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Conductance suppression due to correlated electron transport in coupled double quantum dots
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The electrostatic interaction between two capacitively coupled metal double-dots is studied at low tempera-
tures. Experiments show that when the Coulomb blockade is lifted by applying appropriate gate biases to both
double-dots, the conductance through each double-dot becomes significantly lower than when only one double-
dot is conducting. A master equation is derived for the system and the results obtained agree well with the
experimental data. The model suggests that the conductance lowering in each double-dot is caused by a
single-electron tunneling in the other double-dot. Here, each double-dot responds to the instantaneous, rather
than average, potentials on the other double-dot. This leads to correlated electron motion within the system,
where the position of a single electron in one double-dot controls the tunneling rate through the other double-
dot.[S0163-182609)16347-1

[. INTRODUCTION In Sec. Il the experiments are explained in detail. In Sec.
Il the theoretical model is described. In Sec. IV the experi-
In the last decade much attention has been given to singkental results and those obtained from the model are com-
charge tunneling phenomehz* Various aspects have been pared. The Appendix gives some details about the computa-
studied: single-ddf and double-dot experiment§!®?  tion of the averagd =+ 1/P=—1 transition time.
single electron transistors? single electron turnstil&® and
pump?® Both first® and second-ord&f:***5tunneling phe- L. EXPERIMENT
nomena have been analyzed. Correlated transport has also '
been discussed in the literature. References 9, 11, and 20 In the experimentfor details see Ref. 28ve considered
analyze the transport of electron-hole pai(excitong  the behavior of a QCA cell, consisting of the two double-

through arrays of capacitively coupled double-d6ts. dots, to determine the best conditions for QCA operation.
This paper is based on a recent experiment realizing ahe signs of the gate biases were chosen to allow movement
single quantum-dot cellular automat®CA) cell?”?® Al-  of an electron within a double-dot while keeping the total

though the physical phenomenon to be described is a genemilimber of electrons constant. We noticed that conductance
feature of coupled double-dots, we review this topic briefly.decreased in both DD’s whenever both were conducting.

A QCA cell consists of four metal islanddots as shown in To understand the experiment we need to examine the
Fig. 1(a). (In addition to the metal-island cell, the semicon- charging processes of a two-DD system. The behavior of one
ductor quantum-dot and molecular realizations were als®D can be described by the so-callesheycomb =" graph.
studied®®*3%9 The lines in the diagram indicate the possi- This is a phase diagram giving the minimum energy charge
bility of interdot tunneling. The cell has two allowed charge configurations as the function of the two electrode voltages.
polarizations,P=+1 and —1, as the two extra electrons For the whole two-DD system, the electrode voltages of both

occupy antipodal site$Fig. 1(b)]. When placed in close

pro>_<imity along a line, QCA cells align with the same polar- 1 3
ization.
The four metalaluminum dot system used in this experi- a)
ment can be seen in Fig(&. The voltage source¥,p e and
Vbright, apply small biases, and currenitg; and I g, are 2 4

measured. A symbolic representation of the four dots is
shown in Fig. 2Zb). The circles denote the dots, and the lines

indicate the possibility of interdot tunneling., andD,, are O ® ® O
the left double-dotDD); D5 andD, are the right DD. b)
In measuring the conductance through one double-dot a ® O O

significant(35—40 % conductance lowering was observed if _ _
the other DD was also conducting. This will be referred to as P=+1 P=-1

conductance suppression this paper. Our analysis reveals  fig 1. schematic of the basic four-site semiconductor QCA

that the cause of the conductance suppression is correlatgg)| (a) The geometry of the cell. The lines indicate the possibility

electron transport in the whole two-DD system; that is, onéf interdot tunneling. The tunneling energy between two sites
DD responds to the instantaneous position of the electron ifyuantum dotsis determined by the heights of the potential barrier

the other DD, and not to the average potential caused by thgetween them(b) Coulombic repulsion causes the two electrons to

alternation of the charge configurations in the other DD. Inoccupy antipodal sites within the cell. These two bistable states
the latter case, the conductance lowering would not happemesult in cell polarization oP=+1 andP=—1.
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FIG. 2. (a) Two-DD system. Thé,, D,, D3, andD, denote
the four metal island&dots. The Vp e/ Vpiign: VOltage sources and
the liert/ligne current meters are used for double-dot conductance
measurementgb) The symbolic representation of the system. The
circles and the lines represent metal islands and tunnel junctions,
respectively.

