Lower bounds on the quantum Fisher information based on the variance and various types of entropies

G. Tóth ${ }^{1,2,3}$

${ }^{1}$ Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
${ }^{2}$ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ${ }^{3}$ Wigner Research Centre for Physics, Budapest, Hungary

BME, Budapest

14 June 2017

Outline

(1) Motivation

- Why is the quantum Fisher information important?
(2) Bacground
- Quantum Fisher information
- Recent findings on the quantum Fisher information
(3) Results
- Bounding the quantum Fisher information based on the variance

Why is the quantum Fisher information important?

- Many experiments are aiming to carry out a metrological task.
- If we can estimate the quantum Fisher information, we know how well this task could be carried out.
- Estimating the quantum Fisher information can be much simpler than carrying out the metrological task.

Outline

(1) Motivation

- Why is the quantum Fisher information important?
(2) Bacground
- Quantum Fisher information
- Recent findings on the quantum Fisher information
(3) Results
- Bounding the quantum Fisher information based on the variance

Quantum metrology

- Fundamental task in metrology

- We have to estimate θ in the dynamics

$$
U=\exp (-i A \theta)
$$

Precision of parameter estimation

- Measure an operator M to get the estimate θ. The precision is

$$
(\Delta \theta)^{2}=\frac{(\Delta M)^{2}}{\left|\partial_{\theta}\langle M\rangle\right|^{2}}
$$

The quantum Fisher information

- Cramér-Rao bound on the precision of parameter estimation

$$
(\Delta \theta)^{2} \geq \frac{1}{F_{Q}[\varrho, A]}, \quad(\Delta \theta)^{-2} \leq F_{Q}[\varrho, A]
$$

where $F_{Q}[\varrho, A]$ is the quantum Fisher information.

- The quantum Fisher information is

$$
\left.F_{Q}[\varrho, A]=2 \sum_{k, l} \frac{\left(\lambda_{k}-\lambda_{l}\right)^{2}}{\lambda_{k}+\lambda_{l}}|\langle k| A| I\right\rangle\left.\right|^{2},
$$

where $\varrho=\sum_{k} \lambda_{k}|k\rangle\langle k|$.

Special case $A=J_{l}$

- The operator A is defined as

$$
A=J_{l}=\sum_{n=1}^{N} j_{l}^{(n)}, \quad l \in\{x, y, z\}
$$

- Magnetometry with a linear interferometer

Outline

(1) Motivation

- Why is the quantum Fisher information important?
(2) Bacground
- Quantum Fisher information
- Recent findings on the quantum Fisher information
(3) Results
- Bounding the quantum Fisher information based on the variance

Properties of the Fisher information

Many bounds on the quantum Fisher information can be derived from these simple properties:

- For pure states, it equals four times the variance, $F[|\Psi\rangle\langle\Psi|, A]=4(\Delta A)^{2}{ }_{\psi}$.
- For mixed states, it is convex.

The quantum Fisher information vs. entanglement

- For separable states

$$
F_{Q}\left[\varrho, J_{l}\right] \leq N, \quad I=x, y, z
$$

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010)]

- For states with at most k-particle entanglement (k is divisor of N)

$$
F_{Q}\left[\varrho, J_{l}\right] \leq k N
$$

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012)].

- Macroscopic superpositions (e.g, GHZ states, Dicke states)

$$
F_{Q}\left[\varrho, J_{l}\right] \propto N^{2}
$$

[F. Fröwis, W. Dür, New J. Phys. 14093039 (2012).]

Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance

$$
F_{Q}[\varrho, A]=4 \min _{p_{k}, \psi_{k}} \sum_{k} p_{k}(\Delta A)^{2}{ }_{k},
$$

where

$$
\varrho=\sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| .
$$

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

- Thus, it is similar to entanglement measures that are also defined by convex roofs.

Witnessing the quantum Fisher information based on few measuements

- The bound based on $w=\operatorname{Tr}(\varrho W)$ is given as

$$
F_{Q}\left[\varrho, J_{z}\right] \geq \sup _{r}\left[r w-\hat{\mathcal{F}}_{\mathrm{Q}}(r W)\right] .
$$

- The Legendre transform is

$$
\hat{\mathcal{F}}_{\mathrm{Q}}(W)=\sup _{\varrho}\left(\langle W\rangle_{\varrho}-F_{Q}\left[\varrho, J_{Z}\right]\right)
$$

Due to the properties of F_{Q} mentioned above, it can be simplified

$$
\hat{\mathcal{F}}_{\mathrm{Q}}(W)=\sup _{\mu}\left\{\lambda_{\max }\left[W-4\left(J_{z}-\mu\right)^{2}\right]\right\}
$$

[I. Apellaniz, M. Kleinmann, O. Gühne, and G. Tóth, Phys. Rev. A 95, 032330 (2017), Editors' Suggestion.]

