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What can be interesting for QCD people in
Quantum Information?

Entanglement theory can help to recognize real two- and
three-particle states.

QCD-like systems can be realized with cold atoms.



Quantum Information Science

Quantum optics 60’s (collective manipulation of particles)

matter-light interaction, laser, etc.

Quantum information 80’s/90’s-
(individual manipulation of particles)

Few-body systems

cold trapped ions
cold atoms on an optical lattice
photons

Many-body systems

cold atomic ensembles
Bose-Einstein Condensates of cold atoms



Quantum Information Science II

Quantum information 80’s/90’s- (continued)

Entanglement theory

Quantum computers and algorithms for quantum computers (prime
factoring)

Quantum cryptography, quantum communication
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Pure states: is it a pair or is it not a pair?

Separability

A bipartite pure state is separable if and only if it is a product state.
Otherwise the state is called entangled.

Easy to check. The reduced state of the second party is obtained
as

%2red =Tr1(|Ψ12〉〈Ψ12|)

If |Ψ12〉 = |Ψ1〉 ⊗ |Ψ2〉 if and only iff

Tr(%2
2red) = 1.

Alternatively: ... if and only if

S(%2red) = 0,

where S is the von Neumann entropy

S(%) = −Tr(%ln%).



Pure states: is it a pair or is it not a pair? II

Von Neumann entropy of a block measures
the purity of the block,
that is, entanglement with the neighborhood.



Pure states: is it a pair or is it not a pair? III
Example 1: product state

|Ψ12〉 =
1
2

(|0〉+|1〉)(|0〉+|1〉) =
1
2

(|00〉+ |01〉+ |10〉+ |11〉).

A particle is “independent” from the other. The single particle
reduced state is pure.

%2red =
1
2

(|0〉+|1〉) (〈0|+〈1|) .

Example 2: entangled state

|Ψ12〉 =
1
√

2
(|00〉+ |11〉).

The single particle reduced state is completely mixed.

%2red =
1
2

(|0〉〈0|+ |1〉〈1|) .
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Mixed states: is it a pair or is it not a pair?

Separability

A quantum state is called separable if it can be written as [Werner,
1989]

% =
∑

k

pk%
(k)

1 ⊗ %
(k)

2 ,

where pk form a probability distribution (pk > 0,
∑

k pk = 1), and %(k)
n

are single-particle density matrices. A state that is not separable is
called entangled.

The purity or the von Neumann entropy cannot detect
entanglement any more so easily.



Mixed states: is it a pair or is it not a pair?

Entanglement of formation

For mixed states the entanglement of formation is given as a convex
roof

EF = min
|Ψk 〉,pk

∑
k

pkS(Tr1(|Ψk 〉〈Ψk |)),

where
% =

∑
k

pk |Ψk 〉〈Ψk |.

In general, there is no closed formula.

Easy to compute for small systems or for systems with some
symmetry.



Mixed states: is it a pair or is it not a pair? III

Example

Let us mix
|Ψ

(1)

12 〉 =
1
√

2
(|00〉+|11〉)

and
|Ψ

(2)

12 〉 =
1
√

2
(|00〉-|11〉),

as
% =

1
2

(
|Ψ

(1)

12 〉〈Ψ
(1)

12 |+ |Ψ
(2)

12 〉〈Ψ
(2)

12 |

)
.

Question: Is this entangled? It is a mixture of entangled states.
Answer: no, since % can be written as

% =
1
2

(|00〉〈00|+ |11〉〈11|) .
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Local Operations and Classical Communication
(LOCC)

LOCC are

local unitaries
U1 ⊗ U2

local von Neumann (or POVM) measurements

M ⊗ Identity

local unitaries or measurements conditioned on measurement
outcomes on the other party.

LOCC cannot create entangled states from a separable state.



Local Operations and Classical Communication
(LOCC)

PARTICLE1 PARTICLE2

No entanglement can be created without real two-body quantum
dynamics.
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Entanglement and QCD

A quark/antiquark pair in a gluon environment and look at the
entropy of the color state of the quarks.
[ Buividovich, Kuvshinov, AIP Conf. Proc. 1205, 26 (2010). ]

The color state is a singlet
⇒ purity is 1 and the entropy is zero.

S1

S2



Entanglement and QCD II

The entanglement between the quarks and the gluons tells us only
indirect information about the entanglement between the quarks.

Monogamy of entanglement (official terminology!):

when the two quarks are maximally entangled (=singlet), they
cannot be entangled with the environment.

[ V. Coffman et al., Phys. Rev. A 61, 052306 (2000);
B. M. Terhal, Linear Algebra Appl. 323, 61 (2001).]