Vies(mV)

DD’s must also be included in the full description; however, FIG. 3. (&) The phase diagram of the two-DD system if there is
this would mean that the ground-state charge configuratioR© capacitive coupling between the left and right DD's. The figure
must be given as a function of four parameters. In our exShows thgN;N,;N3N, ] most probable charge configuration as the
periment symmetric input voltages were applied for thefunction of the input voltages(b) The phase diagram of the
DD's. This reduces the number of parameters to 2 and thi¥0-DD system when the left and right DD's are capacitively
; : _ _ coupled. The framed part of the phase diagram is studied in this

(ic\(;UpaQ% \(;gn 2(1\/1\/ be:gils/nl as a functionVgly=Vier paper. At the phase borders one of the D¥gy.,[01;10/[01;01])

Fl?gijre 3a)ngshf:owsngtrﬁle phas”ghtéi'agram of the two-DD SyS_or both of them(e.g.,[01;10)/[10;01]) conduct. The arrow corre-

: . L - onds to QCA operation.

tem if there is no capacitive coupling between the left andSIO Q P
right DD. The phases corresponding to different minimum . . .
energy charge configurations are separated by lines, simil §hown by the arroy By choosing an appropriatéigy;, this

to the usual honeveomb aranh. However. a phase is no orizontal line will cross the phase border between the
i y grapn. , ap . T‘&o;og and [01;10 phases, corresponding to a transition
described by the occupancy of all four doFhe overline from one polarization state to the other

denotes negative sign in the figure, e.g= i_l.) The left Figures 4a) and 4b) show the phase borders where the
two numbers belong to the left DD, and the right two belongjeft pp and the right DD, respectively, conduct. The experi-
to the right DD. We denote the occupancy[¥:N2;NsNsl - mental results of the conductance measurement correspond-
whereN; is the occupancy of the d@, . Note, that for the  jng to the framed parts of Figs(a@ and 4b) are shown in
phase around/jeq=Vign=0 we choose th¢01,01] occu-  Figs. §a) and §b). When only one DD conducts, the height
pancy of our reference instead [¢f0;00. It corresponds to  of the conductance peak at the border is almost independent
simply a rigid shift of the operating point. In Fig(8 the  of the applied input voltages. However, at the phase borders,
two DD’s are independent of each other. By increasing theyhere both DD conduct, the conductance is significatty
Vie(Viign), only the occupancy of the left DIxight DD)  to 35-409% decreased. The conductance lowering in the left
changes. The occupancy of one dot of the DD increases by hnd right DD’s is clearly visible in the center of the corre-
the other dot's occupancy decreases by 1. sponding conductance graphs of Fig$a)5and 5b). The
_Figure 3b) shows the phase diagram for nonzero cou-conductance lowering can be also seen in Fig. 6, where the
pling between the DD’s. The points where four phase borgonductance of the right DD is given as a functionVgfyy,
ders meet are now split into two triple points. The squarefoy three differentv . voltages. It is this lowering which the

shaped phase regions turn into hexagons. In Fig) 81 theoretical analysis of the next two sections will explain.
crucial region of the phase diagram, which we examine ex-

perimentally, is framed. There are four phases in this region:
[01;01], [01;10], [10;01], and[10;10Q. During QCA opera-
tion theV,y; voltage is kept constant ande changes sign. We analyze the near-equilibrium behavior of circuits de-
The system moves on a horizontal line in the phase diagrarscribed in terms ofeads and metal islandsoupled by tunnel

