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o Motivation
@ Why is quantum metrology interesting?



Why is quantum metrology interesting?

@ Recent technological development has made it possible to realize
large coherent quantum systems, i.e., in cold gases, trapped cold
ions or photons.

@ Can such quantum systems outperform classical systems in
something useful, i.e., metrology?



e Simple examples of quantum metrology
@ Classical case: Clock arm



Classical case: Estimating the angle of a clock arm

@ Arbitrary precision ("in principle").



e Simple examples of quantum metrology

@ Quantum case: Single spin-1/2 particle



Quantum case: A single spin-1/2 particle

@ Spin-1/2 particle polarized in the z direction.

@ We measure the spin components.
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Quantum case: A single spin-1/2 particle Il

@ We cannot measure the three spin coordinates exactly jx, ji, j--

@ In quantum physics, we can get only discrete outcomes in
measurement. In this case, +1/2 and —1/2.

@ A single spin-1/2 particle is not a good clock arm.
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e Simple examples of quantum metrology

@ Magnetometry with the fully polarized state



Magnetometry with the fully polarized state

@ N spin-1/2 particles, all fully polarized in the z direction.

@ Magtetic field B points to the y direction.

@ Note the uncertainty ellipses. Afg, is the minimal angle difference
we can measure.



Magnetometry with the fully polarized state Il

@ Collective angular momentum components
N
Jl — Zjl(n)
n=1
forI = x,y, z, where j,(”) are single particle operators.

@ Dynamics .
W) = Up|Wo),  Up=e ™’

where h = 1.

@ Rotation around the y-axis.



Magnetometry with the fully polarized state Il

@ Let us assume, that we have an M(©) function.
@ We know that there is an AM error in M.
@ How much is the error A8 in 6?

@ ltis given by the classical error propagation formula:

AM

AG%dM/dH'

@ It tells us how the error in M "propagates” to 6.



Magnetometry with the fully polarized state IV

@ Measure an operator M to get the estimate 6.

@ To obtain the precision of estimation, we can use
the error propagation formula
2 2
(no)z, = LEMI (&M
[Oo(M)[=— |(i[M, H])

tana=0,(M)|,_,

— 0




Magnetometry with the fully polarized state V

@ In order to see the full picture, we need to consider v
measurements of M.

@ We have to look for the average of the measured values
m= Z my.
n=1

@ Then, if the measured probability distributions fulfill certain
conditions, we can estimate the parameter with a precision

1 1 (AM)?
(20)% = ;(Ae)ﬁ/l = oMV

[ L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein,
"Quantum metrology with nonclassical states of atomic ensembles,"

Rev. Mod. Phys. 90, 035005 (2018). |



Magnetometry with the fully polarized state VI

@ We consider the fully polarized states of N spin-1/2 particles

[+ 2)°N.
@ For this state,
N N N N .
<Jz> = 5, <Jx> = 07 (AJx)2 = Z, <Jz> = ECOS 9, <Jx> = E Sin 9

@ We measure the operator

@ lItis not like a classical clock arm, we have a nonzero uncertainty

2 _ 1 (AM)® 1 (Ak)? 11

(A6) v]B (M2~ v (J)2  UN’




Magnetometry with the fully polarized state VII

@ Main result:

@ In some cold gas experiment, we can have 10° — 10'2 particles.

@ Later we will see that with a separable quantum state we cannot
have a better precision.



e Simple examples of quantum metrology

@ Magnetometry with the spin-squeezed state



Magnetometry with the spin-squeezed state

@ We can increase the precision by spin squeezing

fully polarized state (fp) spin-squeezed state (sq)
Adg, and Absq are the minimal angle difference we can measure.
We can reach

1
2
(Af)° < N



Spin squeezing in an ensemble of atoms via

interaction with light
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Spin squeezing in a Bose-Einstein Condensate via

interaction between the particles

Figure 1: Spin ing ane i gh controlled
interactions onan atom chip
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e Simple examples of quantum metrology

@ Metrology with the GHZ state



GHZ state=Schrodinger cat state

@ A superposition of two macroscopically distinct states




Greenberger-Horne-Zeilinger (GHZ) state

|GHZN):7(|OOO 00 + [111...11)).