Entanglement and QCD III

Question: Is there entanglement between the two quarks?
Answer: More complicated question. The color state is mixed,
thus the entanglement cannot be so easily computed.

S1 S2



Entanglement between the quarks

If the state is not entangled then there are no pairs, EF = 0!

If the state is entangled, then there are pairs. For two-body
singlets EF =maximal!
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Criterion to exclude separability

Entanglement measures are hard to compute. Let us look for
some sufficient condition for entanglement.

gl with l = 1,2, ...,8 are the Gell-Mann matrices.

Collective operators:

Gl := g(1)

l − (g(2)

l )∗.

.

We also need the variances

(∆Gl)
2 := 〈G2

l 〉 − 〈Gl〉
2.
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Criterion to exclude separability II

A condition for separability is∑
k

(∆Gk )2 ≥ 2N(d − 1)

with d = 3 and N = 2.

Any state that violates this is entangled.
For two-body color singlets, the LHS=0!

[ G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth,
Optimal spin squeezing inequalities for arbitrary spin,
Phys. Rev. Lett. (2011). ]



Similar ideas for N>2 for tree-body singlets

gl with l = 1,2, ...,8 are the Gell-Mann matrices.

Collective operators:

Gl :=
N∑

k=1

g(k)

l ,



Criterion for three-particle entanglement (trion

A condition for states without three-particle entanglement is∑
k

(∆Gk )2 ≥ 2N(d − 2)

with d = 3 and N = 3.

Any state that violates this is three-particle entangled.
Recognizes three-particle color singlets! For the singlet the
LHS=0.

[ G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth,
Optimal spin squeezing inequalities for arbitrary spin,
Phys. Rev. Lett. (2011). ]
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Cold gas experiments and QCD

PERSPECTIVE

Quantum Gases
Immanuel Bloch

Ultracold quantum gases are proving to be a powerful model system for strongly interacting
electronic many-body systems. This Perspective explores how such atomic ensembles can help to
unravel some of the outstanding open questions in the field.

When matter is cooled down close to
zero temperature, particles can in-
teract in a cooperative way and form

novel states of matter with striking properties—
superconductors, superfluids, or fractional quan-
tum Hall liquids. Similar phenomena can now
be observed in a dilute gas of atoms, five to six
orders of magnitude less dense than the air
surrounding us. Here, degenerate bosonic and
fermionic quantum gases trapped in magnetic or
optical traps are generated at temperatures in the
nanokelvin regime (1). Whereas initial research
concentrated on weakly interacting quantum
states [for example, on elucidating the coherent
matter wave features of Bose-Einstein conden-
sates (BECs) and their superfluid properties],
research has now turned toward strongly inter-
acting bosonic and fermionic systems (2, 3). In
these systems, the interactions between the
particles dominate over their kinetic energy,
making them difficult to tackle theoretically
but also opening the path to novel ground states
with collective properties of the many-body
system. This has given rise to the hope of using
the highly controllable quantum gases as model
systems for condensed-matter physics, along
the lines of a quantum simulator, as originally
suggested by Feynman (4).

Two prominent examples have dominated the
research in this respect: (i) the transition from a
superfluid to a Mott insulator of bosonic atoms
trapped in an optical lattice potential (5–7) and
(ii) the BEC–Bardeen-Cooper-Schrieffer (BCS)
crossover of a two-component Fermi gas across
a Feshbach resonance through which the mag-
nitude and sign of the interactions between
pairs of atoms can be tuned (8–11). In the first,
a weakly interacting and superfluid gas of quan-
tum degenerate bosons can be turned into an
incompressible and insulating gas in a three-
dimensional lattice of optical microtraps. The
Mott insulator can be visualized as a many-body
system in which strong repulsive interactions
between the particles sort them into a perfectly
ordered array and each lattice site is occupied by
a single atom. In the second example, pairs of
fermionic atoms can form bosonic composite
particles when their interactions are tuned by

Feshbach resonances. Such bosonic composites
can themselves undergo Bose-Einstein conden-
sation, thus fundamentally altering the properties
of the many-body system. When a true two-
body bound state exists between the particles,
the composite bosonic particle is simply a mol-
ecule, albeit very large, whereas in the case of
attractive interactions without a two-body bound
state the composite pair can be seen to be re-
lated to a BCS-type Cooper pair, which can
then undergo condensation. It is the possibility
of changing almost all the underlying param-

eters dynamically and the ability to model the
complex many-body quantum systems by first
principles that have led to a surge in experi-
mental and theoretical research.

