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Entanglement measures

After detecting entanglement, we have to ask how entangled the
state is.

It will turn out that entanglement is a resource.
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General quantum operation
The general quantum operation is defined as

%′ =
∑

k

Ek%E
†

k

with ∑
k

E†k Ek = 1.

Ek are Kraus operators.

Generalized measurements, POVM (positive operator-valued
measure).

Special case: von Neumann measurements, when Ek are
pairwise orthogonal projectors.

Naimark’s dilation theorem:
general operation=
von Neumann measurement on system+ancilla.
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Local operations and classical communication
(LOCC)

LOCC are
local unitaries,
local von Neumann or POVM measurements,
local unitaries or measurements conditioned on measurement
outcomes on the other party.

Mathematical description of LOCC. Separable operations are a
somewhat larger set, however, this set can easily be described.

%′ =
∑

k

E (1)

k ⊗ E (2)

k %
(
E (1)

k ⊗ E (2)

k

)†
with ∑

k

(
E (1)

k ⊗ E (2)

k

)† (
E (1)

k ⊗ E (2)

k

)
= 1.



Local operations and classical communication
(LOCC) II

Stochastic Local Operations and Classical Communication
(SLOCC):

|Ψ〉′ ← E (1)

k ⊗ E (2)

k |Ψ〉

It happens with some probability, not deterministic.

LOCC cannot create entanglement. Separable states remain
separable under LOCC.

LOCC can create correlations.
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Entropy of entanglement

The von Neumann entropy is defined as

S(%) = −Tr(% log2 %).

It can be written with the eigenvalues of the density matrix as

S(%) = −
d∑

k=1

λk log2 λk .

For a pure state we have λk = {1,0,0, ...,0}, and thus it is zero.
Its maximal is for the completely mixed state for which
λk = { 1d ,

1
d ,

1
d , ...,

1
d }, and its value is log2 d .

For a bipartite pure state, the entropy of entanglement is

EE (|Ψ〉) = S(Tr1(|Ψ〉〈Ψ|)).

That is, it is the von Neumann entropy of the reduced state is an
entaglement measure.



Entropy of entanglement II

Comments

It is one for two-qubit singlet states.

It is zero for product states.

It is invariant under U1 ⊗ U2.



Entanglement of formation

For mixed states, the entanglement of formation is the convex roof
of the von Neumann entropy of the reduced state.

EF = min
|Ψk 〉,pk

∑
k

pkEE (|Ψk 〉),

The optimization is over all decompositions of the state of the type

% =
∑

k

pk |Ψk 〉〈Ψk |.

EF tells us, in the asymptotic limit, how many singlets we need to
create the state.

Is it easy to compute? No. For 2 × 2 systems, there is an explicit
formula with the concurrence. For larger systems, there is not a
general method.
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Entanglement of formation

For two qubits, EF can be calculated explicitly (Wootters, 1997).
Special case: for pure states the concurrence is

C(|Ψ〉) = |〈Ψ|Ψ̃〉| = 2|a11a22 − a12a21|,

where

|Ψ〉 =


a11
a12
a21
a22

 .
It is related to the linear entropy of the reduced state.

C =
√

2(1 − Tr(ρ2
red), (1)

where
ρred = Tr2(|Ψ〉〈Ψ|). (2)



Entanglement of formation II

Now we have to compute EF from C.

We also nee that

ε(c) = H2

1 +
√

1 − c2

2

 .
Here

H2 = −x log2 x − (1 − x) log2(1 − x).

Then, EF can be obtained as

EF (%) = ε(C(%)).



Entanglement of formation III

For mixed states, the concurrence is defined as

C(%) = max(0, λ1 − λ2 − λ3 − λ4),

where λk ’s are, in a decreasing order, the eigenvalues of

R =
√
√
%%̃
√
%,

and
%̃ = (σy ⊗ σy )%∗(σy ⊗ σy ).
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Entanglement of distillation

ED tells us, how many singlets we can obtain from the state with
LOCC. In general,

EF ≥ ED .

Note that local operation and classical communication means that
we have several copies and we can act on the copies locally.



Entanglement of distillation II

Strongly entangled

Strongly entangled

Entangled

Entangled

Entangled

Entangled
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Bound entanglement

There are states that need entangled particles to be created, but
singlets cannot be distilled from them.

