General characteristics of multi-partite quantum systems

 (Lecture of the Quantum Information class of the Master in Quantum Science and Technology)Géza Tóth

Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
Donostia International Physics Center (DIPC), San Sebastián, Spain
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Wigner Research Centre for Physics, Budapest, Hungary

UPV/EHU, Leioa
18, 20 and 25 January, 2022

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

A single classical bit

- A classical bit can be either 0 or 1 . Can we still use it to describe a real number between 0 and 1?
- For that, we need an ensemble of several classical bits

$$
\begin{equation*}
\left\{b_{k}\right\}_{k=1}^{M} \tag{1}
\end{equation*}
$$

where $b_{k}=0$ or 1

- We can interpret the average value and the variance. That is,

$$
\begin{equation*}
\langle b\rangle=\frac{1}{M} \sum_{k} b_{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Delta b)^{2}=\frac{1}{M} \sum_{k}\left(b_{k}-\langle b\rangle\right)^{2} \tag{3}
\end{equation*}
$$

A single classical bit II

- This can also be given with probabilities:
- Let P_{0} and P_{1} be the probabilities of having a 0 or a 1 .
- The expectation value and the variance are the function of P_{0} and P_{1}. Since $P_{0}+P_{1}=1$, we have a single real degree of freedom that describes the statistical properties of an ensemble of bits.
- Hence,

$$
\begin{equation*}
\langle b\rangle=P_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Delta b)^{2}=P_{0}\left(0-P_{1}\right)^{2}+P_{1}\left(1-P_{1}\right)^{2} \tag{5}
\end{equation*}
$$

Stochastic computing

- Stochastic computing uses random bits to calculate (John von Neumann, 1953).
- A random bit represents a real number between 0 and 1. Two random bits can easily be multiplied.

$$
\begin{equation*}
\left\langle b_{1} b_{2}\right\rangle=\left\langle b_{1}\right\rangle\left\langle b_{2}\right\rangle \tag{6}
\end{equation*}
$$

- We need many samples to get the average with small error.

Stochastic computing II

Lectures on
PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE ORGANISMS FROM UNRELIABLE COMPONENTS

delivered by

PROFESSOR J. von NEUMANN
The Institute for Advanced Study
Princeton, N. J.

Stochastic computing III

The RASCEL stochastic computer, circa 1969, Wikipedia.

Stochastic computing IV

Multiplication is possible with an AND gate.

$$
\begin{aligned}
& 11001110000010010011 \\
& 11101110000000000011
\end{aligned}
$$

Figure 1.2: Similarity of biological signals and stochastic numbers; information is carried via pulses.

Figure 1.3: Stochastic multiplication: (a) accurate result with uncorrelated inputs; (b) inaccurate result due to correlated inputs.
A. Alaghi, The Logic of Random Pulses: Stochastic Computing,

Ph.D. Thesis, University of Michigan, 2015.

Several classical bits

- N classical bits can be in one of the 2^{N} binary states. For example, for $N=2$, these are $00,01,10$ and 11 .
- For $N=2$, these are

$$
\begin{equation*}
P_{00}, P_{01}, P_{10}, P_{11} \tag{7}
\end{equation*}
$$

- The ensemble of the N-bit units can be described by the 2^{N} probabilities.
- Since, again, the sum of all the probablities is 1 , we need $2^{N}-1$ real degrees of freedom to describe the statistical properties of such an ensemble.

Several classical bits II

- Let us consider some function of N bits $f(k)$, where k is now an N bit number.
- Then, the expectation value of f is

$$
\begin{equation*}
\langle f\rangle=\sum_{k=0}^{2^{N}-1} p_{k} f(k)=\vec{p} \vec{f} \tag{8}
\end{equation*}
$$

where k is an N-bit number, i.e., an integer between 0 and $2^{N}-1$. We put the f_{k} 's into a vector \vec{f}. We also put the p_{k} probabilities into \vec{p}.

Several classical bits III

- We can also write

$$
\begin{equation*}
\left\langle f^{2}\right\rangle=\sum_{k} p_{k} f_{k}^{2} \tag{9}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
(\Delta f)^{2}=\sum_{k} p_{k} f_{k}^{2}-\left(\sum_{k} p_{k} f_{k}\right)^{2} \tag{10}
\end{equation*}
$$

These were relevant, since in the quantum case, we will have similar expressions.

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Quantum bit - pure states

- A quantum bit (=two-state system, spin- $\frac{1}{2}$ particle) can be in a pure state

$$
\begin{equation*}
|q\rangle=\alpha|0\rangle+\beta|1\rangle, \tag{11}
\end{equation*}
$$

where α and β are complex numbers, and the normalisation condition $|\alpha|^{2}+|\beta|^{2}=1$.