Ill. THEORY
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conductance suppression is clearly visible in the center of the

FIG. 4. The phase borders where tta left and the(b) right graphs. For(c) and(d), the insets show the three-dimensional con-

DD conduct. The conductances for the framed part are shown iIquctance plots. The curves corresponding to the three vertical lines
Fig. 5 magnified. in (b) are given in Fig. 6.
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junctions and capacitors. The tunneling resistance is high 1he dynamics of the system are governed by the follow-
enough (R, =430 kQ>RQ:h/e2~26 k), whereh is the N9 equation which gives the tunneling rate of an electron in

Planck constantto apply the perturbative theory. In model- & tunnel junctior?
ing tunneling events therthodox theory of single electron

tunneling was used, andotunnelin§”**1® has been ne- r
glected, since the thermally assisted sequential tunneling

plays the main role in conducting currefit.

The free energy of a charge configuration can be writtetVhereAF;; is the difference between the free energy of the
as initial and final states, anBy is the tunneling resistance of

the junction. In most cases the change in free energy equals
the difference of the free energies of the initial and final

1 AF”-
i—] :eZRT 1— gAF; /kT) 2

T

1
F=3 (?r ct qqr —V'0" = Eelectrostaic- Wsources (1) charge configurations\(F;; = F; —F;), except for the transi-

HereC is the capacitance matrix that describes the structure 70
of the circuit,v is a vector of lead voltages, agdandq’ are 60
the island charge vector and the lead charge vector, respec-
tively. A metal island (dot) is connected to the circuit 50
through capacitors and tunnel junctions, and its total charge ~ 40
is constrained to béat T=0 K) a multiple of the elementary 2
charge. © 30

The first term of the energy expression describes the elec- 20
trostatic energy of the capacitors and tunnel junctions. The
second term is the work done by the sources transferring 10
charge to the leads. The equilibrium charge configuration for 38
temperaturd =0 K is the one that has minimal free energy. ' Viign(mV)

For T>0 K, higher energy configurations must also be in-

cluded in computing thermal expectation values. The mea- F|G. 6. The measure(trosses and dotsnd computedsolid
sured island charge is then no longer strictly an integer multine) conductance curves as the function\gy for three different
tiple of the elementary charge; it is rather the thermalv,y voltages. The curves correspond to the three vertical lines in
average of the island charge over accessible configurationszig. 5(b).
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tions when the electron enters to or arrives from a voltage "2 L T
source. In these cases§;;=F;—F;*eVp, whereVy, is the (ti_j)=riI'~0..010...0]", (6)
source voltage. The ener@\ is the work done by the

voltage source to raise the potential of an elementary charg‘@here Fhe matrbl’ anq .the.rO\./v vector; are related tdj,; F
from ground toVp . Is obtained fronl” omitting its jth row andjth column.rj"is

The tunneling rates are used innaaster-equatiotr316 obtained from thgth the row ofT, Ieaving. out itsjth ele-
model. An alternative approach would be the Monte Carlgnent.(For further details see the Appendix.
method?®?* The master equation method is preferable here
since the system is near equilibrium so the number of states IV. RESULTS AND DISCUSSION
(charge configurationsrequired for modeling is not large.
For the master equation model, the accessible charge cops
figurations and the transition rates between them must bFe
known. Our model involves all the 16 charge configuration
having 0 or 1 dot occupancig€f00;00Q, [00;01], [00;14,...,
[11;10Q], [11;11)) and all the possible transitions connecting
them.