Example: bound based on fidelity

- Let us bound the quantum Fisher information based on some measurements.

Quantum Fisher information vs. Fidelity with respect to (a) GHZ states and (b) Dicke states for $N=4,6,12$.
[Apellaniz et al., Phys. Rev. A 2017]

Variance

- The variance is the concave roof of the itself

$$
(\Delta A)_{\varrho}^{2}=\sup _{\left\{p_{k}, \Psi_{k}\right\}} \sum_{k} p_{k}(\Delta A)_{\Psi_{k}}^{2}
$$

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013)]

- For 2×2 covariance matrices there is always $\left\{\Psi_{k}, p_{k}\right\}$ such that

$$
C_{\varrho}=\sup _{\left\{p_{k}, \Psi_{k}\right\}} \sum_{k} p_{k} C_{\Psi_{k}}
$$

[Z. Léka and D. Petz, Prob. and Math. Stat. 33, 191 (2013)]

- For 3×3 covariance matrices, this is not always possible. Necessary and sufficient conditions for an arbitrary dimension.
[D. Petz and D. Virosztek, Acta Sci. Math. (Szeged) 80, 681 (2014)]

Outline

(1) Motivation

- Why is the quantum Fisher information important?
(2) Bacground
- Quantum Fisher information
- Recent findings on the quantum Fisher information
(3) Results
- Bounding the quantum Fisher information based on the variance

Bound based on the variance

- Let us define the quantity

$$
V(\varrho, A):=(\Delta A)^{2}-\frac{1}{4} F_{Q}[\varrho, A] .
$$

- It is well known that $V(\varrho, A)=0$ for pure states.
- For states sufficiently pure $V(\varrho, A)$ is small.
- For states that are far from pure, the difference can be larger.

Generalized variance

- Generalized variances are defined as

$$
\operatorname{var}_{\varrho}^{f}(A)=\sum_{i j} m_{f}\left(\lambda_{i}, \lambda_{j}\right)\left|A_{i j}\right|^{2}-\left(\sum \lambda_{i} A_{i j}\right)^{2}
$$

where $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a matrix monotone function, and $m_{f}(a, b)=b f(b / a)$ is a corresponding mean.
[Petz, J. Phys. A 35, 929 (2002); Gibilisco, Hiai, and Petz, IEEE Trans. Inf.
Theory 55, 439 (2009)]

- We can define a large set of generalized variances, including for example the usual variance $\left\langle A^{2}\right\rangle-\langle A\rangle^{2}$.
- Consider $f_{\text {har }}=2 x /(1+x)$. The corresponding mean is the harmonic mean $m_{f_{\text {har }}}(a, b)=2 a b /(a+b)$. Direct calculations yield

$$
\operatorname{var}_{\varrho}^{f_{\text {har }}}(A) \equiv V(\varrho, A)
$$

Bound based on the variance, rank-2

Observation 1.-For rank-2 states ϱ,

$$
(\Delta A)^{2}-\frac{1}{4} F_{Q}[\varrho, A]=\frac{1}{2}\left[1-\operatorname{Tr}\left(\varrho^{2}\right)\right]\left(\tilde{\sigma}_{1}-\tilde{\sigma}_{2}\right)^{2}
$$

holds, where $\tilde{\sigma}_{k}$ are the nonzero eigenvalues of the matrix

$$
A_{k l}=\langle k| A|/\rangle .
$$

Here $|k\rangle$ are the two eigenvectors of ϱ with nonzero eigenvalues. Thus, $\tilde{\sigma}_{k}$ are the eigenvalues of A on the range of ϱ.

Note

$$
S_{\operatorname{lin}}(\varrho)=1-\operatorname{Tr}\left(\varrho^{2}\right)=1-\sum_{k} \lambda_{k}^{2}=\sum_{k \neq 1} \lambda_{k} \lambda_{l} .
$$

Bound based on the variance, arbitrary rank

Observation 2.-For states ϱ with an arbitrary rank we have

$$
(\Delta A)^{2}-\frac{1}{4} F_{Q}[\varrho, A] \leq 2 S_{\operatorname{lin}}(\varrho) \sigma_{\max }\left(A^{2}\right)
$$

where $\sigma_{\max }\left(A^{2}\right)$ is the largest eigenvalue of A^{2}.

Estimate F_{Q} :
(1) Measure the variance.
(2) Estimate the purity.
(3) Find a lower bound on F_{Q}.