- Note that the overall phase does not matter, thus a pure quantum bit is described by two degrees of freedom.
- The two complex coefficients have 4 real degrees of freedom.
- However, due to the normalisation condition and the arbitrariness of the overall phase we are left with two degrees of freedom.)

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Multi-qubit systems - pure states

- What about a two-qubit system? What kind of states it can be in? One could think on qubit 1 in state

$$
\begin{equation*}
\left|q_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle \tag{12}
\end{equation*}
$$

and qubit 2 in state

$$
\begin{equation*}
\left|q_{2}\right\rangle=\alpha_{2}|0\rangle+\beta_{2}|1\rangle . \tag{13}
\end{equation*}
$$

- However, we all know that the general state of the two-qubit system can be given as

$$
\begin{equation*}
\left|q_{12}\right\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|00\rangle+\alpha_{11}|01\rangle . \tag{14}
\end{equation*}
$$

Multi-qubit systems - pure states II

- In general, for N qubits we need N complex numbers. Again the state has to be normalized and the overall phase does not matter, thus this means $2 \times 2^{N}-2$ real degrees of freedom.
- We can place the coefficients in a vector, called state vector and write

$$
|\Psi\rangle=\left(\begin{array}{l}
\alpha_{00} \tag{15}\\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) .
$$

- The properties of the state vector are: it is normalized

$$
\begin{equation*}
\langle\Psi \mid \Psi\rangle=1 . \tag{16}
\end{equation*}
$$

Multi-qubit systems - pure states III

- An overall phase does not matter:

$$
\begin{equation*}
e^{-i \theta}|\Psi\rangle \tag{17}
\end{equation*}
$$

describes the same state for any θ.

- The expectation value of an operator for a pure state can be obtained as

$$
\begin{equation*}
\langle A\rangle=\langle\Psi| A|\Psi\rangle=\operatorname{Tr}(A|\Psi\rangle\langle\Psi|) . \tag{18}
\end{equation*}
$$

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantumn relative entropy
- Linear entropy
- K. Fidelity

Measurement

- The von Neumann measuement in the z basis results is eithet 0 or 1. If the state was $\alpha|0\rangle+\beta|1\rangle$, then we get a statistical mixture of 0 and 1 , with the probabilities

$$
\begin{equation*}
P_{0}=|\alpha|^{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}=|\beta|^{2} \tag{20}
\end{equation*}
$$

That is, from an ensemble of quantum bits we get an ensemble of classical bits.

- If we measure in the x basis, we get another classical ensemble.
- For a multi-qubit system, if we measure in the some basis (e.g., x, y or z), we get an ensemble of N-bit systems. However, for exach choice of basis we get a different classical ensemble.

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Mixed states and the density matrix

- So far we were talking about pure states.
- In reality, in an experiment we do not have a situation where a machine always produces the $\left|\Psi_{1}\right\rangle$ state.
- Sometimes it makes mistakes, and produces the $\left|\Psi_{k}\right\rangle$ states for $k=2,3, \ldots$ How to describe such a situation?

$\left\|\Psi_{1}\right\rangle$	p_{1}
$\left\|\Psi_{2}\right\rangle$	p_{2}
$\left\|\Psi_{3}\right\rangle$	p_{3}
\ldots	\ldots

Mixed states and the density matrix

- What is the expectation value of an operator in such a system?

We can write it as

$$
\begin{equation*}
\langle A\rangle=\sum_{k} p_{k}\left\langle\Psi_{k}\right| A\left|\Psi_{k}\right\rangle=\operatorname{Tr}\left(A \sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right|\right) \tag{21}
\end{equation*}
$$

- This can be rewritten as

$$
\begin{equation*}
\langle A\rangle=\operatorname{Tr}(\varrho A) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\varrho=\sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \tag{23}
\end{equation*}
$$

is the density matrix (Neumann, Landau).

- Note that if ϱ is diagonal, we obtain

$$
\begin{equation*}
\langle A\rangle=\operatorname{Tr}(\varrho A)=\sum_{k} \varrho_{k k} A_{k k} . \tag{24}
\end{equation*}
$$

That is, A is written in the eigenbasis of ϱ. This is the scalar product of two vectors as in $\langle f\rangle=\vec{p} \vec{f}$ [given in Eq. (8)].

