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0 Entanglement measures (How much is it entangled?)
@ Motivation



Entanglement measures

@ After detecting entanglement, we have to ask how entangled the
state is.

@ It will turn out that entanglement is a resource.
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@ A. General quantum operation



General quantum operation

@ The general quantum operation is defined as
o =) ExoE]
K

with
Z ElEc=1.
k

@ Ej are Kraus operators.

@ Generalized measurements, POVM (positive operator-valued
measure).

@ Special case: von Neumann measurements, when Ex are
pairwise orthogonal projectors.

@ Naimark’s dilation theorem:
general operation=
von Neumann measurement on system+ancilla.
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@ B. Local operations and classical communication (LOCC)



Local operations and classical communication

(LOCC)

@ LOCC are

@ local unitaries,

@ local von Neumann or POVM measurements,

@ local unitaries or measurements conditioned on measurement
outcomes on the other party.

@ Mathematical description of LOCC. Separable operations are a
somewhat larger set, however, this set can easily be described.

.
¢ =Y ENeEPo(EV 0 EP)
k

with

.
(1) g @) (EM g £@)) —
> (B 0 EP) (B 0 ) = 1.
k



Local operations and classical communication

(LOCC) Ii

@ Stochastic Local Operations and Classical Communication
(SLOCC):
wy — EN e EPw)

It happens with some probability, not deterministic.

@ LOCC cannot create entanglement. Separable states remain
separable under LOCC.

@ LOCC can create correlations.
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@ C. Entanglement of formation



Entropy of entanglement

@ The von Neumann entropy is defined as

S(o) = ~Tr(ologz 0).

@ It can be written with the eigenvalues of the density matrix as

d
S(o) = - Z Ak logp Ak
=

@ For a pure state we have 1, = {1,0,0,...,0}, and thus it is zero.

@ lts maximal is for the completely mixed state for which

111 1 ; -
Ak = {5, g»g» - gl» and its value is log, d.

@ For a bipartite pure state, the entropy of entanglement is

Ee(1W)) = S(Try (IWXWV1)).

That is, it is the von Neumann entropy of the reduced state is an
entaglement measure.



Entropy of entanglement Il

@ Comments

e It is one for two-qubit singlet states.
e It is zero for product states.

e ltis invariant under U; ® Us.



Entanglement of formation

@ For mixed states, the entanglement of formation is the convex roof
of the von Neumann entropy of the reduced state.

Er = mi Ec(|Wi)),
F lerkW;ngk:Pk e(IVk))

@ The optimization is over all decompositions of the state of the type

0= VKW,
k

@ Er tells us, in the asymptotic limit, how many singlets we need to
create the state.

@ Is it easy to compute? No. For 2 x 2 systems, there is an explicit
formula with the concurrence. For larger systems, there is not a
general method.
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@ D. Concurrence



Entanglement of formation

@ For two qubits, Ef can be calculated explicitly (Wootters, 1997).
@ Special case: for pure states the concurrence is

C(IW)) = KWWY = 2|a11 8z — a12801);

where
a

a2
ao1
aso

W) =

@ ltis related to the linear entropy of the reduced state.
C= y2(1 - Tr(o2,,). (1)

Pred = TI‘Q(NJ)(\UD (2)

where



Entanglement of formation Il

@ Now we have to compute Er from C.

@ We also nee that

e(c) = Hsp [H— '21_02] )

Here
Hy = —xlogs x — (1 — x) logo(1 — Xx).

@ Then, Er can be obtained as

Er(0) = €(C(0)).



Entanglement of formation Il

@ For mixed states, the concurrence is defined as
C(Q) = max(O,/l1 - /12 - /13 - /14),

where A,’s are, in a decreasing order, the eigenvalues of
R = Voo Ve

0= (oy®ay)o’(oy®0y).

and
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@ E. Entanglement of distillation



Entanglement of distillation

@ Ep tells us, how many singlets we can obtain from the state with

LOCC. In general,
Er > Ep.

@ Note that local operation and classical communication means that
we have several copies and we can act on the copies locally.



