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Linear programming

Basic task: minimize a linear function of a vector ~x under linear
constraints on the elements of ~x .

If there is a solution, it can be solved exactly.



Semidefinite programming

Similar, but with semidefinite constraint.

If there is a solution, it can always be solved exactly.



Outline

1 Introduction
Basic ideas
Solvable vs. not solvable by SDP

2 The separability problem
Separable states
PPT criterion

4 / 39



Basic ideas II

In quantum physics, the density matrix % is a positive semidefinite
matrix

% ≥ 0.

Its trace is one
Tr(%) = 1

and it is Hermitian
% = %†.

These conditions can easily be included in a semidefinite program.

When we measure an operator X , the expectation value is

〈X 〉 = Tr(%X ).



Basic ideas III

Let us see a simple example. We look for the minimum of

〈X 〉 = Tr(%X )

with the condition
〈Yn〉 = Tr(%Yn) = yn

for n = 1,2, ..,N , where X ,Yn are operators.

We optimize over % density matrices.

This is again doable with semidefinite programming, although,
there are better ways to do it.



Basic ideas III

Program with MATLAB/YALMIP/MOSEK:
X=[0 1;1 0];
Y1=[1 0;0 -1];

rho=sdpvar(2,2,’hermitian’,’complex’)

F=[rho>=0]+[trace(rho)==1]+[trace(rho*Y1)==0.2];

diagnostic=solvesdp(F,trace(X*rho));

minX=double(trace(X*rho))

Result:
minX =

-0.9798



N representability problem I

Find % of N qudits such that some reduced states are given.

A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963),

for a summary of the literature see in Doherty, Parillo, Spedalieri, PRA 2005.

Note that if only single-particle reduced states are given, we
always have such a %.

If multiparticle reduced states are given, we do not always have
such a %.



N representability problem II

Concrete example: find a two-qubit state such that the reduced
states are

%1 =

(
0.5 0.1
0.1 0.5

)
,

and

%2 =

(
0.5 0.2
0.2 0.5

)
.

The answer: the SDP finds such a state.



N representability problem III
Program with MATLAB/YALMIP/MOSEK:
% 2 qubits
rho=sdpvar(4,4,’hermitian’,’complex’)

% Reduced states
rho1=[0.5 0.1;0.1 0.5];
rho2=[0.5 0.2;0.2 0.5];

F=[rho>=0]+[trace(rho)==1];

% reduced states using an external routine
F=F+[keep_nonorm(rho,1)==rho1];
F=F+[keep_nonorm(rho,2)==rho2];

diagnostic=solvesdp(F,0);
is_there_a_problem=diagnostic.problem
rho_solution=double(rho)

Result:
minX =

-0.9798



N representability problem III

Result
is_there_a_problem =

0
rho_solution =

0.2500 0.0500 0.1000 0.0344
0.0500 0.2500 0.0344 0.1000
0.1000 0.0344 0.2500 0.0500
0.0344 0.1000 0.0500 0.2500



N representability problem IV

Concrete example: find a two-qubit state such that the reduced
states are

%1 =

(
0.5 0.5
0.5 0.5

)
,

and

%2 =

(
0.5 0.5
0.5 0.5

)
.

Note that the states are pure states and they are the eigestates of
σx with an eigenvalue +1.

The answer: the SDP finds such a state, it will find %1 ⊗ %2.



N representability problem V
Program with MATLAB/YALMIP/MOSEK:
% 2 qubits
rho=sdpvar(4,4,’hermitian’,’complex’)

% Reduced states
rho1=[0.5 0.5;0.5 0.5];
rho2=[0.5 0.5;0.5 0.5];

F=[rho>=0]+[trace(rho)==1];

% reduced states using an external routine
F=F+[keep_nonorm(rho,1)==rho1];
F=F+[keep_nonorm(rho,2)==rho2];

diagnostic=solvesdp(F,0);
is_there_a_problem=diagnostic.problem
rho_solution=double(rho)

Result:
minX =

-0.9798



N representability problem VI

Result
is_there_a_problem =

0
rho_solution =

0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500



Nonlinear optimization

Let us see a simple example. We look for the minimum of

〈X1〉
2 + 〈X2〉

2 = Tr(%X1)2 + Tr(%X2)2

with the condition
〈Yn〉 = Tr(%Yn) = yn

for n = 1,2, ..,N .