@ Superposition of all atoms in state "0" and all atoms in state "1".



Metrology with the GHZ state

@ Greenberger-Horne-Zeilinger (GHZ) state

IGHZy) = T(yooo 00) + [111...11)),

@ Unitary ‘
|W)(0) = Up|GHZy), Uy =e .

@ Dynamics

W)(6) = 3(1000...00) + e NI 111...11)),



Metrology with the GHZ state I

@ We measure
M=o,

which is the parity in the x-basis.
@ Expectation value and variance

(M) = cos(N®), (AM)? = sin?(N9).

@ For 0 = 0, the precision is

1 (am2 A
(20)* = v |0y (MY2 — uN2

[ e.g., photons: D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger,
Phys. Rev. Lett. 82, 1345 (1999);

ions: C. Sackett et al., Nature 404, 256 (2000). ]



Metrology with the GHZ state lll

Quantum Computation with Trapped lons, Innsbruck



Metrology with the GHZ state IV

Figure 2: Determination of ps.).
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Metrology with the GHZ state IV

@ We reached the Heisenberg-limit

2_ 1
(DO = —.

@ The fully polarized state reached only the shot-noise limit

]
2_ 1
(B0 = .



e Simple examples of quantum metrology

@ Dicke states



Dicke states

@ Symmetric Dicke states with (J,) = 0 (simply “Dicke states” in the
following) are defined as

o0 ()

@ E.g., for four qubits they look like
1
V6

=

> P (10092 @ 1))
k

|Dy) = (/0011) +10101) +-{1001) + |0110) + [1010) 4 [1100)) .

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;
Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007;
Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009]

[cold atoms: Liicke et al., Science 2011; Hamley et al., Science 2011; C. Gross et al.,
Nature 2011]



Metrology with Dicke states. Clock arm = noise

@ For our symmetric Dicke state

Uy =0,l=x,y,z, (J2)=0, (J2)= (J5> = large.

@ Linear metrology
U = exp(—iJy9).

@ Measure (J2) to estimate 6.
(We cannot measure first moments, since they are zero.)

Uncertainty
ellipse



Metrology with Dicke states

@ Dicke states are more robust to noise than GHZ states. (Even if
they loose a particle, they remain entangled).

@ Dicke states can also reach the Heisenberg-scaling like GHZ
states.

[Metrology with cold gases: B. Licke, M Scherer, J. Kruse, L. Pezze, F.
Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi,
C. Klempt, Science 2011.]

[Metrology with photons: R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P.
Hyllus, L. Pezze, A. Smerzi, PRL 2011.]



Metrology with Dicke states Il

Experiment with cold gas of 8000 atoms.
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Metrology with Dicke states lll
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@ Ad is the precision of estimating 6.

@ Ads, means the "shot-noise" uncertainty. This is the smallest
uncertainty that could be achieved by separable states.

@ Black dashed line = the level corresponding to A8/ Af, = 1.

° = precision of estimating the angle ¢ in the
experiment.

@ The is below the black dashed line around
0 ~ 0.015. Hence, the uncertainty Af is smaller than that could be
achieved by any separable state, and hence the state of the
system is entangled.



e Simple examples of quantum metrology

@ Interferometry with squeezed photonic states



LIGO gravitational wave detector

The performance was enhanced with squeezed light.

LIGO H1
Interferometer

A Caviy (4 k)

Strain Sensitivity h [1/ Hz]

The role of clock arm is played by the squeezed coherent state.

[ J. Aasi et al., Nature Photonics 2013. ]



e Entanglement theory
@ Multipartite entanglement



Entanglement

A state is if it can be written as

S e ®o? ®...®0¢".
k

If a state is not separable then it is entangled (Werner, 1989).




k-producibility/k-entanglement

A pure state is if it can be written as
[®) = |®1) ® |92) ® |03) @ |D4)....
where |®)) are states of at most k qubits.