Mixed states and the density matrix II

- The density matrix describes the state completely. Now we see, why the overall phase does not matter:

$$
\begin{equation*}
e^{-i \theta}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| e^{+i \theta}=\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \tag{25}
\end{equation*}
$$

- The properties of the density matrix are

$$
\begin{align*}
\varrho & =\varrho^{\dagger} \\
\varrho & \geq 0 \\
\operatorname{Tr}(\varrho) & =1 \tag{26}
\end{align*}
$$

- A $2^{N} \times 2^{N}$ density matrix has $4^{N}-1$ real parameters.
- For $N=1$, this means 3 real parameters, corresponding to the three coordinates of the Bloch vector. For $r N=2$, this means 8 real parameters.

Mixed states and the density matrix III

- We can also say that

$$
\begin{equation*}
\operatorname{Tr}\left(\varrho^{2}\right) \leq 1 \tag{27}
\end{equation*}
$$

It is one only for pure (rank-1) states.

- The density matrix can be decomposed into the sum of pure states in many ways. The decomposition

$$
\begin{equation*}
\varrho=\sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \tag{28}
\end{equation*}
$$

is not unique, i.e., it is not necessarily an eigendecomposition. This has a large importance for entanglement theory.

Mixed states and the density matrix IV

Summary:

	N bits	N qubits
Number of DOF	$2^{N}-1$	$4^{N}-1$
Description	\vec{p}	ϱ
Expectation value	$\vec{f} \vec{p}$	$\operatorname{Tr}(A \varrho)$
Normalization	$\sum_{k} p_{k}=1$	$\operatorname{Tr}(\varrho)=1$

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Bloch vector

- For a single qubit, the density matrix has three real parameters. It can be written as

$$
\begin{equation*}
\varrho=\frac{1}{2}\left(\mathbb{1}+\sum_{l=x, y, z} v_{l} \sigma_{l}\right), \tag{29}
\end{equation*}
$$

where σ_{l} are the Pauli spin matrices.

- Using $\operatorname{Tr}\left(\sigma_{k} \sigma_{l}\right)=2 \delta_{k l}$, we can write

$$
\begin{equation*}
\operatorname{Tr}\left(\varrho^{2}\right)=\frac{1}{2}+\frac{1}{2} \sum_{I=x, y, z} v_{l}^{2} \tag{30}
\end{equation*}
$$

That is, the Bloch vector has a maximal length for pure states.

Bloch vector II

- From $\operatorname{Tr}\left(\varrho^{2}\right) \leq 1$, the condition for being physical is Eq. (26), which is equalent to

$$
\begin{equation*}
\sum_{l=x, y, z}\left|v_{l}\right|^{2} \leq 1 \tag{31}
\end{equation*}
$$

The three-element vector is called the Bloch vector.

Bloch vector III

- Let us identify the points in (v_{x}, v_{y}, v_{z}) corresponding to physical states. They are in a ball.
- The pure states are on the surface.
- Mixed states are inside the Ball. This is because $\operatorname{Tr}\left(\varrho^{2}\right)$ is directly related to the length of the Bloch vector.
- The $|0\rangle$ and $|1\rangle$ correspond to the North and South Pole.
- $|0\rangle+\exp (-i \phi)|1\rangle$ correspond to points on the equator.

Set of physical quantum states for a single qubit. The axes correspond to v_{l} for $I=x, y, z$. Pure states correspond to points on the surface, mixed states correspond to internal points.

A single qudit (qunit):d-dimensional systems

- For higher dimensional systems the picture is much more complicated. Let us consider qudits with dimension d.
- Similarly to the case before, a $d \times d$ Hermitian matrix with a unit trace has $d^{2}-1$ degrees of freedom.
- Hence, we can write a density matrix as a linear combination of $d^{2}-1 \mathrm{SU}(\mathrm{d})$ generators as

$$
\begin{equation*}
\varrho=\frac{1}{d} \mathbb{1}+\frac{1}{2} \sum_{l=1}^{d^{2}-1} v_{l} g_{l} \tag{32}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\operatorname{Tr}\left(g_{k} g_{l}\right)=2 \delta_{k l} . \tag{33}
\end{equation*}
$$

(Like for the Pauli matrices. Thus, we have something like the generalized Pauli matrices. $d=3$: Gell-Mann matrices.)

A single qudit (qunit):d-dimensional systems

- For higher dimensional systems the picture is much more complicated. Let us consider qudits with dimension d.
- Similarly to the case before, a $d \times d$ Hermitian matrix with a unit trace has $d^{2}-1$ degrees of freedom. Hence, we can write a density matrix as a linear combination of $d^{2}-1 \mathrm{SU}(\mathrm{d})$ generators as

$$
\begin{equation*}
\varrho=\frac{1}{d} \mathbb{1}+\frac{1}{2} \sum_{l=1}^{d^{2}-1} v_{l} g_{l} \tag{34}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\operatorname{Tr}\left(g_{k} g_{l}\right)=2 \delta_{k l} \tag{35}
\end{equation*}
$$

- Like for the Pauli matrices. Thus, we have something like the generalized Pauli matrices. $d=3$: for instance, Gell-Mann matrices.