The master equation has the form

Based on the numerical solution of the master equations,
gs. 5c¢) and 8d) show the calculated conductances of the
ft and right double-dots as the functions\§f; and Vg
S[Compare with the experimental graphs shown in Figa) 5
and 8b).] In Fig. 6 the computed conductan¢solid line)
and the measured conductar{ceosses and dotgurves are
shown as the function 0¥, for three differentVe;; volt-
ages. For the temperature the measufied 70 mK was
taken! Due to the unknown background charge, the conduc-
—=TP, (3)  tance curve was allowed to shift rigidly in th&eq, andViign
dt plane for fitting. The model uses the tunneling resistance as
fitting parameter. The results of the calculations agree with
the experiment upon takinR;=430K). (The measured
room temperature resistance of the tunnel junctions varied
nbetvveen 400 and 550(k) It can be observed that the con-
ductance is lower on the phase border where both DD’s con-
duct [in the center of the graphs in Figs(ch and 3d)],
which matches the experiments.

We have shown that the solution of the master equations
oFi /KT for the two-DD system quantitatively agrees with the mea-
— T (4)  sured data. The master-equation model describes the corre-
3 ek lated electron transport through the two DD’s. This statement
can be supported by computing the correlation between the
charge polarization of the two DD’s. The charge polarization
of a DD is defined with the occupancy of the top and bottom

ots as

dpP

whereP is the vector containing the probabilities of occur-
rence for the 16 states altlis a matrix describing the state
transitions. This equation can be easily solved for the statio
ary state.

If the Vet @and Vg SOUrce voltages are zero then the
Psti stationary solutions are given by the Boltzmann distri-
bution:

Pst,i =

whereF; is the free energy of stateln this case the current
is of course zero.
If the source voltages are smédixperimentally they were
5 uV) then thePg,; stationary solutions can be approximated
with the probabilities given by the Boltzmann distribution. Ppo=Niop— Nbottom- (7)
The results are similar to those obtained from the master
equations. However, the Boltzmann distribution cannot bdt is +1 and—1 for the[10] and the[01] double-dot charge
used to compute the current which is an inherently nonequigonﬂguranons, respectively. We define the correlation func-
librium phenomenon. Therefore the master equation aplion between the double-dots as
proach is necessary for conductance computations. _
Knowing the probability of occurrence for each state and Cpp=(PrettPrignd ~ (Pret){ Prigny. ®)
the transition probabilities, the current through a hypotheticalvhere(-) denotes the thermal expectation value. This corre-
current meter can be computed as lation function would be zero if each DD only responded to
the average charge on the other. In Fig. 7 the dependence of
Izez P T . ) the correlation function ?s shown on the input voltagésg, '
o T stiti=ge has a peak at the origin, where the conductance lowering
occurs. Further from the origin its value is zero, indicating
wheree is the elementary charg€;_; is the transition rate that there is no correlation between the double-dots there.
from statei to statej, andPg;; is theith element of station- The inset shows the temperature dependence of the correla-
ary solution of the Eq(3) master equations. The coefficient tion peak. The correlation between the double-dots decreases
cij is zero if the transition from stateto statej does not with increasing temperature. At the experimental tempera-
involve current through the current meter, and iti& (—1)  ture, the height of the correlation peak|&,,/=0.75.
if during this transition an electron exitenters through the Correlated electron transport through the two DD’s means
current meter. that one DD responds to the instantaneous electron position
The master equation approach can also be used to corm the other DD. It is instructive to examine what would
pute the average transition rate between two charge configirappen if one DD responded only to tlaweragecharge
rations, even if there is not a direct transition between themdensity of the other DD. Figure 8 shows the calculated con-
For example the transition time from statgo statej (i ductance of the right DD in this casgSee Fig. &d) for
<j) can be given in closed form as comparisor]. The conductance of the right DD was com-
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] conductance in one double-dot was observed when the sec-
_ : o o ond double-dot was conducting. This is explained theoreti-
D&o_s. B o 05 cally in terms of the correlation of electron motion in the
- A o system. A model has been developed which rather accurately
0.61 02 reproduced the experimental data. The straightforward inter-
0.44 DU pretation of this model is that the electron in one double-dot
T(K) responds not just to the time average fluctuations of charge
02 ' in the neighboring double-dot, but to the instantaneous
04 charge configuration. This leads to a nonvanishing correla-
0.5 0.5 tion in the coupled electron motion.
vrigm(mV)o 0 Vigpmv)

