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0 Entanglement theory (entangled/not entangled)
@ Motivation



Entanglement detection

@ We would like to distinguish entangled states from separable
states.

@ The problem is very difficult, there are no general methods.



0 Entanglement theory (entangled/not entangled)

@ A. Bipartite case



Separability and entanglement of pure states

@ if the pure state is a product state then it is separable. If it is not a
product state then it is entangled.

@ If the reduced state
01 = Tra([W)(V])

is pure then the state is a product state, otherwise it is entangled.
In other words, if
Tr{[Tra(IW)(W])]?) = 1

then the state is a product state.



Separability and entanglement for pure states |

@ A quantum state is called separable if it can be written as a
convex sum of product states as

Q—ZPka ®0?,

where p, form a probability distribution (px > 0, >« px = 1), and
gg(”) are single-qudit density matrices. A state that is not separable

is called entangled.

@ R. F. Werner, 1989:

with the density matrix W=3"_p, Wl® W2, ie., Wis a
convex combination of product states. Expectation
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A state of a composite quantum system is called classically correlated if it can be approximated
by convex combinations of product states, and Einstein-Podolsky-Rosen correlated otherwise. Any
classically correlated state can be modeled by a hidden-variable theory and hence satisfies all gen-
eralized Bell’s inequalities. It is shown by an explicit example that the converse of this statement is

false.

L. INTRODUCTION

Consider a composite quantum system described in a
Hilbert space # =#'® #*. An uncorrelated state of this
system is given by a density matrix W [i.e., an operator
WeEB(#H) with W20 and tr W=1] in # of the form
W=W'® W? for two density matrices W'E B(#,). This
is equivalent to saying that the expectation value
tr(WA,® A,) for the joint measurement of observables
A'€B(H') (i=1,2) on the respective subsystems always
factorizes, i.e.,

tiWA'® A)=tre(W-A'@ 1)tr(W-1 4?)
=tr(W'AHtr(W24?) .

Such uncorrelated states can be prepared very easily by
using two preparing devices for systems 1 and 2, which
H WP His * R " o

it can be approximated (e.g., in trace norm) by density
matrices of the form (1). States that are not classically
correlated have been called EPR correlated' to emphasize
the crucial role of such states in the Einstein-Podolsky-
Rosen paradox, and for the violations of Bell's inequali-
ties (see below). EPR correlation and classical correla-
tion are defined as a property of the density matrix W.
Since there are usually very different ways of preparing
the same state W, classical correlation does not mean that
the state has actually been prepared in the manner de-
scribed, but only that its statistical properties can be
reproduced by a classical mechanism.

The terminology ‘classically correlated” is further
justified by the observation that in classical probability
theory all states have this property. States in probability
theory are given by probability measures, and the state of
a composite system is given by a probability measure on a



Separability and entanglement of pure states lli

Comments:

@ For pure states it is easy to decide whether a state is separable of
not. For mixed states, it is very hard.

@ Hand waving meaning of the definition above: with probability px a

machine produced the product state 95(1) ®QE(2).

@ The two parties (i.e., 1 and 2) can be far from each other (i.e., on
the Moon and on Earth).

@ No real quantum dynamics is needed between the two parties to
create the separable state.

@ Local Operation and Classical Communiation (LOCC) cannot
create an entangled state from a separable one.



Separability and entanglement of pure states IV

Comments (continued)
@ Let us see the following two maximally entangled states

1
|d*)y = —(|00) = |11)).
@( )
An equal mixture of these states is

’
(100)00] + [11)(11]),

N|

which is separable.

@ Thus, if we mix two entangled states, we might end up with a
separable state.



Separability and entanglement of pure states V

Comments (continued)
@ Separable states can be correlated. For example, the state

% (100)00] + [11)(11])
has nonzero correlations, however, it is separable.
@ This can be seen noting that
(cz®@0z) = +1.
We can also say that

<O‘z®0‘z>_<0_z®:ﬂ.><]]_®0_z>:+1



Separability and entanglement of pure states V

Separable states

The set of entangled states and the set of separable states. Again, the
set of all states is convex, similarly, as the set of separable states is

convex. o’ = po1 + (1 - p)oz.



0 Entanglement theory (entangled/not entangled)

@ B. Entanglement criteria



Entanglement criteria

@ Deciding whether a state is entangled or not is a difficult problem.
There are no necessary and sufficient conditions for entanglement
in general.

@ However, there are conditions that are necessary and sufficient for
small systems.

@ There are also conditions that are sufficient conditions for
entanglement for larger systems, but does not detect all entangled
states.



Partial transposition

@ Partial transposition
(0™)ikt = oK

@ Let us see how to do the partial transposition on a system of two
quitrits.
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Partial transposition Il

@ Let us take a bipartite separable state
QOsep = Zkak ®Qk .