A mixed state is k-producible, if it is a mixture of k-producible pure
states.
[ e.g., Gihne, GT, NJP 2005. ]

@ If a state is not k-producible, then it is at least (k + 1)-particle
entangled.

00000000 000000000
2-entangled 3-entangled



k-producibility/k-entanglement Il

2-entangled

Separable

(N-1)-entangled
N-entangled
(100) 4+ |11)) ® (|00) + |11)) ® (|00) + [11)) 2-entangled

(]000) +{111)) ® (]000) + |111)) 3-entangled
(]0000) + [1111)) ® (|0) + |1)) 4-entangled



e Entanglement theory

@ The spin-squeezing criterion



The standard spin-squeezing criterion

Spin squeezing criteria for entanglement detection

If £€2 < 1 then the state is entangled.
[Serensen, Duan, Cirac, Zoller, Nature (2001).]

@ States detected are like this:

Variance of J_is small

J, is large <Z
y

X



Multipartite entanglement in spin squeezing
@ We consider pure k-producible states of the form
W) = @iy |vn),
where [|¢)) is the state of at most k qubits.

Extreme spin squeezing
The spin-squeezing criterion for k-producible states is

(Jy)? + (J2)?
Jmax ’

(A'JX)2 2 Jmang (

where Jmax = %’ and we use the definition
. 1 . P \2
Fi(2) =} min ().
Yz) _7
J
[Serensen and Mglmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).]




Multipartite entanglement in spin squeezing

@ Larger and larger multipartite entanglement is needed to larger
and larger squeezing ("extreme spin squeezing").

0.5

04r1 separable

0 0.2 0.4 0.6 0.8 1
<Jz> /Jmax

@ N =100 spin-1/2 particles, Jnax = N/2.

[Serensen and Mglmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).]



Our experience so far

@ We find that more spin squeezing/better precision needs more
entanglement.

@ Question: Is this general?

@ Answer: Yes.



0 Quantum metrology using the quantum Fisher information
@ Quantum Fisher information



Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiA¥b).



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

For the variance of the parameter estimation

1
(B0F 2 oA

holds, where v is the number of repetitions and Fg|o, A] is the quantum
Fisher information.

@ The bound includes any estimation strategy, even POVM’s.
@ The quantum Fisher information is
(Ak — M) 2
Folo,A]=2) ~———|(k|A|l)|*,
ole- Al =23 S5 IKIAD

where o = ), \¢|k) (K]



Convexity of the quantum Fisher information

@ For pure states, it equals four times the variance,

FallV), Al = 4(AA)?y,.

@ For mixed states, it is convex

Falo, Al <Y pkFallVi), Al,
k

where
0= PrlVi)(Wkl.
K



Quantum Fisher information - Some basic facts

@ The larger the quantum Fisher information, the larger the
achievable precision.

@ For the totally mixed state it is zero for any A
FO[Qcm7A] = 07

where o.m = 1/d is the completely mixed state and d is the
dimension.

@ This is logical: the completely mixed states does not change
under any Hamiltonian.

@ For any state o that commutes with A, i.e., pA — Ap = 0 we have

Falo, Al = 0.



Quantum Fisher information and the fidelity

The quantum Fisher information appears in the Taylor expansion of Fg
Fa(o. 00) = 1 — 67 P22 1+ O(6°),

where

09 = exp(—IiAb)oexp(+IiAb).

@ Bures fidelity

2
FB(m,gz):Tr( mwa) .

@ Clearly,
0 < Fg(o1,02) < 1.

The fidelity is 1 only if o1 = 0o.



0 Quantum metrology using the quantum Fisher information

@ Quantum Fisher information in linear interferometers



Magnetometry with a

@ The Hamiltonian A is defined as
N
A=J = Zjl(”), le{x,y,z}.
n=1

There are no interaction terms.