A single qudit (qunit):d-dimensional systems II

- Gell-Mann matrices:

$$
\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \\
\lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

There are other possibilities: J. Lawrence, quant-ph/0403095.

A single qudit (qunit):d-dimensional systems III

- Let us again look at the points $\left(v_{1}, v_{2}, \ldots, v_{d^{2}-1}\right)$ corresponding to physical states.
- First note that the set of convex. This is because mixing two physical states ϱ_{1} and ϱ_{2}, we always get a physical state

$$
\begin{equation*}
\varrho=p \varrho_{1}+(1-p) \varrho_{2} . \tag{36}
\end{equation*}
$$

A single qudit (qunit):d-dimensional systems IV

Two convex objects and one that is not convex.

A single qudit (qunit): d-dimensional systems V

- On the next figure we will show the set of quantum states.
- The cooridnate axis could be the v_{l}, for example.
- Inside the set there are the density matrices with full rank.
- On the boundary there are the states with less than full rank, such as for example rank-1 states, which are pure states.

Set of physical quantum states. Note that the set is convex. A,B,D: rank-1 states. C: rank-2 state. E: full rank states.

A single qudit (qunit):d-dimensional systems VI

- Observation. The following inequality is true

$$
\begin{equation*}
\lambda_{\min }(A+B) \geq \lambda_{\min }(A)+\lambda_{\min }(B) \tag{37}
\end{equation*}
$$

Proof. Let us consider that for a Hermitian matrix X we have

$$
\begin{equation*}
\lambda_{\min }(X)=\min _{\psi}\langle\psi| X|\psi\rangle . \tag{38}
\end{equation*}
$$

Then, for A and B Hermitian matrices we have

$$
\begin{align*}
\lambda_{\min }(A+B) & =\min _{\psi}\langle\psi| A+B|\psi\rangle \geq \min _{\psi}\langle\psi| A|\psi\rangle+\min _{\psi}\langle\psi| B|\psi\rangle \\
& =\lambda_{\min }(A)+\lambda_{\min }(B) . \tag{39}
\end{align*}
$$

We can prove similarly that

$$
\begin{equation*}
\lambda_{\max }(A+B) \leq \lambda_{\max }(A)+\lambda_{\max }(B) \tag{40}
\end{equation*}
$$

Full rank states

- Using this, we can say the following.
- Observation. Full-rank states are inside the set. Proof. If the state is full rank, it means that for some small ϵ

$$
\begin{equation*}
\varrho^{\prime}=\varrho+\epsilon H \tag{41}
\end{equation*}
$$

is also physical, where H is a trace 0 Hermitian matrix. Why is that? See also the next figure.

Full rank states II

ρ
 - ρ^{\prime}

We take an internal state ϱ and consider the states ϱ^{\prime} in its neighborhood.

Full rank states III

- It is physical since
(1) Trace is 1 .
(2) Hermitian.
(3) Eigenvalues are nonzero for small epsilon. This is because

$$
\begin{equation*}
\lambda_{\max }(\varrho)+\lambda_{\max }(\epsilon H) \geq \lambda_{k}\left(\varrho^{\prime}\right) \geq \lambda_{\min }(\varrho)+\lambda_{\min }(\epsilon H) . \tag{42}
\end{equation*}
$$

Here we have

$$
\lambda_{\min }(\epsilon H)= \begin{cases}+\epsilon \lambda_{\min }(H), & \text { if } \epsilon \geq 0, \tag{43}\\ -|\epsilon| \lambda_{\max }(H), & \text { if } \epsilon<0 .\end{cases}
$$

Similar statement holds for $\lambda_{\max }(\epsilon H)$.

