_{k}^{(\mathrm{b})}\right\rangle$.
(i) The first inequality in is due to $\left(\Delta J_{Z}^{+}\right)^{2}$ and \mathcal{S} being concave in the quantum state.
(ii) The second inequality is based on the Cauchy-Schwarz inequality. (iii) The third inequality is the application of the previous inequality for all sub-ensembles.

Proof IV

Next, we find a lower bound on the RHS of the last inequality based on the knowledge of $\mathcal{J}^{(\mathrm{a})}$ and $\mathcal{J}^{(\mathrm{b})}$. We find that

$$
\sum_{k} p_{k}\left(\mathcal{J}_{k}^{(\mathrm{a})} \mathcal{J}_{k}^{(\mathrm{b})}\right)^{1 / 2} \geq\left(\mathcal{J}^{(\mathrm{a})}\right)^{2}+\left(\mathcal{J}^{(\mathrm{b})}\right)^{2}-1
$$

which is based on noting $(x y)^{1 / 4} \geq x+y-1$ for $0 \leq x, y \leq 1$.
Using this to bound the RHS from below and dividing by \mathcal{S} we obtain

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[2-2 \frac{C}{\mathcal{S}}\right] \geq \frac{\left[\left(\mathcal{J}^{(\mathrm{a})}\right)^{2}+\left(\mathcal{J}^{(\mathrm{b})}\right)^{2}-1\right]^{2}}{\mathcal{S}}
$$