We optimize over % density matrices.

This is again doable with semidefinite programming, minimizing
t1 + t2 using the constraints(

tk Tr(%Xk )
Tr(%Xk ) 1

)
≥ 0

for k = 1,2.



Nonlinear optimization II

Concrete example: we minimize

〈σx 〉
2 + 〈σz〉

2

with the constraint
〈Y1〉 = 0.2,

where

Y1 =

(
1 i
−i 1

)
.

The answer: we find a density matrix that corresponds to the
minimum. For that state, we have

〈σx 〉
2 + 〈σz〉

2 = 0.01.



Nonlinear optimization III
Program with MATLAB/YALMIP/MOSEK:
X1=[0 1;1 0]; X2=[1 0;0 -1]; Y1=[1 i;-i -1];

rho=sdpvar(2,2,’hermitian’,’complex’)
t=sdpvar(1,1,’full’,’real’)

F=[rho>=0]+[trace(rho)==1];

F=F+[trace(Y1*rho)==0.2];

M=[t trace(X1*rho);trace(X1*rho) t];
F=F+[M>=0];

diagnostic=solvesdp(F,t);

is_there_a_problem=diagnostic.problem

rho_solution=double(rho)



Nonlinear optimization IV

Results:
is_there_a_problem =

0
rho_solution =

0.5500 + 0.0000i 0.0000 + 0.0500i
0.0000 - 0.0500i 0.4500 + 0.0000i

>> trace(X2*rho_solution)
ans =

0.1000

>> trace(X1*rho_solution)
ans =

0
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Solvable vs. not solvable by SDP

Thus, we can minimize a convex function over the convex set of
density matrices.

However, we cannot maximize a function over the convex set of
density matrices efficiently - the maximum is taken at the
boundaries.
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Mixed states:
separable states vs. entangled states

For the mixed case, the definition of a separable state is (Werner
1989)

ρsep =
∑

k

pk [ρ
(1)

k ]A ⊗ [ρ
(2)

k ]B .

A state that is not separable, is entangled.

It is not possible to create entangled states from separable states,
with LOCC.

From many copies of two-qubit mixed entangled states, we can
always distill a singlet using Local Operations and Classical
Communication (LOCC).

This is not true for higher dimensional systems. Not all quantum
states are distillable.



Convex sets

Separable states

Entangled states



Bipartite systems I

Naive question: can we decide whether a state is separable with
SDP? No, because we would need a constraint of the type

% = (%1)A ⊗ (%2)B .

Alternatively, we would need a constraint for the reduced states of
the nth subsytem

Tr(%2
red,n) = 1.



Bipartite systems II

How can we check separability using a brute force method? We
can look for a separable decomposition with some ρ(1)

k , ρ
(2)

k
numerically.

Simpler problem, maximum for an operator expectation value for
separable states

max
ρsep

Tr(Xρsep) = max
Ψ1,Ψ2

〈Ψ1|〈Ψ2|X |Ψ2〉Ψ1〉.

Numerically, we can try to find the maximum. In practice, we will
find the maximum or something lower.
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The positivity of the partial transpose (PPT)
criterion

Definition
For a separable state % living in AB, the partial transpose is always
positive semidefinite

%TA ≥ 0.

If a state does not have a positive semidefinite partial transpose, then it
is entangled. A. Peres, PRL 1996; Horodecki et al., PLA 1997.

Partial transpose means transposing according to one of the two
subsystems.