@ Let us carry out the so called partial transposition operation on the
second subsystem. Then we get

Qsep Z p Q 0.

@ Thatis, if all Q(”) > 0, then the matrices obtained from them by
tensor product and transposition are also positive semidefinite.



Partial transposition Il

@ However, in general, there are states for which
02 2 0.

Such states cannot be separable thus they are entangled.



Partial transposition IV

@ How to check whether a state is entangled with the
Peres-Horodecki criterion?

@ Take the density matrix.
© Calculate the partial transpose.
© Calculate its eigenvalues.

© Ii there is a negative eigenvalue, the state is entangled. If not, then
we do not know.

@ The Peres-Horodecki criterion is necessary and sufficient for 2 x 2
(qubit-qubit) and 2 x 3 (qubit-qutrit) systems.

@ For larger systems, there are quantum states that are entangled,
but not detected by the Peres-Horodecki criterion.



Partial transposition V
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Separability Criterion for Density Matrices

Asher Peres*
Department of Physics, Technion—Israel Institute of Technology, 32000, Haifa, Israel
(Received 8 April 199p
A quantum system consisting of two subsystemséparableif its density matrix can be written
asp =Y, waps ® pi, where p) and pj are density matrices for the two subsystems, and the
positive weightsw, satisfy > w, = 1. In this Letter, it is proved that a necessary condition for
separability is that a matrix, obtained by partial transpositiop ohas only non-negative eigenvalues.
Some examples show that this criterion is more sensitive than Bell's inequality for detecting quantum
inseparability. [S0031-9007(96)00911-8]

PACS numbers: 03.65.Bz, 03.65.Ca

A striking quantum phenomenon is the inseparability of Pmpny = Z Wwa(pWmn (PR v - )
composite quantum systems. Its most famous example is A

the violation of Bell's inequality, which may be detected
if two distant observers, who independentigeasure
subsystems of a composite quantum systezport their
results to a common site where that information is,

analyzed [1]. However, even if Bell's inequality is
caticfind U o Aiven ~Aamnncita Aant im ouctam  tha

Latin indices refer to the first subsystem, Greek indices
to the second one (the subsystems may have different
dimensions). Note that this equation can always be
satisfied if we replace the quantum density matrices by
_classical Liouville functions (and the discrete indices are



Entanglement witnesses

Definition. An entanglement witness W is an operator such that

@ Its expectation value is nonnegative on all separable states.

@ For some entangled state it is negative.



Entanglement witnesses Il

Separable states

Entanglement witnesses. The are entanglement conditons that are
linear in operator expectation values.



@ Example 1: Let is see the following entanglement withess
sz: I[—Ux®o'x—0'z®0'z.

@ Why is this a witness? For product states of the form
W) = |Wq) ®|W2), we have

(Cx®@0x) +{(0z80;) = (0'x>\ll1<0'x>\l12 + (0'z>\ll1<0'z>\112 <1
@ Here, we have to use the Cauchy-Schwarz inequality, that is
Vi - Vo < |4 |V

@ Using this we obtain

( (@v, )( (v, )s JoB, +(023 iR, +od, <1,

(0'z>\ll1 (0'z>\I12

since the length of Bloch vector is at most 1.



@ Due to the convexity of the set of quantum states, this is also true
for separable states. That is

(W, = Tr(Wosp) =Te(W Y proy’ ©02)
k

= Zkar(ngg) ®QE(2)) > 0.
K

@ On the other hand, the maximum for quantum states is 2. Such a
maximum is obtained for the state (|00) + [11))/ V2.
@ How to see this? We need
U_x®0_)(|00> = |11>,
ox ®0x[11) = |00).
Then,
[00) +|00) |00) +|11)
Ox ®0x > = > s

Hence
(oxQoyx)=1.



We also need

0z ® 0£/00) = [00),
o, Q0,11) =|11).

Then,
[00) +111)  100) + [11)
TR0 5 = > .
Hence
<O-Z ® 0-2> - 1
In summary,

<Ux®0'x>+<0'z®0'z>:2.



@ Example 2: Let us see the following entanglement witness

nyz:ﬂ+0'x®0'x+0'x®0'x+0'z®0'z- (1)

@ It can be proven to be a witness like before. Which state is it good
for? It is the singlet state

1
Ve = ——(100 4115 — [1)41095). 2
[Wsinglet) \/§(| )al1)s —11)410)8) (2)

@ For this state,
(oo = -1 (3)

holds for I = x, y, z.