Non-full-rank states

- Observation. Non-full-rank states are on the surface of the set.
- Proof. If the state is not full rank, then it has zero eigenvalues. Thus, there is an H such that ϱ^{\prime} is aphisical for any $\epsilon>0$ or any $\epsilon<0$.
- To be more explicit, let us write

$$
\begin{equation*}
\varrho=U D U^{\dagger} \tag{44}
\end{equation*}
$$

such that D contains the eigenvalues. Here,

$$
\begin{equation*}
D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{d}\right) \tag{45}
\end{equation*}
$$

and the eigenvectors are

$$
\begin{equation*}
U=\left[\left|\Psi_{1}\right\rangle,\left|\Psi_{2}\right\rangle,\left|\Psi_{3}\right\rangle, \ldots,\left|\Psi_{d}\right\rangle\right] . \tag{46}
\end{equation*}
$$

Non-full-rank states II

- Assume that $\lambda_{d}=0$. Then,

$$
\begin{equation*}
\varrho^{\prime}=\varrho+\epsilon\left(\left|\Psi_{d}\right\rangle\left\langle\Psi_{d}\right|-\mathbb{1} / d\right) \tag{47}
\end{equation*}
$$

has a negative eigenvalue for any $\epsilon<0$. The Identity is needed to make the expression zero-trace.

- This is because the eigenvalues of this matrix are given by

$$
\begin{equation*}
D^{\prime}=\operatorname{diag}\left(\lambda_{1}-\epsilon / d, \lambda_{2}-\epsilon / d, \lambda_{3}-\epsilon / d, \ldots, \lambda_{d}+\epsilon(1-1 / d)\right) \tag{48}
\end{equation*}
$$

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Two or more qubits: reduced states

- How can one see the state of a qubit, if it is the part of an entangled state?
- A reduced state of a bipartite system can be obtained after tracing out one of the subsystems. Let us consider a two-qubit system and write the density matrix in the basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$. Then, denote the elements of the density matrix by

$$
\begin{equation*}
\varrho_{i j, k l}, \tag{49}
\end{equation*}
$$

where $i, j, k, I=0,1$. In other words, it looks like

$$
\varrho=\left(\begin{array}{llll}
\varrho_{00,00} & \varrho_{00,01} & \varrho_{00,10} & \varrho_{00,11} \\
\varrho_{01,00} & \varrho_{01,01} & \varrho_{01,10} & \varrho_{01,11} \tag{50}\\
\varrho_{10,00} & \varrho_{10,01} & \varrho_{10,10} & \varrho_{10,11} \\
\varrho_{11,00} & \varrho_{11,01} & \varrho_{11,10} & \varrho_{11,11}
\end{array}\right) .
$$

Thus, the size of the density matrix is 4×4.

Two or more qubits: reduced states II

- To become familiar with bras and kets, one can even use the completeness relation

$$
\begin{equation*}
\text { Identity }=\sum_{i j}|i j\rangle\langle i j| . \tag{51}
\end{equation*}
$$

Then, one obtains

$$
\begin{equation*}
\text { Identity } \left.\times \varrho \times \text { Identity }=\sum_{i j k l}|i j\rangle(\langle i j| \varrho|k|\rangle\right)\langle k|, \tag{52}
\end{equation*}
$$

where the expression in the bracket is just the matrix element of the density matrix

$$
\begin{equation*}
\left.\varrho_{i j, k l}=\langle i j| \varrho|k\rangle\right\rangle . \tag{53}
\end{equation*}
$$

Hence, the density matrix can be written as

$$
\begin{equation*}
\varrho=\sum_{i j k l} \varrho_{i j, k \mid}|j\rangle\langle k| \mid . \tag{54}
\end{equation*}
$$

Two or more qubits: reduced states III

- Then, tracing out the second subsystem gives the reduced state

$$
\begin{equation*}
\operatorname{Tr}_{2}(\varrho)=\varrho_{\mathrm{red}} \tag{55}
\end{equation*}
$$

which is given as

$$
\begin{equation*}
\varrho_{\mathrm{red}, \mathrm{ik}}=\sum_{m} \varrho_{i m, k m} . \tag{56}
\end{equation*}
$$

This is a 2×2 density matrix of a qubit. With this

$$
\begin{equation*}
\langle A \otimes \mathbb{1}\rangle_{\varrho}=\langle A\rangle_{\varrho_{\mathrm{red}}} . \tag{57}
\end{equation*}
$$

- Graphical representation: in the blockdiagonal representation, we sum the elements in the diagonal of the small matrices.
- Tracing out for pure states:

$$
\begin{equation*}
\operatorname{Tr}_{2}\left(\sum_{k} \alpha_{k}\left|\psi_{k}\right\rangle\left|\phi_{k}\right\rangle\right)=\sum_{k}\left|\alpha_{k}\right|^{2}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| . \tag{58}
\end{equation*}
$$

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Purifications

- The pure state $\Psi_{A B}$ state is the purification of the mixed state ϱ_{A} if

$$
\begin{equation*}
\operatorname{Tr}_{B}\left(\left|\Psi_{A B}\right\rangle\left\langle\Psi_{A B}\right|\right)=\varrho_{A} \tag{59}
\end{equation*}
$$

Note that $\left|\Psi_{A B}\right\rangle$ on subsystems A and B, while ϱ_{A} lives on subsystem A only.

