Detecting metrologically useful multiparticle entanglement with few measurements: recent results

G. Tóth^{1,2,3} in collaboration with:

Theory: G. Vitagliano¹, I. Apellaniz¹, M. Kleinmann¹, I.L. Egusquiza¹, O. Gühne⁴

Cold gas exp.: B. Lücke⁵, J. Peise⁵, J. Arlt⁵, L. Santos⁵, C. Klempt⁵

¹Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ³Wigner Research Centre for Physics, Budapest, Hungary ⁴University of Siegen, Germany ⁵Leibniz Universität Hannover, Germany

Quantum Metrology Workshop, Hannover, 10 Feb. 2017

- Full tomography is not possible, we still have to say something meaningful.
- Claiming "entanglement" is not sufficient for many particles.
- Many experiments are aiming to create entangled states with many atoms.
- Only collective quantities can be measured.

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

A state is (fully) separable if it can be written as

$$\sum_{k} p_{k} \varrho_{k}^{(1)} \otimes \varrho_{k}^{(2)} \otimes ... \otimes \varrho_{k}^{(N)}.$$

If a state is not separable then it is entangled (Werner, 1989).

- Separable states remain separable under local operations. ("Local operations and classical communication")
- Separable states can be cerated without real quantum interaction. They are the "boring" states.

A pure state is *k*-producible if it can be written as

 $|\Phi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle \otimes |\Phi_3\rangle \otimes |\Phi_4\rangle$

where $|\Phi_l\rangle$ are states of at most *k* qubits.

A mixed state is *k*-producible, if it is a mixture of *k*-producible pure states. [e.g., O. Gühne and GT, New J. Phys 2005.]

 If a state is not k-producible, then it is at least (k + 1)-particle entangled.

two-producible

three-producible

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Many-particle systems for j=1/2

 For spin-¹/₂ particles, we can measure the collective angular momentum operators:

$$J_l := \frac{1}{2} \sum_{k=1}^N \sigma_l^{(k)},$$

where I = x, y, z and $\sigma_{I}^{(k)}$ a Pauli spin matrices.

We can also measure the variances

$$(\Delta J_l)^2 := \langle J_l^2 \rangle - \langle J_l \rangle^2.$$

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

The standard spin-squeezing criterion

The spin squeezing criteria for entanglement detection is

$$\xi_{\rm s}^2 = N rac{(\Delta J_z)^2}{\langle J_X
angle^2 + \langle J_Y
angle^2}.$$

[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

- If $\xi_s^2 < 1$ then the state is entangled.
- States detected are like this:

Outline

Introduction and motivation

2 Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Generalized spin squeezing criteria for $j = \frac{1}{2}$

Let us assume that for a system we know only

$$ec{J} := (\langle J_x
angle, \langle J_y
angle, \langle J_z
angle), \ ec{K} := (\langle J_x^2
angle, \langle J_y^2
angle, \langle J_z^2
angle).$$

• Then any state violating the following inequalities is entangled:

$$\begin{aligned} \langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle &\leq \frac{N(N+2)}{4}, \\ (\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 &\geq \frac{N}{2}, \\ \langle J_k^2 \rangle + \langle J_l^2 \rangle &\leq (N-1)(\Delta J_m)^2 + \frac{N}{2}, \end{aligned}$$
(singlet)
$$(N-1) \left[(\Delta J_k)^2 + (\Delta J_l)^2 \right] &\geq \langle J_m^2 \rangle + \frac{N(N-2)}{4}, \end{aligned}$$

where k, l, m take all the possible permutations of x, y, z.

[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007)] [Singlets: Behbood *et al.*, Phys. Rev. Lett. 2014; GT, Mitchell, New. J. Phys. 2010.]