@ Observation. We show that
Tr(AB™') = Tr(AT'B).
@ Proof.—Remember that
(XY iisa = Xig i

@ Based on that
(AB)ij,kl = Z Aij,mann,kl,
mn

(AB™)jik = Z Ajj.mnBrkn,mi»

ABT1 ZZAU mn(B )mn// = ZzAljmn in.mj>

ij m.n ij m.n
T1 T1
TI'(A B) — Z Z(A )ij’mann’ij. — Z Z Amj,iann’ij.
ij mn ij mn

@ We can see that Tr(ABT") = Tr(AT' B), since if we exchange i and
m with each other then we get one formula from the other. o



@ Example 3: Let us design an entanglement witness that detects
the state |V) as entangled. Such a witness can be defined as

W = vyv|™,

where |v) is the eigenvector of [W)(W|T! with the smallest
eigenvalue (which is negative).

@ Proof. If |v) is the eigenvector of [W)(W|T! with the smallest
eigenvalue then we have

W vy = Alv),
where 1 < 0. Then, we have
Tr(WW) W) = Tr(jv(vIWW|T) = 1 < 0.

Here we used that Tr(AT' B) = Tr(AB™). Thus, the witness
detects the state |W) as entangled.



@ Moreover, for every separable state we have
Tr(Wosep) = TI'(|V><V|Qsep) > 0.

This can be seen knowing that ol}, > 0. O



Variance based criteria

@ For a bipartite system, with parties A and B, we have for both
parties
(AXK)? + (AYk)? = Ly

for k = A, B. For product states of the form [V) = |V 4) @ |Wg),we
have

[A(Xa+ XB)? = (Xa+ Xg)*) = (Xa+ Xp)* = (AXa), + (AXB)S,.
@ This is because for product states we have
(XaXg) — (Xa)(Xp) = 0.
Hence, we have
[A(Xa+ Xg)]? + [A(Ya+ YB)? = La+ Lp.

@ This is also true for separable states due to the convexity of
separable states. What does this mean? The variance is concave,
by mixing it will be never smaller than the average.



Variance based criteria ll

@ Example: we have
(8x)2(2p)? >

Al =

@ Hence, using x2 + y2 > 2xy
(Ax)2 + (Ap)2 = 1.
@ Then, we get

[A(xa = X)) + [A(pa + pB)]* = 2.

@ The "-" sign is needed, since otherwise the relation is true for
separable states, but no quantum state can violate it.



Variance based criteria lll

@ The entangled state
DRIk
k=0

gives zero for both of the variances on the left-hand side.

@ Thus, we can have
[A(xa—xB)]> =0

and
[A(pa+ ps)* = 0.

@ This is possible since

[xa — xB.pa+ pB] = 0.



Variance based criteria IV

@ Example: Equation with three variances

(D )? + (B )? + (Dfrk)? =

for k = A, B.
@ This is because
((jx,k)2 + (jy,k)2 + (jz,k)2> = ./(/ + 1)’
Uxs? + Gy + Uzk)® < 2
@ Using

[AGia+8)P = (B, + (8B,

we get for separable states
[Ajxa +JxB)° + [Ay,A +jy,B)]2 + [A(za+J28)P 2 2.

@ Any state violating this is entangled.



Variance based criteria V

@ For two qubits, this relation is

[AGxa +jx8)2 + [AUya +yB)2 + [AUza + f28) 2 1.
@ The singlet is the two-qubit state violating this criterion maximally
.1

0 al1)8 = 11)4/0) ).
\/§(| Yal1)B —[1)410)8)

I\Usinglet> =

@ For this state
[AGia+jig)?=0

forj=x,y,z

@ Thus, the state violates the criterion maximally.



0 Entanglement theory (entangled/not entangled)

@ C. Multipartite case



Fully separable states/biseparable state/genuine

multiparticle entanglement

@ An N-qudit quantum state is called fully separable if it can be
written as a convex sum of product states as

1
0= Zpkgf{ ) ®gf{2) ® .. ®gf(3).
K

genuine multipartite entanglement.

@ An N-qudit pure quantum state is called biseparable if it can be
written as the tensor product of two states as
V1) ® W),

where [V ) are multiqubit states. A mixed state is called
biseparable if it is the mixture of biseparable pure states.

@ If a state is not biseparable then it is genuine multipartite
entangled.



Fully separable states

@ Example: fully separable state

[000).

@ Biseparable state
1

V2

@ Genuine multipartite entangled state

[0)(100) + [11)).

1

000) + [111)).
\/§(| ) +1111))

@ Example: entanglement criterion for multipartite states

(Ady)? + (AJy))? + (AJ2)? = Nj.



Fully separable states

Separable states

The set of entangled states and the set of separable states. Again, the
set of all states is convex, similarly, as the set of separable states is
Convex.
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