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Abstract
We have previously proposed a way of using coupled quantum
dots to construct digital computing elements - quantum-dot
cellular automata (QCA). Here we consider a different approach to
using coupled quantum-dot cells in an architecture which, rather
that reproducing Boolean logic, uses a physical near-neighbor
connectivity to construct an analog Cellular Neural Network
(CNN).

I. Introduction

We discuss a computing paradigm in which cells composed of interacting quantum do
employed in a cellular neural network (CNN) architecture. Communication between cells is
through the Coulomb interaction. The cells and their basic behavior are the same as we
previously discussed in the context of the Quantum-dot Cellular Automata (QCA) architec
The key differences here are that in the quantum CNN (Q-CNN) approach: (1) Each cell is u
encode a continuous rather than binary degree of freedom. (2) We focus on the time dep
problem instead of the ground state. (3) The time-dependent Schrödinger equation c
transformed into the CNN state equations.

We have constructed a simple quantum model of a Q-CNN composed of quantum-dot cells
cell contains one classical degree of freedom, the cell polarization, and one quantum deg
freedom, a quantum mechanical phase difference. Mapping onto the CNN paradigm mai
phase information within the cell but no quantum coherence exists between cells. Thus t
dynamics is accomplished through the quantum degrees of freedom, information is only c
across the array in classical degrees of freedom.

Our hope is that by connecting the problem of coupled quantum cells to a circuit archite
developed for exploiting conventional analog integrated circuits, we might be able to open
new solution domain for interconnected quantum devices. Because local connectivity is nat
ultra-small quantum devices, CNN’s may prove a natural extension to the QCA architectur
allow a move into non-digital domains.
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In Section II we briefly review the CNN paradigm. In Section III a quantum treatment of a cell
array will be described. In Section IV the connection between the quantum problem and the
approach will be demonstrated. In Section V. we discuss the generalization of our simple mo
a more general class of Q-CNN’s.

II. The CNN paradigm

The CNN, invented by L. O. Chua and L. Yang [2] and generalized in subsequent work [3,4
two or three dimensional, usually regular array of analogous cells. Each cell, indexed byκ, has
dynamical state variables , external inputs , and internal constant cell data . Each
influenced by its neighbors through a synaptic input which depends on the values of cell
and cell inputs within a sphere centered on cellκ. A CNN synaptic lawdescribes the effect of
other cells on the synaptic input.

(1)

The cell dynamics are determined by aCNN state equationgiving the rate of change of state
variables as thenonlinear function of the state of the cell itself, the synaptic input fro
neighboring cells, and the external inputs.

(2)

If the no external inputs exist then the CNN is calledautonomous. The CNN is then defined by (1)
the synaptic law, (2) the state equation, (3) initial conditions, and (4) boundary conditions. U
neural networks in case of the CNN the cells are primarilylocally interconnected, thus the
practical realization is much easier, than in the case of a fully interconnected neural networ

III. Quantum model of cell array

We consider here a simple model of an array of interacting quantum cells. Each cell contain
quantum dots and two extra electrons as shown schematically in Figure 1. The electrons t
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Figure 1. Cell polarization is treated as a continuous variable.
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localize on a particular dot but can tunnel between dots. No tunneling occurs between cell
polarization P of the cell is defined from the expectation values of the charge on each dot.

(3)

P can vary continuously between -1 and +1 as shown in the figure. We describe the quantum
of a cell using two basis states |φ1> and |φ2> which are completely polarized.

(4)

Using these two components the cell polarization is given by

. (5)

The Coulomb interaction between adjacent cells increases the energy of the configuration
two cell polarizations differ. This can be account for by including an energy shift correspondi
the weighted sum of the neighboring polarizations. We define this weighted sum P as follow

. (6)

where the sum is over an appropriate neighborhood Sκ about cellκ. The Hamiltonian for each cell
can then be written as

(7)

whereγ is the interdot tunneling energy and Ek is the electrostatic energy cost of two adjace
fully polarized cells having opposite polarization as shown in Figure 2. If we assume that the
no quantum entanglements between cells, then the dynamics of the array is simply given b
of coupled Schrödinger equations for each cell.