What is next on the agenda? For fermionic
systems with and without a lattice, researchers
are trying to see whether they can pair up par-
ticles with very different mass ratios, such as lith-
ium and potassium, or possibly even three
different fermionic atomic species. This line of
work is fueled by a theoretical prediction that such
fermionic mixtures could show phases in which
three fermions join to form a “trion” analogous to
quarks forming baryonic matter or, alternatively,
only two of the fermionic components pair to form
a “color” superfluid (12) as in quantum chromo-
dynamics (Fig. 1). For the case of two particles
with highly different mass ratios, one hopes to

observe exotic forms of superconductivity such
as the Fulde-Ferrell-Larkin-Ovchinnikov super-
conducting phase (13, 14), where particles con-
dense into pairs with nonzero momentum. Early
experiments have produced degenerate mix-
tures of two fermionic atomic species (15) and
two fermionic species with an additional third
bosonic component (16), and both are progress-
ing quickly toward exploiting Feshbach reso-
nances to control the interactions between the
fermionic atoms.

For lattice-based systems, efforts are under
way to explore the feasibility of using ultracold
atoms as quantum simulators for strongly inter-
acting many-body systems. For example, in the
famous class of high-Tc superconductors, such
as the CuO compounds, one observes that these
form antiferromagnetically ordered ground states
when undoped. Upon doping, and thereby
changing the effective filling in the system,
the antiferromagnetic order is destroyed and a
superconducting phase with d-wave symmetry
of the order parameter emerges (17) (Fig. 2).
What exactly happens during the transition

and how it can be described
theoretically is currently a
subject of heated debates
and one of the fundamental
unsolved problems in the
field of condensed-matter
physics. Cold-atom researchers
are currently trying to deter-
mine whether they can help
to resolve some of these is-
sues (18). As a starting point,
several groups are preparing
to observe antiferromagnet-
ically ordered states in two-
component Fermi mixtures in
an optical lattice. To achieve
this, however, one needs to
cool the many-body system
to challenging temperatures
T below the superexchange
interaction energy Jex, which

characterizes the coupling strength between
the spins of atoms on neighboring lattice sites.
If the temperature is not low enough, thermal
fluctuations would simply destroy the fragile
magnetic order present in the ground state.
Superexchange interactions form the basis of
quantum magnetism in strongly correlated elec-
tronic media and can be described as an effective
spin-spin interaction between the neighboring
particles on a lattice (19). They are a result of
virtual “hopping” events of particles to neigh-
boring lattice sites, in which a particle tunnels
to an adjacent site and then the same particle—
or its neighbor—returns to the original lattice
position. For two spin-polarized fermions, such
hopping is suppressed by the Pauli principle,
whereas for two fermions with opposing spin
directions, the hopping is allowed and leads to

Quantum Matter

Johannes-Gutenberg Universität, 55118 Mainz, Germany.
E-mail: bloch@uni-mainz.de

A B

Fig. 1. Three-species fermionic atoms (red, green, and blue spheres)
in an optical lattice can form two distinct phases when the interactions
between the atoms are tuned. In the first case of strong attractive
interactions between the atoms, they join as “trions” (A), whereas in
the second case of weaker interactions, a color superfluid is formed
(B), in which atoms pair up between only two species. The two phases
have strong analogies to the baryonic phase (A) and the color
superfluid phase (B) in quantum chromodynamics [see (12)].

29 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org1202
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Hubbard model with three-state particles

Ĥ = − t !
"i,j#,!

ĉi!
+ ĉj! + !

!!"
!

i

U!"

2
$n̂i!n̂i"% , $1%

with ĉi!
+ the creation operator of a fermionic atom of color

!=1,2 ,3 at site i, and n̂i!= ĉi!
+ ĉi!. In the tunneling term,

"i , j# implies the restriction to nearest neighbor sites, and the
tunneling matrix element is approximately given by
t=ER$2 /&#%s3/4e−2s1/2

, where ER= $2q2

2m is the recoil energy, q
is the wave vector of the lasers, m is the mass of the atoms,
s=V0 /ER, and V0 is the depth of the periodic potential.9,10

We neglect the effects of the confining potential in Eq. $1%,
which would correspond to a site-dependent potential term in
the Hamiltonian. The interaction strength U!" between col-
ors ! and " is related to the corresponding s-wave scattering
length, a!", as U!"=ERa!"q&8 /#s3/4.9,10 Note that fermions
with identical colors do not interact with each other.