For separable states

(T ⊗ 1)% = %TA =
∑

k

pk (%
(1)

k )T ⊗ %
(2)

k ≥ 0.



The positivity of the partial transpose (PPT)
criterion II

How to obtain the partial transpose of a general density matrix?
Example: 3 × 3 case.

Strongly entangled

Strongly entangled

Entangled
Entangled

Entangled

Entangled

ϱ=

00 01 02 10 11 12 20 21 22

00

01

02

10

11

12

20

21

22



The positivity of the partial transpose (PPT)
criterion III

If the relation
%TA ≥ 0

is violated then the state is entangled!

For 2 × 2 and 2 × 3 systems it detects all entangled states.

For larger systems, there are entangled states for which

%TA ≥ 0.

hold. They are bound entangled, not distillable.



Convex sets

Separable states

non-PPT Entangled states

PPT Entangled states



The positivity of the partial transpose (PPT)
criterion IV

Semidefinite programming can be used to optimize over PPT
states.

Find the minimum of an operator expectation value for PPT states:

Minimize
〈X 〉% ≡ Tr(X%)

such that

% = %†,

% ≥ 0,
%TA ≥ 0,

Tr(%) = 1.



The positivity of the partial transpose (PPT)
criterion V

Concrete example: look for the minimum of

〈σx ⊗ σx + σy ⊗ σy 〉

for PPT states.

The answer: the minimum is −1.



The positivity of the partial transpose (PPT)
criterion VI

Program with MATLAB/YALMIP/MOSEK:
sigmax=[0 1;1 0];sigmay=[0 -i;i 0];

% We want to minimze <A>
A=kron(sigmax,sigmax)+kron(sigmay,sigmay);

% Two qubits
rho=sdpvar(4,4,’hermitian’,’complex’)

F=[rho>=0]+[trace(rho)==1];

% Using an external partial transpose routine
F=F+[pt_nonorm(rho,1)>=0];

diagnostic=solvesdp(F,trace(A*rho));
minimum=double(trace(A*rho))



The positivity of the partial transpose (PPT)
criterion VII

Result:
minimum =

-1.0000



The positivity of the partial transpose (PPT)
criterion VIII

Thus, we find that the mininum of

〈σx ⊗ σx + σy ⊗ σy 〉

for PPT states is −1.

This is like finding a lower bound on the minimum for separable
states.

In practice, we often find the minimum for separable states, as in
the example above.

G. Tóth, W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, and H. Weinfurter, New J. Phys. 2009.



The positivity of the partial transpose (PPT)
criterion IX

We can ask: is there a PPT fulfilling certain constraints?

Look for % such that

% = %†,

% ≥ 0,
%TA ≥ 0,

Tr(%) = 1,
Tr(Xk%) = xk for k = 1,2, ..,K .

If there is not such a % then the state fulfilling the constraints is not
PPT, and it is entangled (or it is not physical).

One can use this to detect entanglement in experiments.



The positivity of the partial transpose (PPT)
criterion X

Concrete example: is there a PPT state with

〈σx ⊗ σx + σy ⊗ σy 〉 = 1.1?

The answer: there is no such a PPT state.



The positivity of the partial transpose (PPT)
criterion XI

Program with MATLAB/YALMIP/MOSEK: CHANGE!!!
sigmax=[0 1;1 0];sigmay=[0 -i;i 0];
A=kron(sigmax,sigmax)+kron(sigmay,sigmay);

% Two qubits
rho=sdpvar(4,4,’hermitian’,’complex’)

F=[rho>=0]+[trace(rho)==1];

% Using an external partial transpose routine
% Condition <A>=1.1
F=F+[pt_nonorm(rho,1)>=0]+[trace(A*rho)==1.1];

diagnostic=solvesdp(F,0);
is_there_a_problem=diagnostic.problem



The positivity of the partial transpose (PPT)
criterion XII

Result:
is_there_a_problem =

1

That is, there is not such a PPT quantum state.
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