@ The dynamics rotates all spins in the same way.



Quantum Fisher information for separable states

@ Let us consider a pure product state of N qubits

|w>prod = ‘WU)) X ‘W(2)> ®...® |W(N)>.

@ Since this is a pure state, we have Fg|o, Jj| = 4(AJ))? V) proa

@ Then, for the product state we have

N
1
(A, L=y wmy < N7,

n=1

where we used that for qubits (Aj(")2 < 1/4.

@ Since the quantum Fisher information is convex in the state, the
bound is also valid for a mixture of product states, i.e., separable
states

Folo,J] < N.



The quantum Fisher information vs. entanglement

@ For separable states of N spin-1/2 particles (qubits)
FQ[Q)J/]SN7 /:Xayaz'

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

@ For states with at most k-qubit entanglement (k is divisor of N)
Fale, Ji] < kN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Bound for all quantum states of N qubits

FQ[Qa J/] < N2-



The quantum Fisher information vs. entanglement

5 spin-1/2 particles

F
A ° At least
—+25
5-entanglement
-1 20
4-entanglement
-T15
3-entanglement
-+10
2-entanglement
+5

(Using the Fqlo, Ji] < kN. Note that there is a slightly better bound.)



Let us use the Cramér-Rao bound

@ For separable states
(AG)? > ! l=x,y,z
- ]/N, - 7y7 *
[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

@ For states with at most k-particle entanglement (k is divisor of N)

2
>
(A0 > vkN

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Bound for all quantum states

(AF)2 > —.

vIN2



0 Quantum metrology using the quantum Fisher information

@ Noise and imperfections



Noisy metrology: Simple example

@ A particle with a state o1 passes trough a map that turns its
internal state to the fully mixed state with some probability p as

ep01) = (1 = p)o1 + p3.

@ This map acts in parallel on all the N particles.

@ Metrology with a spin squeezed state

1(Ad)?2 _ 1N 1 1
2 _ _ X >fi o
(A0)" =~ ()2 “ v PUN < UN'

@ Shot-noise scaling if p > 0.
[G. Toth, and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).]



Noisy metrology: General treatment

@ In the most general case, uncorrelated single particle noise leads
to shot-noise scaling after some particle number.

1.00f*

0.50

Figure from
[R. Demkowicz-Dobrzanski, J. Kotodynski, M. Guta, Nature Comm. 2012.]

@ Correlated noise is different.



Take home message

@ Quantum physics makes it possible to obtain bounds for precision
of the parameter estimation in realistic many-particle quantum
systems.

@ Shot-noise limit: Non-entangled states lead to (Af)? > J—N

1

@ Heisenberg limit: Fully entangled states can lead to (A#)? = N

@ At the end, noise plays a central role.



Reviews

@ M. G. A. Paris, Quantum estimation for quantum technology, Int. J.
Quantum Inf. 7, 125 (2009).

@ V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum
metrology, Nat. Photonics 5, 222 (2011).

@ C. Gross, Spin squeezing, entanglement and quantum metrology
with Bose-Einstein condensates, J. Phys. B: At.,Mol. Opt. Phys.
45, 103001 (2012).

@ R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski,
Chapter four-quantum limits in optical interferometry, Prog. Opt.
60, 345 (2015).

@ L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Non-classical states of atomic ensembles: fundamentals
and applications in quantum metrology, Rev. Mod. Phys. 90,
035005 (2018).



@ We reviewed quantum metrology from a quantum information
point of view.

See:
Géza Téth and lagoba Apellaniz,

Quantum metrology from a quantum information science perspective,

J. Phys. A: Math. Theor. 47, 424006 (2014),
special issue "50 years of Bell’s theorem"
(open access).


https://arxiv.org/abs/arxiv:1405.4878
https://arxiv.org/abs/arxiv:1405.4878
https://arxiv.org/abs/arxiv:1405.4878
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