Generalized spin squeezing criteria for $j = \frac{1}{2}$ II

• Separable states are in the polytope

• We set
$$\langle J_l \rangle = 0$$
 for $l = x, y, z$

Spin squeezing criteria – Two-particle correlations

All quantities needed can be obtained with two-particle correlations

$$\langle J_l \rangle = N \langle j_l \otimes \mathbb{1} \rangle_{\varrho_{2p}}; \quad \langle J_l^2 \rangle = \frac{N}{4} + N(N-1) \langle j_l \otimes j_l \rangle_{\varrho_{2p}}.$$

Here, the average 2-particle density matrix is defined as

$$\varrho_{2p} = \frac{1}{N(N-1)} \sum_{n \neq m} \varrho_{mn}.$$

- Still, we can detect states with a separable ϱ_{2p} .
- Still, as we will see, we can even detect multipartite entanglement!

Outline

Introduction and motivation

2 Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

4 Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Dicke states

• Symmetric Dicke states with $\langle J_z \rangle = 0$ (simply "Dicke states" in the following) are defined as

$$|D_N\rangle = {\binom{N}{\frac{N}{2}}}^{-\frac{1}{2}} \sum_k \mathcal{P}_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}}\right).$$

• E.g., for four qubits they look like

$$|D_4\rangle = rac{1}{\sqrt{6}} \left(|0011\rangle + |0101\rangle + |1001\rangle + |0110\rangle + |1010\rangle + |1100\rangle \right).$$

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;

Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007; Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009]

[cold atoms: Lücke *et al.*, Science 2011; Hamley *et al.*, Science 2011; C. Gross *et al.*, Nature 2011]

• ... possess strong multipartite entanglement, like GHZ states. [GT, JOSAB 2007.]

• ... are optimal for quantum metrology, similarly to GHZ states. [Hyllus *et al.*, PRA 2012; Lücke *et al.*, Science 2011; GT, PRA 2012; GT and Apellaniz, JPHYSA, 2014.]

• ... are macroscopically entangled, like GHZ states.

[Fröwis, Dür, PRL 2011]

Spin Squeezing Inequality for Dicke states

Let us rewrite the third inequality

$$\langle J_k^2 \rangle + \langle J_l^2 \rangle - \frac{N}{2} \leq (N-1)(\Delta J_m)^2.$$

It detects states close to Dicke states since

$$\langle J_x^2 + J_y^2 \rangle = \frac{N}{2} \left(\frac{N}{2} + 1 \right) = \text{max.},$$

 $\langle J_z^2 \rangle = 0.$

Outline

Introduction and motivation

2 Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

Entanglement detection close to Dicke states

Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Multipartite entanglement in spin squeezing

• We consider pure *k*-producible states of the form

$$|\Psi\rangle = \otimes_{I=1}^{M} |\psi_I\rangle,$$

where $|\psi_l\rangle$ is the state of at most *k* qubits.

Extreme spin squeezing

The spin-squeezing criterion for k-producible states is

$$(\Delta J_z)^2 \ge J_{\max} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2}}{J_{\max}} \right),$$

where $J_{\text{max}} = \frac{N}{2}$ and we use the definition

$$F_j(X) := \frac{1}{j} \min_{\frac{\langle j_X \rangle}{j} = X} (\Delta j_Z)^2.$$

[Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test: C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler,

Multipartite entanglement around Dicke states

Measure the same quantities as before

$$(\Delta J_z)^2$$

and

$$\langle J_x^2 + J_y^2 \rangle.$$

- In contrast, for the original spin-squeezing criterion we measured $(\Delta J_z)^2$ and $\langle J_x \rangle^2 + \langle J_y \rangle^2$.
- Pioneering work: linear condition of Luming Duan, Phys. Rev. Lett. (2011). See also Zhang, Duan, New. J. Phys. (2014).

Multipartite entanglement

• Sørensen-Mølmer condition for *k*-producible states:

$$(\Delta J_z)^2 \ge J_{\max} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2}}{J_{\max}} \right)$$

Combine it with

$$\langle J_x^2 + J_y^2 \rangle \leq J_{\max}(\frac{k}{2} + 1) + \langle J_x \rangle^2 + \langle J_y \rangle^2,$$

which is true for pure *k*-producible states. (Remember, $J_{max} = \frac{N}{2}$.)