All PPT entangled states are like that. (That is, all entangled
states that are not detected by the Peres-Horodecki criterion.)



Bound entanglement II
Next, we will prove this. First we show that PPT state remain PPT
under LOCC. Under LOCC we have

%′ =
∑

k

E (1)

k ⊗ E (2)

k %
(
E (1)

k ⊗ E (2)

k

)†
We also have

(%′)T 2 =
∑

k

E (1)

k ⊗ ((E (2)

k )†)T%T2(E (1)

k )† ⊗ (E (2)

k )T

Here we used that (AB)T = BT AT and A† = (A∗)T .

We can see that if %T2 ≥ 0 then (%′)T2 ≥ 0. Thus the PPT states
remain PPT under LOCC.

R., P., M., and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
(Click on the link above, see "G. Bound entanglement - when
distillability fails" on page 44.)

https://arxiv.org/abs/quant-ph/0702225


Bound entanglement III

Let us again remember the flip operator

F |k〉|l〉 = |l〉|k〉

It has eigenvalues ±1.

The maximally entangled state

|Ψme〉 =
1
√

d

d∑
k=1

|k〉|k〉.



Bound entanglement IV

We can show that

|Ψme〉〈Ψme| =
1
d

d∑
k ,l

|k〉〈l | ⊗ |k〉〈l |,

|Ψme〉〈Ψme|
T1 =

1
d

d∑
k ,l

|k〉〈l | ⊗ |l〉〈k | ≡
F
d
.

Now we show that PPT states have a small overlap with the
maximally entangled state. For PPT states, the fidelity with
respect to the maximally entangled state is

Tr(|Ψme〉〈Ψme|%) = Tr(|Ψme〉〈Ψme|
T1%T 1) =

1
d

Tr(F%T1) ≤
1
d
,

since %T 1 ≥ 0 and F has ±1 eigenvalues.



Bound entanglement IV

Thus, PPT states have a small fidelity with respect to the
maximally entangled state. Even LOCC operations cannot
increase this.

A simple product state can reach 1/d

Tr(|Ψme〉〈Ψme||11〉〈11|) =
1
d
.
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Requirements for entanglement measures
1 To each density matrix it assigns a nonnegative number. Typically,

the maximally entangled state has log d .
2 E(%) = 0 for separable states.
3 E does not increase on average under LOCC.

E(%) ≤
∑

k

pkE

 Ak%A
†

k

Tr(Ak%A
†

k )

 . (3)

4 For pure states, it has the same value as the entangement
entropy.

Entanglement monotone: 1,2,3.
Entanglement mesure: 1,2,4 and does not increase under
deterministic LOCC, i.e.,

E(%′) ≤ E(%); %′ =
∑

k

Ak%A
†

k (POVM). (4)

M. B. Plenio and S. Virmani, eprint arXiv:quant-ph/0504163 (2005).

https://arxiv.org/abs/quant-ph/0504163
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Trace norm

Let us consider the singular decomposition of a matrix

A = UΣV †, (5)

where
Σ = diag(σ1, σ2, σ3, ..., σd ) (6)

and σk > 0.

Then the trace norm is

||A||1 = Tr
( √

AA†
)

=
∑

k

σk . (7)

The Hilbert-Schmidt norm is

||A||2 = Tr
(
AA†

)
=

∑
k

σ2
k . (8)



Negativity

Example for a monotone: negativity

N(%) =
||%T1|| − 1

2
.

Trace norm=sum of singular values.

For Hermitian matrices, it is the same as sum of eigenvalues.

N(%) =

∑
k |λk | − 1

2
.

Note that
∑

k λk = 1. Then, assume that the first M eigenvalues
are negative, the rest is positive. We get

N(%) =

∑M
k=1 −λk +

∑d
k=M+1 λk −

∑
k λk

2
.



Negativity II

Hence,

N(%) =
M∑

k=1

|λk |.

That is, the absolute value of the sum of the negative eigenvalues
of the partial transpose.

Clearly, it is zero for PPT states. Thus, it is zero for all separable
states.

Not as meaningful as the Entanglement of Formation, but can be
calculated on any system sizes.

It fulfills certain conditions on how it changes under LOCC. It does
not increase under deterministic LOCC.
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