For the sake of simplicity, we shall first consider the at-
tractive case with U!"=U%0. This case could be realized by
loading the 6Li atoms into an optical trap in a large magnetic
field, where the scattering lengths become large and nega-
tive, a!"'as'−2500a0, for all three scattering channels, 12,
13, and 23.20

Introducing the usual Gell–Mann matrices, &!"
a

$a=1, . . . ,8%, it is easy to see that global SU$3% transforma-
tions exp$i!i!a!"'aĉi!

+ &!"
a ĉi"% commute with the Hamil-

tonian, which thus also conserves the total number of fermi-
ons for each color, N̂!=!in̂i!. This conservation of particles
is only approximate because in reality the number of the
atoms in the trap continuously decreases due to different
scattering processes. Here, however, we shall neglect this
slow loss of atoms and keep the density (! of atoms for color
! as well as the overall filling factor (( 1

3!!(! fixed.
Let us first focus on the case of equal densities, (!=(. For

small attractive U%0, the ground state is a color
superfluid:15 atoms from two of the colors form the Cooper
pairs and an s-wave superfluid, while the third color remains
an unpaired Fermi liquid. However, as we discussed in Ref.
16, for large attractive interactions, this superfluid state be-
comes unstable, and instead of Cooper pairs, it is more likely
to form three-atom bound states, the so-called “trions.”
These trions are color singlet fermions, and for large )U),
they have a hopping amplitude,

ttrion *
t3

4U2 . $2%

Furthermore, one can easily see that if two trions sit on
neighboring lattice sites, then they increase the energy of
each other by an amount V* t2 / $2)U)%. This is because the
energy of an individual trion is decreased by quantum fluc-
tuations where one of the atoms virtually hops to one of the
neighboring sites. These quantum fluctuations are reduced if
the two trions sit next to each other. Therefore, trions will
tend to form a Fermi liquid in any finite dimensions. This
Fermi liquid state may be further decorated by charge den-
sity wave order at large values of )U). Also, the Fermi liquid
scale TFL of the trionic Fermi liquid should depend on the
value of U, and at the transition point, U=UC, we expect it to
go zero $see Figs. 2 and 3%.

In order to get analytic expressions, we shall study the
ground state in d=) dimensions. Then, to reach a meaning-
ful limit and to get finite kinetic energy, one has to scale the
hopping as t= t*

2&d
, with t* fixed. In this limit, however, trions

become immobile. Therefore, the d→) trionic states are
well approximated as

)T*# = +
i+*

ĉi1
+ ĉi2

+ ĉi3
+ )0# , $3%

where * denotes a subset of sites where trions sit. We can
calculate the energy of this state in infinite dimensions: a
single trion has an energy 3U, thus the energy of such a state
per lattice site is given by ET /N=3U(, with ET the total
energy of the system and N the number of lattice sites.

Clearly, the two ground states obtained by the perturbative
expansions have different symmetries: the superfluid state
breaks SU$3% invariance, while the trionic state does not.
Therefore, there must be a phase transition between them.
Note that, relying on symmetries only, this argument is very
robust and carries over to any dimensions. In infinite dimen-
sions, we find that trions are immobile. However, this is only
an artifact of infinite dimensions and in finite dimensions, a
superconductor-Fermi liquid phase transition should occur.

One could envision that some other order parameter also
emerges and masks the phase transition discussed here. Pre-
liminary results $not discussed here% suggest that indeed a
charge density state forms at large values of )U), but except
for half-filling, which is a special case not discussed here, we
do not see any other relevant order parameter that could in-
trude as a new phase. One could, in principle, also imagine a
phase with simultaneous trionic and fermionic Fermi sur-

|U | |U|C

FIG. 2. $Color online% The ground states for )U), )UC) and
)U)- )UC) can be calculated by perturbation theory. The former is a
BCS state which breaks the SU$3% symmetry, and the latter is a
trionic state with three-particle singlet bound states.

|U|

T TC

trions

superfluid
domains TFL

|U |C

FIG. 3. $Color online% Schematic phase diagram of the attractive
SU$3% Hubbard model. The color superfluid phase is stable below a
critical temperature TC, where the appearance of superfluid domains
is expected. At large interaction strengths )U). )UC), color singlet
trions emerge instead of the Cooper pairs and form a Fermi liquid at
low temperatures T%TFL.

RAPP, HOFSTETTER, AND ZARÁND PHYSICAL REVIEW B 77, 144520 $2008%

144520-2
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Summary

We discussed the possible connection between quantum
chromodynamics and quantum information science

In particular, we discussed entanglement theory.

For our criterion, see

G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth,
Phys. Rev. Lett. 107, 240502 (2011).
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