Condition for entanglement detection around Dicke states

$$(\Delta J_z)^2 \ge J_{\max} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x^2 + J_y^2 \rangle - J_{\max}(\frac{k}{2} + 1)}}{J_{\max}} \right)$$

Due to convexity properties of the expression, this is also valid to mixed separable states. [Lücke *et. al*, PRL 2014.]

Concrete example

- N = 8000 particles, and $J_{eff} = J_x^2 + J_y^2$.
- Red curve: boundary for 28-particle entanglement.
- Blue dashed line: linear condition given in [L.-M. Duan, Phys. Rev. Lett. 107, 180502 (2011).]
- Red dashed line: tangent of our curve.

Comparison of criteria

spin squeezing, N = 1000 spin- $\frac{1}{2}$ particles, 10 particles decohered (solid) Our criterion. (dashed) the Sørensen-Mølmer criterion.

[Vitagliano, Apellaniz, Kleinmann, Lücke, Klempt, NJP 19, 013027 (2017).]

Experimental results

 Bose-Einstein condensate, 8000 particles. 28-particle entanglement is detected.

Giuseppe Vitagliano

[Lücke et al., Phys. Rev. Lett. 112, 155304 (2014)]

- Dicke states of particles with a spin larger than 1/2 have been created.
- See, for example, T. M. Hoang, M. Anquez, M. J. Boguslawski, H. M. Bharath, B. A. Robbins, and M. S. Chapman, arXiv:1512.06766 (2015).

[Vitagliano et al., NJP 2017.]

Note also alternative methods for entanglement detection for large spins.

[G. Vitagliano et al., Phys. Rev. A 89, 032307 (2014); G. Vitagliano et al., Phys. Rev. Lett. 107, 240502 (2011).]

Criterion for any *j*

• Sørensen-Mølmer condition for k-producible states with J = kj

$$(\Delta J_z)^2 \ge J_{\max} F_J \left(\frac{\sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2}}{J_{\max}} \right)$$

Combine it with

$$\frac{\sqrt{\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}}}{Nj}\geq\sqrt{\frac{\left\langle J_{y}^{2}+J_{z}^{2}\right\rangle -Nj\left(kj+1\right)}{N(N-k)j^{2}}}$$

which is true for pure *k*-producible states. (Remember, $J_{max} = Nj$.)

Condition for entanglement detection around Dicke states

$$(\Delta J_x)^2 \ge N j F_J \left(\sqrt{\frac{\left\langle J_y^2 + J_z^2 \right\rangle - N j (kj+1)}{N(N-k) j^2}} \right)$$

[Vitagliano et. al, NJP 2017.]

Spin squeezing parameters

 The condition based on the tangent could be obtained with perturbation theory as

$$\xi^2 := (kj+1) \frac{2(N-k)j(\Delta J_x)^2}{\langle J_y^2 + J_z^2 \rangle - Nj(kj+1)} \ge 1.$$

• Similar condition for spin squeezing is

$$\xi_{\mathrm{SM}}^2 := (kj+1) \frac{2Nj(\Delta J_X)^2}{\left\langle J_Y \right\rangle^2 + \left\langle J_Z \right\rangle^2} \ge 1.$$

[Vitagliano, Apellaniz, Kleinmann, Lücke, Klempt, Tóth, NJP 19, 013027 (2017).]

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Quantum metrology

Fundamental task in metrology

• We have to estimate θ in the dynamics

$$U = \exp(-iA\theta).$$

Precision of parameter estimation

• Measure an operator M to get the estimate θ . The precision is

Cramér-Rao bound on the precision of parameter estimation

$$(\Delta \theta)^2 \ge \frac{1}{F_Q[\varrho, A]}, \qquad (\Delta \theta)^{-2} \le F_Q[\varrho, A].$$

where $F_Q[\varrho, A]$ is the quantum Fisher information.