Quantities Averaged over SU(d) generators

- We define the average over unit vectors as

$$
\operatorname{avg}_{\vec{n}} f(\vec{n})=\frac{\int f(\vec{n}) M(d \vec{n})}{\int M(d \vec{n})}
$$

- We would like to compute average of V for operators.
- It is zero only for pure states. \rightarrow Similar to entropies.

Bound on the average V

Observation 3.-The average of V over traceless Hermitian matrices with a fixed norm is given as

$$
\begin{aligned}
& \underset{\operatorname{avg}}{A: A=A^{\dagger},} \\
& \operatorname{Tr}(A)=0, \\
& \operatorname{Tr}\left(A^{2}\right)=2
\end{aligned}
$$

where d is the dimension of the system, and

$$
H(\varrho)=2 \sum_{k, l} \frac{\lambda_{k} \lambda_{l}}{\lambda_{k}+\lambda_{l}}=1+2 \sum_{k \neq 1} \frac{\lambda_{k} \lambda_{l}}{\lambda_{k}+\lambda_{l}} .
$$

Average quantum Fisher information

- The average of the quantum Fisher information can be obtained as

$$
\operatorname{avg}_{\vec{n}} F_{Q}\left[\varrho, A_{\vec{n}}\right]=\frac{8}{N_{\mathrm{g}}}[d-H(\rho)] .
$$

- It is maximal for pure states.

Bound based on the variance II

Figure: The relation between the von-Neumann entropy and $H(\varrho)$ for $d=3$ and 10.
(filled area) Physical quantum states.
(dot) Pure states.
(square) Completely mixed state.
We see that

$$
H(\varrho) \sim \exp [S(\varrho)] .
$$

Other type of quantum Fisher information

- The alternative form of the quantum Fisher information is defined as

$$
\begin{aligned}
F_{Q}(\varrho ; A) & =2 \sum_{k, l} \frac{1}{\lambda_{k}+\lambda_{l}}\left|A_{k l}\right|^{2} \\
& =\sum_{k} \frac{1}{\lambda_{k}}\left|A_{k k}\right|^{2}+2 \sum_{k \neq l} \frac{1}{\lambda_{k}+\lambda_{l}}\left|A_{k l}\right|^{2}
\end{aligned}
$$

- The quantum Fisher information defined above corresponds to estimating the parameter ϕ for the dynamics $\varrho_{\phi}=\varrho_{0}+\phi \boldsymbol{A}$. The Cramér-Rao bound in this case is

$$
(\Delta \phi)^{2} \geq \frac{1}{F_{Q}(\varrho ; A)}
$$

Other type of quantum Fisher information

- In contrast, $F_{Q}[\varrho, A]$ corresponds to estimating the parameter θ of the unitary evolution, as discussed in the introduction.
- The relation of the two types of quantum Fisher information is given by

$$
F_{Q}[\varrho, A]=F_{Q}(\varrho ; i[\varrho, A])
$$

Other type of quantum Fisher information II

Figure: The relation between the von-Neumann entropy $S(\varrho)$ and the average $F(\varrho ; A)$ defined in for $d=3$ and 10 .
(solid) Points corresponding to the states giving the minimum. (square) Completely mixed state.

Yet another type of quantum Fisher information

The alternative form of the quantum Fisher information is defined as

$$
\begin{aligned}
F_{Q}^{\log }(\varrho ; A) & =\sum_{k, l} \frac{\log \left(\lambda_{k}\right)-\log \left(\lambda_{l}\right)}{\lambda_{k}-\lambda_{l}}\left|A_{k l}\right|^{2} \\
& =\sum_{k \neq 1} \frac{\log \left(\lambda_{k}\right)-\log \left(\lambda_{l}\right)}{\lambda_{k}-\lambda_{l}}\left|A_{k l}\right|^{2}+\sum_{k} \frac{1}{\lambda_{k}}
\end{aligned}
$$

Yet another type of quantum Fisher information II

Figure: The relation between the von-Neumann entropy $S(\varrho)$ and the average $F^{\log }(\varrho ; A)$ for $d=3$ and 10 .
(solid) Points corresponding to the states giving the minimum. (square) Completely mixed state.

Yet another type of quantum Fisher information III

- Relation to other works in the literature.
- S. Huber, R. Koenig, and A. Vershynina, Geometric inequalities from phase space translations, arxiv:1606.08603.

They establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state.

- C. Rouze, N. Datta, and Y. Pautrat, Contractivity properties of a quantum diffusion semigrou, arxiv:1607.04242.

Summary

- We discussed how to find lower bounds on the quantum Fisher information and entropies.

> See:
> G. Tóth,

Lower bounds on the quantum Fisher information based on the variance and various types of entropies, arxiv:1701.07461.

THANK YOU FOR YOUR ATTENTION!