- Let us assume that a density matrix is defined as

$$
\begin{equation*}
\varrho_{A}=\sum_{k} p_{k}\left|\phi_{k}\right\rangle\left\langle\left.\phi_{k}\right|_{A} .\right. \tag{60}
\end{equation*}
$$

- Then, a purification can be a pure state

$$
\begin{equation*}
|\Psi\rangle_{A B}=\sum_{k} \sqrt{p_{k}}\left|\phi_{k}\right\rangle_{A} \otimes|k\rangle_{B} \tag{61}
\end{equation*}
$$

where $|k\rangle_{B}$ denotes an orthonormal basis of the subsystem B.

Purifications II

- If $|\Psi\rangle_{A B}$ is a purification then

$$
|\Psi\rangle_{A B}^{\prime}=\mathbb{1}_{A} \otimes U_{B}|\Psi\rangle_{A B},
$$

is also a purification.

Purifications III

- Purification of the eigendecomposition,

$$
\begin{equation*}
\varrho_{A}=\sum_{k} \lambda_{k}\left|\phi_{k}\right\rangle\left\langle\left.\phi_{k}\right|_{A} .\right. \tag{63}
\end{equation*}
$$

Then,

$$
\begin{equation*}
|\Psi\rangle_{A B}=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}\right\rangle_{A} \otimes|k\rangle_{B} . \tag{64}
\end{equation*}
$$

If ϱ_{A} is full rank then the size of B is the same of the size of A.

- In general, B can also have a larger dimension that A.

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Purity

- Defined as

$$
\begin{equation*}
\operatorname{Tr}\left(\varrho^{2}\right) \tag{65}
\end{equation*}
$$

- 1 for pure states.
- $1 / d$ for the completely mixed state.

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Shannon entropy

- There is a source that outputs an integer number between 1 and d.
- The Shannon entropy is given as

$$
\begin{equation*}
H=-\sum_{k=1}^{d} p_{k} \log p_{k} \tag{66}
\end{equation*}
$$

Shannon entropy II

- Properties
- Classical, not quantum.
- The source can have d possible outputs with some probability.
- In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent in the variable's possible outcomes (Wikipedia).
- There is a clear relation to compression of data. If the entropy is lower, one can compress the data to a smaller space.

Shannon entropy III

- Further properties
- $H=0$ if $p_{1}=1$, all other $p_{k}=0 \cdot \vec{p}=(1,0,0,0, \ldots)$. The output is always the same. No information is provided.
- Comment: we can show that, using L'Hospitals rule,

$$
\begin{equation*}
\lim _{x \rightarrow 0}(x \log x)=\lim _{x \rightarrow 0} \frac{\log x}{1 / x}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=-\lim _{x \rightarrow 0} x=0 \tag{67}
\end{equation*}
$$

- $H=\log d$ (maximal) if $p_{k}=\frac{1}{d} \cdot \vec{p}=\left(\frac{1}{d}, \frac{1}{d}, \frac{1}{d}, \frac{1}{d}, \ldots\right)$. All outputs are equally probable, a lot of information is provided.

Von Neumann entropy

- Von Neumann entropy for a quantum state is defined as

$$
\begin{equation*}
S(\varrho)=-\operatorname{Tr}(\varrho \log \varrho) \equiv-\langle\log \varrho\rangle . \tag{68}
\end{equation*}
$$

- Note: matrix logarithm! It can be written with the eigenvalues of the density matrix as

$$
\begin{equation*}
S(\varrho)=-\sum_{k=1}^{d} \lambda_{k} \log _{2} \lambda_{k} \tag{69}
\end{equation*}
$$

Von Neumann entropy II

- Properties
- Quantum. "Quantum version" of the Shannon entropy.
- For a pure state we have $\lambda_{k}=\{1,0,0, \ldots, 0\}$, and thus it is zero.
- Its maximal is for the completely mixed state for which $\lambda_{k}=\left\{\frac{1}{d}, \frac{1}{d}, \frac{1}{d}, \ldots, \frac{1}{d}\right\}$, and its value is $\log _{2} d$.
- Concave, i.e.,

$$
\begin{equation*}
S\left(p \varrho_{1}+(1-p) \varrho_{2}\right) \geq p S\left(\varrho_{1}\right)+(1-p) S\left(\varrho_{2}\right) . \tag{70}
\end{equation*}
$$