• The quantum Fisher information is

$$F_{Q}[\varrho, A] = 2 \sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|A|l\rangle|^{2},$$

where $\rho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

The quantum Fisher information vs. entanglement

• For separable states

$$F_Q[\varrho, J_l] \leq N.$$

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010)]

• For states with at most k-particle entanglement (k is divisor of N)

 $F_Q[\varrho, J_l] \leq kN.$

[P. Hyllus *et al.*, Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012)].

 \Rightarrow Talk of Manuel Gessner about how to improve these conditions.

Macroscopic superpositions (e.g, GHZ states, Dicke states)

 $F_Q[\varrho, J_I] \propto N^2$

[F. Fröwis, W. Dür, New J. Phys. 14 093039 (2012).]

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Metrology with Dicke states

For Dicke state

$$\langle J_l \rangle = 0, l = x, y, z, \quad \langle J_z^2 \rangle = 0, \quad \langle J_x^2 \rangle = \langle J_y^2 \rangle = \text{large.}$$

Linear metrology

$$U=\exp(-iJ_y\theta).$$

• Measure $\langle J_z^2 \rangle$ to estimate θ . (We cannot measure first moments, since they are zero.)

Metrology with Dicke states II

We measure $\langle J_z^2 \rangle$ to estimate θ . The precision is given by the error-propagation formula

$$(\Delta heta)^2 = rac{(\Delta J_z^2)^2}{|\partial_ heta \langle J_z^2
angle|^2}.$$

• Precision as a function of θ for some noisy Dicke state

Formula for maximal precision

Parameter value for the maximum

$$\tan^2 \theta_{\rm opt} = \sqrt{\frac{(\Delta J_z^2)^2}{(\Delta J_x^2)^2}}.$$

Consistency check: for the noiseless Dicke state we have $(\Delta J_z^2)^2 = 0$, hence $\theta_{opt} = 0$.

lagoba Apellaniz

[I. Apellaniz, B. Lücke, J. Peise, C. Klempt, GT, New J. Phys. 17, 083027 (2015).]

Formula for maximal precision II

Maximal precision with a closed formula

$$(\Delta\theta)_{\rm opt}^2 = \frac{2\sqrt{(\Delta J_z^2)^2(\Delta J_x^2)^2} + 4\langle J_x^2 \rangle - 3\langle J_y^2 \rangle - 2\langle J_z^2 \rangle (1 + \langle J_x^2 \rangle) + 6\langle J_z J_x^2 J_z \rangle}{4(\langle J_x^2 \rangle - \langle J_z^2 \rangle)^2}.$$

- Given in terms of collective observables, like spin-squeezing criteria.
- Metrological usefulness can be verified without carrying out the metrological task.
- [I. Apellaniz, B. Lücke, J. Peise, C. Klempt, GT, New J. Phys. 17, 083027 (2015).]

Experimental test of our formula

• Trying the bound for the experimental data for N = 7900 particles

$$\begin{array}{ll} \langle J_z^2 \rangle = 112 \pm 31, & \langle J_z^4 \rangle = 40 \times 10^3 \pm 22 \times 10^3, \\ \langle J_x^2 \rangle = 6 \times 10^6 \pm 0.6 \times 10^6, & \langle J_x^4 \rangle = 6.2 \times 10^{13} \pm 0.8 \times 10^{13} \end{array}$$

Hence, we obtain

$$\frac{(\Delta\theta)_{\rm opt}^{-2}}{N} \ge 3.7 \pm 1.5.$$

• Remember, for states for at most *k*-particle entanglement we have

$$(\Delta \theta)^{-2} \leq F_Q[\varrho, J_l] \leq kN.$$

 Thus, four-particle entanglement is detected for this particular measurement.