Entanglement of distillation Il

Entangled
Entangled
Entangled
Entangled

<

Strongly entangled

Strongly entangled
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@ F. Bound entanglement



Bound entanglement

@ There are states that need entangled particles to be created, but
singlets cannot be distilled from them.

@ All PPT entangled states are like that. (That is, all entangled
states that are not detected by the Peres-Horodecki criterion.)



Bound entanglement Il

@ Next, we will prove this. First we show that PPT state remain PPT
under LOCC. Under LOCC we have

N EM g E@ (B g £@)
o =) B o EPo(E" 0 Ef )
k

We also have

1 2)\t+ 1 2
_ ZEIE )®((El£ )) )TQTQ(E,(( ))T®(EI£ ))T
k

Here we used that (AB)" = BTAT and A" = (A").

@ We can see that if "2 > 0 then (¢’)"? > 0. Thus the PPT states
remain PPT under LOCC.

R., P, M., and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
(Click on the link above, see "G. Bound entanglement - when
distillability fails" on page 44.)


https://arxiv.org/abs/quant-ph/0702225

Bound entanglement lll

@ Let us again remember the flip operator
FlIy = IDlk)

It has eigenvalues +1.

@ The maximally entangled state

1 d
|wme> - T = |k>|k)
Vd é



Bound entanglement IV

@ We can show that

WmeXWmel = KXl & k)1,

Q=

F

Wme)(Wimel T = kil @ Ikl = .

Q=

i
2

@ Now we show that PPT states have a small overlap with the
maximally entangled state. For PPT states, the fidelity with
respect to the maximally entangled state is

! TI'(FQT1) <

Tr(lwmexwmelQ) Tr(lwmexwmelT1 T1) d

Q|-

since o’!' > 0 and F has +1 eigenvalues.



Bound entanglement IV

@ Thus, PPT states have a small fidelity with respect to the
maximally entangled state. Even LOCC operations cannot
increase this.

@ A simple product state can reach 1/d

1
Tr(|WmeXWmel11)X(11]) = r
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@ G. Requirements for entanglement measures



Requirements for entanglement measures

@ To each density matrix it assigns a nonnegative number. Typically,
the maximally entangled state has log d.

@ E(p) = 0 for separable states.
© E does not increase on average under LOCC.

AkoAl
g)<2pk [Tr Aohl )] (3)

© For pure states, it has the same value as the entangement
entropy.

@ Entanglement monotone: 1,2,3.

@ Entanglement mesure: 1,2,4 and does not increase under
deterministic LOCG, i.e.,

E@)<E(e): ¢ = AcA, (POVM). (4)
k

M. B. Plenio and S. Virmani, eprint arXiv:qguant-ph/0504163 (2005).


https://arxiv.org/abs/quant-ph/0504163
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@ H. Negativity



Trace norm

@ Let us consider the singular decomposition of a matrix
A=UzV", )

where
> = diag(0'1,a'2,0'3,...,0'd) (6)

and o > 0.

@ Then the trace norm is

1Al = Tr (VAAT) = 3 (7)
k

@ The Hilbert-Schmidt norm is

1Az = Tr (AAT) = Z o2, (8)

k



Negativity

@ Example for a monotone: negativity

o™ -1

Trace norm=sum of singular values.

@ For Hermitian matrices, it is the same as sum of eigenvalues.

_ 2kl -1

N(o) 5

@ Note that >, 4x = 1. Then, assume that the first M eigenvalues
are negative, the rest is positive. We get

TR Akt Doy Ak~ T Ak

N(o) 5




Negativity I

@ Hence,
M
N(o) = D 1.
k=1

That is, the absolute value of the sum of the negative eigenvalues
of the partial transpose.

@ Clearly, it is zero for PPT states. Thus, it is zero for all separable
states.

@ Not as meaningful as the Entanglement of Formation, but can be
calculated on any system sizes.

@ [t fulfills certain conditions on how it changes under LOCC. It does
not increase under deterministic LOCC.
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