- Invariant under change of basis:

$$
\begin{equation*}
S(\varrho)=S\left(U_{\varrho} U^{\dagger}\right) \tag{71}
\end{equation*}
$$

Von Neumann entropy III

- Further property
- Additive for independent systems.

$$
\begin{equation*}
S\left(\varrho_{1} \otimes \varrho_{2}\right)=-\operatorname{Tr}\left[\left(\varrho_{1} \otimes \varrho_{2}\right) \log \left(\varrho_{1} \otimes \varrho_{2}\right)\right] . \tag{72}
\end{equation*}
$$

Let us prove it. Let us first use

$$
\begin{equation*}
\log \left(\varrho_{1} \otimes \varrho_{2}\right)=\log \left(\varrho_{1}\right) \otimes \mathbb{1}+\mathbb{1} \otimes \log \left(\varrho_{2}\right) . \tag{73}
\end{equation*}
$$

We obtain

$$
S\left(\varrho_{1} \otimes \varrho_{2}\right)=-\operatorname{Tr}\left[\left(\varrho_{1} \otimes \varrho_{2}\right) \log \left(\varrho_{1}\right) \otimes \mathbb{1}\right]-\operatorname{Tr}\left[\left(\varrho_{1} \otimes \varrho_{2}\right) \mathbb{1} \otimes \log \left(\varrho_{2}\right)\right] .
$$

Let us now consider

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=(A B) \otimes(C D) \tag{74}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
S\left(\varrho_{1} \otimes \varrho_{2}\right)=-\operatorname{Tr}\left\{\left[\varrho_{1} \log \left(\varrho_{1}\right)\right] \otimes \varrho_{2}\right\}-\operatorname{Tr}\left\{\left[\varrho_{1} \otimes \varrho_{2} \log \left(\varrho_{2}\right)\right]\right\} . \tag{75}
\end{equation*}
$$

Finally, let us use

$$
\begin{equation*}
\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B) \tag{76}
\end{equation*}
$$

We arrive at

$$
\begin{equation*}
S\left(\varrho_{1} \otimes \varrho_{2}\right)=-\operatorname{Tr}\left[\varrho_{1} \log \left(\varrho_{1}\right)\right]-\operatorname{Tr}\left[\varrho_{2} \log \left(\varrho_{2}\right)\right]=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right) . \tag{77}
\end{equation*}
$$

Von Neumann entropy IV

- Further properties
- Strongly subadditive,

$$
\begin{equation*}
S\left(\varrho_{A B C}\right)+S\left(\varrho_{B}\right) \leq S\left(\varrho_{A B}\right)+S\left(\varrho_{B C}\right) . \tag{78}
\end{equation*}
$$

The matrices $\varrho_{B}, \varrho_{A B}$, etc. reduced states.

- Subadditive,

$$
\begin{equation*}
S\left(\varrho_{A C}\right) \leq S\left(\varrho_{A}\right)+S\left(\varrho_{C}\right) \equiv S\left(\varrho_{A} \otimes \varrho_{C}\right) . \tag{79}
\end{equation*}
$$

- Araki-Lieb inequality

$$
\begin{equation*}
\left|S\left(\varrho_{A}\right)-S\left(\varrho_{C}\right)\right| \leq S\left(\varrho_{A C}\right) . \tag{80}
\end{equation*}
$$

- Often used in condensed matter physics and field theory. See block entropy depending on the block size.

Quantum relative entropy

- The relative entropy is given as

$$
\begin{equation*}
S(\varrho \| \sigma)=-\operatorname{Tr}[\varrho(\log \sigma-\log \varrho)]=-\operatorname{Tr}(\varrho \log \sigma)-S . \tag{81}
\end{equation*}
$$

- Properties
- $S(\varrho \| \sigma) \geq 0$.
- $S(\varrho \| \sigma)=0$ if and only if $\varrho=\sigma$.
- Not symmetric $S(\varrho \| \sigma) \neq S(\sigma \| \varrho)$.
- Sort of a distance between two quantum states.
- Invariant under simultaneous change of basis:

$$
S(\varrho \| \sigma)=S\left(U_{\varrho} U^{\dagger} \| U_{\sigma} U^{\dagger}\right)
$$

- $S\left(\varrho_{1} \otimes \varrho_{2} \| \sigma_{1} \otimes \sigma_{2}\right)=S\left(\varrho_{1} \| \sigma_{1}\right)+S\left(\varrho_{2} \| \sigma_{2}\right)$.