Outline

Introduction and motivation

Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j = \frac{1}{2}$

Spin squeezing for Dicke states

- Entanglement detection close to Dicke states
- Detection of multipartite entanglement close to Dicke states

Detecting metrologically useful entanglement

- Basics of quantum metrology
- Metrology with measuring $\langle J_z^2 \rangle$
- Metrology with measuring any operator

Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance

$$F_Q[\varrho, A] = 4 \min_{p_k, \Psi_k} \sum_k p_k (\Delta A)^2_k,$$

where

$$\varrho = \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}|.$$

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013); GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

 Thus, it is similar to entanglement measures that are also defined by convex roofs.

Measure the quantum Fisher information

- We would like to measure the quantum Fisher information.
- For systems in thermal equilibrium, there are methods, e.g., Hauke et al., Nat. Phys. 12, 778 (2016).

$$F_Q(T) = \frac{4}{\pi} \int_0^\infty \mathrm{d}\omega \tanh\left(\frac{\omega}{2T}\right) \chi''(\omega, T)$$

• This method needs a lot of measurements.

• We have systems not in thermal equilibrium, and want to measure few operators.

Legendre transform

Optimal linear lower bound on a convex function g(ρ) based on an operator expectation value w = ⟨W⟩_ρ = Tr(Wρ)

 $g(\varrho) \ge rw - const.,$

where $w = \text{Tr}(\varrho W)$.

- For every *r* there is a "*const*." that makes the relation an optimal linear lower bound.
- How large is "const."? It can be obtained as

$$g(\varrho) \geq \mathcal{B}(w) := rw - \hat{g}(rW),$$

where \hat{g} is the Legendre transform

$$\hat{g}(W) = \sup_{arrho} [\langle W
angle_{arrho} - g(arrho)].$$

[O. Gühne, M. Reimpell, and R. F. Werner, PRL 98, 110502 (2007); J. Eisert, F. G. S. L. Brandao, and K. M. R. Audenaert, NJP 9, 46 (2007).]

Legendre transform II

• Tight lower bound can be obtained if we optimize over *r* as $g(\varrho) \ge \mathcal{B}(w) := \sup_{r} [rw - \hat{g}(rW)],$

where again $w = \text{Tr}(\rho W)$.

• The quantum Fisher information is given as a convex roof. Enough to carry out an optimization over pure states

$$\hat{g}(W) = \sup_{\Psi} [\langle W \rangle_{\Psi} - g(\Psi)].$$

• For our case, the Legendre transform is

$$\hat{\mathcal{F}}_{\mathrm{Q}}(W) = \sup_{\Psi} [\langle W - 4 J_l^2 \rangle_{\Psi} + 4 \langle J_l \rangle_{\Psi}^2].$$

• With further simplifications, an optimization over a single real variable is needed

$$\hat{\mathcal{F}}_{Q}(W) = \sup_{\mu} \left\{ \lambda_{\max} \left[W - 4(J_{I} - \mu)^{2} \right] \right\}.$$

Witnessing the quantum Fisher information based on the fidelity

 Let us bound the quantum Fisher information based on some measurements. First, consider small systems.
 [See also Augusiak et al., 1506.08837.]

Quantum Fisher information vs. Fidelity with respect to (a) GHZ states and (b) Dicke states for N = 4, 6, 12.

[Apellaniz et al., arXiv:1511.05203.]

The GHZ state case

• A similar relation for the Fisher information is for metrology with GHZ states

$$F(\theta) = \frac{V^2 N^2 \sin^2 N\theta}{1 - V^2 \cos^2 N\theta},$$

where the visibility is defined

$$V = (1 - 2Fidelity)^2$$
 for Fidelity $\ge 1/2$.

The maximum is

$$F_{\rm max} = V^2 N^2.$$

 Note that this is an equality, rather than an inequality since the noise considered is

$$\varrho_{\text{noise}} = \frac{1}{2} (|000..00\rangle\langle 000..00| + |111..11\rangle\langle 111..11|).$$

[L. Pezze, Y. Li, W. Li, and A. Smerzi, PNAS 113, 11459 (2016).]