(8)

This approximation treats exchange and correlation effects exactly within each cell (fo
model) and treats intercellular interactions at the level of Hartree-Fock. Allowing correla
effects that produced mixed intercellular states would makes connecting to a CNN descr
impossible because of the need for local cell state information. Moreover, in our simulatio
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dynamic switching of cellular arrays we found that including the correlations between cell
not alter the qualitative behavior (though it did increase the speed of the intercellular respo

IV. Formulating quantum dynamics as CNN dynamics

To transform the quantum mechanical description of an array into a CNN-style descriptio
first step is to reduce the number of local dynamical variables describing each cell. The two
approximation of equation (4) requires two complex numbers,α andβ, to describe a state. This
entails four real degrees of freedom. One degree of freedom can be removed by noting th
overall quantum phase of the state is arbitrary (again here the condition of no intercellular m
states is required). A second degree of freedom is removed by using the normalization con

. (9)

It is then possible to rewrite the state description in terms of two real degrees of freedom, Pφ.

(10)

Notice that P represents a classical degree of freedom — it is related to expectation val
observables. By contrastφ is a fundamentally quantum variable, a quantum mechanical ph
The dynamical equations derived from the Schrödinger equation (8) can be rewritten as equ
for P andφ.
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Figure 2. The energy cost of neighboring cells having opposite polarization.
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(12)

Equations (11) and (12) are the Q-CNN state equation, analogous to equation (2). We can
comparing (12) with the Hamiltonian (7) that the synaptic law is given by:

(13)

We have shown [1] that a line of cells has a stable self-polarization at a value w
is determined by the intercellular Coulomb coupling and the tunneling. Using (11) and

we can find a closed form expression for .

(14)

We have previously calculated the properties of a line of cells using a complete many-pa
basis consisting of 25 states per cell We examined the line both with and without interce
correlations [5]. The primary feature of interest was the propagation of a switched pulse alon
line. A priori it is not obvious that a treatment as simple as the two state model we describe h
sufficient to capture this behavior. The solutions to the dynamic equation shown in Figu
demonstrates that it does indeed. A pulse is seen to propagate down the line. If we negle
quantum mechanical dynamical variableφ, this propagation does not occur. It can be seen fro
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the figure as well as from equation (11) that the sign ofφ determines the time derivative of P an
thus the direction of wave propagation.

V. Generalization of Quantum Cellular Neural Networks

Although we have employed a fairly simple model for demonstrating Q-CNN behavior,
general features of the paradigm are clear.

1. Each cell is a quantum system. The specification of the quantum system can distinguc
classical degrees of freedom and Nq quantum degrees of freedom.

2. The interaction between cells, the synaptic input, depends only on the classical degr
freedom. This corresponds to an intercellular Hartree-Fock approximation. The precise fo
the synaptic law is determined by the physics of the intercellular interaction.

3. The state equations are derived from the time-dependent Schrödinger equation. On
equation exists for each classical and quantum degree of freedom.
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Figure 3. Wave front motion in a simple Q-CNN. The first cell is switched abruptly from -Psatto
Psat. Snapshots of P andφ for the line show the line of cells switching as the pulse moves fro
left to right.
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It is notable that the classical degrees of freedom carry the information from cell to cell bu
quantum degrees of freedom are necessary to carry information from the one time to the
This can be seen in the example shown in Figure 3 for which the direction of pulse propaga
encoded in the phase variable.

VI. Conclusions

We have defined the Q-CNN paradigm and examined it in the case of a simple two-state mo
the cell. The system is sufficiently rich to reproduce the wave propagation behavior seen
fuller quantum treatment. The general features of Q-CNN architecture have been outline
particular interest is the distinction between information-bearing classical degrees of freedo
quantum degrees of freedom which are necessary for proper temporal evolution.

In making the connection between coupled quantum cells and the existing CNN paradig
have made the first, very preliminary step in appropriating the results of work in classical
circuit theory for use in quantum device applications. Further investigation of 2D is the
essential step.
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