Quantum relative entropy II

- Further properties
- For the relative entropy to the completely mixed state

$$
\begin{equation*}
\varrho_{\text {completely mixed }}=\mathbb{1} / d \tag{82}
\end{equation*}
$$

we have

$$
\begin{equation*}
S\left(\varrho \| \varrho_{\text {completely mixed }}\right)=\log (d)-S(\varrho) \tag{83}
\end{equation*}
$$

- Monotonicity under CP maps (completely positive maps = physical maps). ϱ and σ evolves under the same CP map. $S(\varrho \| \sigma)$ cannot increase.

Linear entropy

- The linear entropy is defined as

$$
\begin{equation*}
S_{\operatorname{lin}}(\varrho)=1-\operatorname{Tr}\left(\varrho^{2}\right) \equiv\langle\mathbb{1}-\varrho\rangle . \tag{84}
\end{equation*}
$$

- It is often easier to obtain than the von Neumann entropy.
- Its relation to von Neumann entropy via the Mercator series is

$$
\begin{equation*}
-\langle\log \varrho\rangle=\langle\mathbb{1}-\varrho\rangle+\left\langle(\mathbb{1}-\varrho)^{2}\right\rangle / 2+\left\langle(\mathbb{1}-\varrho)^{3}\right\rangle / 3+\ldots \tag{85}
\end{equation*}
$$

This is based on expanding

$$
\begin{equation*}
\log (\mathbb{1}-(\mathbb{1}-\varrho)) \tag{86}
\end{equation*}
$$

using the Mercator series

$$
\begin{equation*}
\log (1+x)=x-x^{2} / 2+x^{3} / 3-+\ldots \tag{87}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\mathbb{1}-\varrho \geq 0 \tag{88}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
S \geq S_{\operatorname{lin}} \tag{89}
\end{equation*}
$$

Outline

(1) General characteristics of multi-partite quantum systems

- A. Classical bits
- B. Quantum bit - pure states
- C. Multi-qubit systems - pure states
- D. Measurement
- E. Mixed states and the density matrix
- F. Geometry of quantum states
- A single qubit
- A single qudit (qunit):d-dimensional systems
- G. Two or more qubits: reduced states
- H. Purifications
- I. Purity
- J. Entropy
- Shannon entropy
- Von Neumann entropy
- Quantum relative entropy
- Linear entropy
- K. Fidelity

Fidelity

How to measure the distance between quantum states?

- Pure states: overlap square, $\langle\psi \mid \phi\rangle^{2}$.
- $\langle\psi \mid \phi\rangle=0$ if and only if $|\psi\rangle=|\phi\rangle$.
- A pure state and a mixed state:

$$
\begin{equation*}
\operatorname{Tr}(|\Psi\rangle\langle\Psi| \varrho)=\langle\Psi| \varrho|\Psi\rangle . \tag{90}
\end{equation*}
$$

- Two mixed states: more difficult

$$
\begin{equation*}
F(\varrho, \sigma)=(\operatorname{Tr}(\sqrt{\sqrt{\varrho} \sigma \sqrt{\varrho}}))^{2} \tag{91}
\end{equation*}
$$

- $0 \leq F(\varrho, \sigma) \leq 1$.
- $F(\varrho, \sigma)=1$ if and only if $\varrho=\sigma$.
- $F(\varrho, \sigma)=0$ if ϱ and σ live on orthogonal subspaces.
- Symmetric $F(\varrho, \sigma)=F(\sigma, \varrho)$.
- Let us check consistency. If $\rho=|\Psi\rangle\langle\Psi|$ then $\sqrt{\varrho}=\varrho=|\Psi\rangle\langle\Psi|$. Then,

$$
\begin{equation*}
F(\varrho, \sigma)=\operatorname{Tr}(\sqrt{|\Psi\rangle\langle\Psi| \sigma|\Psi\rangle\langle\Psi|})^{2}=\langle\Psi| \sigma|\Psi\rangle \operatorname{Tr}(\sqrt{|\Psi\rangle\langle\Psi|})^{2}=\langle\Psi| \sigma|\Psi\rangle . \tag{92}
\end{equation*}
$$

Hence, we got back the formula for the simpler case.

Fidelity

- Defining the Fidelity with a maximum over purifications

$$
\begin{equation*}
F(\varrho, \sigma)=\max _{\left|\Psi_{\sigma}\right\rangle}\left|\left\langle\Psi_{\varrho} \mid \Psi_{\sigma}\right\rangle\right|^{2} \tag{93}
\end{equation*}
$$

- $\left|\Psi_{\varrho}\right\rangle$ is a purification of $\varrho,\left|\Psi_{\sigma}\right\rangle$ is a purification of σ,

