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Introduction

◮ With the rapid development of quantum control it

is now possible to create large scale entanglement

in many physical systems, such as cold atoms or

trapped ions.

◮ Entanglement conditions with collective measure-

ments are important since in many quantum con-

trol experiments the spins cannot be individually

addressed.

◮ We derive the complete set of such entanglement

criteria for a system of spin-1
2

particles [1]. These

criteria detect all entangled states that can be de-

tected based on the first and second moments of

collective angular momenta.

◮ When applied to several spin models, our results

show the presence of bound entanglement in the

thermal state.

◮ In particular, our criteria detect bound entangle-

ment that has a positive partial transpose with re-

spect to all bipartitions.

Motivation

◮ Recently, several generalized spin squeezing cri-

teria for the detection of entanglement were de-

rived and used even experimentally (e.g., [2-5]).

These criteria detect entanglement close to various

important quantum states (e.g., many-body singlet

states, Dicke states, etc.) and were obtained using

very different approaches.

◮ At this point two main questions arise:

• Is there a systematic way of finding all such

inequalities? Clearly, finding such optimal en-

tanglement conditions is a hard task since

one can expect that they contain complicated

nonlinearities.

• How strong are spin squeezing criteria? Can

they detect multipartite entangled states not

detectable by the PPT criterion or other bipar-

tite entanglement criteria?

Spin squeezing criterion

◮ We call a quantum state fully separable states if it

can be written as

ρ = ∑
l

plρ
(1)
l ⊗ρ

(2)
l ⊗ ...⊗ρ

(N)
l , (1)

where ∑l pl = 1 and pl > 0. Otherwise, we call the

state entangled.

◮ The spin squeezing criterion [2] for entanglement

detection is

(∆Jx)
2

〈Jy〉2 + 〈Jz〉2
≥

1

N
, (2)

where Jl := 1
2 ∑N

k=1 σ
(k)
l for l = x,y,z are the collec-

tive angular momentum components and σ
(k)
l are

Pauli matrices. If this inequality is violated then the

state is entangled.

◮ In practice this means that the angular momentum

of the state has a small variance in one direction,

while in an orthogonal direction the angular mo-

mentum is large.

Optimal spin squeezing

◮ For separable states the following inequalities hold:

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ N(N +2)/4,

(∆Jx)
2 +(∆Jy)

2 +(∆Jz)
2 ≥ N/2,

〈J2
k 〉+ 〈J2

l 〉−N/2 ≤ (N −1)(∆Jm)
2,

(N −1)
[

(∆Jk)
2 +(∆Jl)

2
]

≥ 〈J2
m〉+N(N−2)/4,

where k, l,m take all permutations of x,y,z.

◮ For fixed 〈Jk〉 these describe a polytope in the

space of the
〈

J2
k

〉

. The figure shows this polytope

for N = 6 :
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The polytope

◮ The coordinates of the extreme points are

Ax

[

N2

4
−κ(〈Jy〉

2 + 〈Jz〉
2),

N

4
+κ〈Jy〉

2,
N

4
+κ〈Jz〉

2

]

,

Bx

[

〈Jx〉
2 +

〈Jy〉
2 + 〈Jz〉

2

N
,
N

4
+κ〈Jy〉

2,
N

4
+κ〈Jz〉

2

]

,

where κ := (N−1)/N. Points Ay/z and By/z can be

obtained from these by permuting the coordinates.

◮ For 〈Jk〉 = 0 and even N, states corresponding to

Ax and Bx are

ρAx
=

1

2

[

(|+1x〉〈+1x|)
⊗N +(|−1x〉〈−1x|)

⊗N
]

(4)

and

ρBx
= (|+1x〉〈+1x|)

⊗N/2 ⊗ (|−1x〉〈−1x|)
⊗N/2.

(5)

◮ For 〈Jk〉 6= 0 constructing such states is more com-

plicated and is explained in Ref. [1].

Small spin clusters

◮ Let us consider four spin-1/2 particles, interacting

via the Hamiltonian

H = (h12 +h23 +h34 +h41)+ J2(h13 +h24), (6)

where hi j = σ
(i)
x ⊗σ

( j)
x +σ

(i)
y ⊗σ

( j)
y +σ

(i)
z ⊗σ

( j)
z is

a Heisenberg interaction between the qubits i, j.

◮ Such a Hamiltonian is used to describe cuprate and

polyoxovanadate clusters [6,7].

◮ For the above Hamiltonian we compute the ther-

mal state ρ(T,J2) ∝ exp(−H/kT) and investigate

its separability properties.

◮ For several separability criteria (i.e., partial trans-

pose criterion, criteria based on symmetric exten-

sions, computable cross norm criterion, and other

permutation criteria) we calculate the maximal tem-

perature, below which the criteria detect the ther-

mal state as entangled.

Small spin clusters II

◮ Bound temperatures for entanglement
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◮ For J2 &−0.5, the spin squeezing inequality is the

strongest criterion for separability. It allows to de-

tect entanglement even if the state has a positive

partial transpose (PPT) with respect to all biparti-

tions.

◮ Note that multipartite bound entanglement that is

PPT with respect to all partitions is very challenging

to detect.

Spin chains

◮ We found bound entanglement that is PPT with

respect to all bipartitions in XY and Heisenberg

chains, and also in XY and Heisenberg models on

a completely connected graph, up to 9 qubits.

◮ The dependence of the critical temperatures for the

PPT and the optimal spin squeezing criteria as a

function of the number of spins in the Heisenberg

chain is the following
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◮ Thus for these models, which appear in nature,

there is a considerable temperature range in which

the system is already PPT but not yet separable.
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