Bounding the qFi based on collective measurements

Bound for the quantum Fisher information for spin squeezed states (Pezze-Smerzi bound)

$$\mathsf{F}[\varrho, J_{\mathcal{Y}}] \geq \frac{\langle J_{\mathcal{Z}} \rangle^2}{(\Delta J_{\mathcal{X}})^2}.$$

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009).]

Bounding the qFi based on collective measurements II

 Optimal bound for the quantum Fisher information *F_Q[ρ, J_y*] for spin squeezing for *N* = 4 particles

P=fully polarized state, D=Dicke state, C=completely mixed state, M=mixture of $|00..000\rangle_x$ and $|11..111\rangle_x$

[Apellaniz, Kleinman, Gühne, GT, arXiv:1511.05203.]

Bounding the qFi based on collective measurements III

 Optimal bound for the quantum Fisher information *F_Q[ρ, J_y*] for spin squeezing for *N* = 4 particles

On the bottom part of the figure ($(\Delta J_x)^2 < 1$) the bound is very close to the Pezze-Smerzi bound!

[Apellaniz, Kleinman, Gühne, GT, arXiv:1511.05203.]

Bounding the qFi based on collective measurements IV

• The bound can be obtained if additional expectation value, i.e., $\langle J_x^2 \rangle$ is measured, or we assume symmetry:

[Apellaniz, Kleinman, Gühne, GT, arXiv:1511.05203.]

Spin squeezing experiment

• Experiment with N = 2300 atoms,

$$\xi_s^2 = -8.2$$
dB $= 10^{-8.2/10} = 0.1514$.

[C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nature 464, 1165 (2010).]

We choose

$$\langle J_z \rangle = \alpha \frac{N}{2},$$

with $\alpha = 0.85$. (Almost fully polarized.)

• The Pezze-Smerzi bound is:

$$\frac{\mathcal{F}_Q[\varrho_N, J_y]}{N} \geq \frac{1}{\xi_s^2} = 6.605,$$

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009).]

Spin squeezing experiment

Solution starting with small systems, using

$$\langle J_z
angle = rac{N'}{2} lpha, \ (\Delta J_x)^2 = \xi_s^2 rac{N'}{4} lpha^2.$$

We get 6.605!!

Proof that the formula is optimal, and that our method works.

New bounds on the quantum Fisher information

• Lower bound on the quantum Fisher information

$$(\Delta J_l)^2 - \frac{1}{4}F_Q[\varrho, J_l] \leq \frac{N^2}{2}[1 - \operatorname{Tr}(\varrho^2)].$$

Lower bound on the average quantum Fisher information

$$\sum_{k} \left\{ (\Delta A_k)^2 - \frac{1}{4} F_Q[\varrho, A_k] \right\} = 2 \left[S_{\text{lin}}(\varrho) + H(\varrho) - 1 \right].$$

where A_k are SU(*d*) generators and

$$H(\varrho) = 2\sum_{k,l} \frac{\lambda_k \lambda_l}{\lambda_k + \lambda_l} = 1 + 2\sum_{k \neq l} \frac{\lambda_k \lambda_l}{\lambda_k + \lambda_l}$$

[G. Tóth, arXiv:1701.07461.]

W. Ertmer, I. Geisel, J. Peise, S. Coleman

G. Vitagliano

I. Apellaniz

L. Santos

M. Kleinmann

I.L. Egusquiza

O. Gühne

Hannover

Bilbao (G.T.)

Summary

 Detection of multipartite entanglement and metrological usefulness close to Dicke states, by measuring collective quantities only.

Lücke, Peise, Vitagliano, Arlt, Santos, GT, Klempt, PRL 112, 155304 (2014); Vitagliano, Apellaniz, Kleinmann, Lücke, Klempt, GT, NJP 19, 013027 (2017); Apellaniz, Lücke, Peise, Klempt, GT, NJP 17, 083027 (2015); Apellaniz, Kleinmann, Gühne, Tóth, arxiv: arXiv:1511.05203. THANK YOU FOR YOUR ATTENTION!

FOR TRANSPARENCIES, PLEASE SEE www.gtoth.eu.