-05 -0.5
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. . . . APPENDIX: AVERAGE TRANSITION TIME
puted placing static charge in the left DD, corresponding to COMPUTATIONS

its time averaged charge density. The conductance lowering
cannot be seen, and this also implies that the electron trans- The average transition time from stat® stategj (i<j) is
port through the two DD is correlated. computed. The computations are based on the following
In Fig. 5(d) AV 4 denotes the voltage shift in the con- model. First, all the systems of the ensemble are in state
ductance graph of the right DD due to the change of occuThen the ensemble is allowed to evolve according to the
pancy in the left DD. If the coupling capacitance is highermaster equation describing its behavidit. will be given
between the two double-dots, this voltage shift and the contater) Eventually all the systems arrive at stgt¢ Pj(x)
ductance lowering will be Iargé?. However, if the two =1]. The average transition time can be computed as
double-dots are coupled with smaller capacitandeg,;yn
and the conductance lowering decrease. In the limit of un- > dP;
coupled DD’s, conductance lowering does not occur and <tiﬂj>:J' t—4¢ gt (A1)
AVright: 03340 °
We can use this analysis to estimate e +1/P=—1  where @P;/dt)At gives the ratio of systems which reach
transition rate. The results of the computations give 50 MHzstatej during theAt time interval.
for this particular two-DD structure. During the= +1/P When measuring transition time from stat® statej the
= —1 transition the input voltage of the left DD is changed, systems already arrived in stgtshould stay in stat¢ and
while the input voltage of the right DD is kept constant. Theshould not leave it. Thus thE’ coefficient matrix used for
input voltage of the left DD is changed in such a way that itaverage transition time computations is different from the
mimics the switching of an adjacent c&flModifying the  original T' matrix of the system. It can be obtained frahby
capacitances, especially the coupling between the two DD’ssetting the elements of itgh column to zero(This corre-
and decreasing the resistance of the tunnel junctions can iponds to the inhibition of all the transitions from state

crease the transition frequenty. The master equation with the modifi€d coefficient matrix
is
V. CONCLUSIONS
In this paper electron transport through coupled double- d—P:F’P (A2)
dots has been analyzed. Experimentally, a suppression of dt '
04

The P(t) solution of this equation can be written in an ex-
— ponential form. From this solution théP;/dt can be ex-
pressed and substituted into E#.1); however, the integra-
:O'Of tion cannot be done symbolically becaud€ is not
0 0——— invertible. (To compute the integral given in EGA1l) we
need the inverse df’.) Thus, before making the steps just
' /\ mentioned, some additional matrix manipulations are needed
1o to makel'’ invertible.
04 02 0 0.2 0.4 One way to makd™’ invertible is to eliminateP; from
Vieg(mV) Eqg.(A2). P; can be easily eliminated because ffecolumn
of the coefficient matrix is only zeros. The eliminationRf

FIG. 8. The calculated conductance of the right DD for the Casecorresponds to changes in the coefficient matrix andfithe
if the right DD responded to the average charges on the left DD. In

the graph, the 10, 20, 30, 40, and 50 nS contours are shown. Tﬁéec_to_r' T_he_ new coeffi_cient matriX;, is obtained _froml“’
conductance lowering is not seen in this figy@ompare with Fig.  OMitting its jth row andjth column. It can be obtained fiom
5(d).] I'" as well with the same transformation, becaliseand I’

0.2

T
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differ only in jth the column that was just omitte® is ~ Wherer| is thejth row of I'". Knowing that thejth element

formed by leaving out thg¢th element ofP. of rj is zero (the jth column of I'" is zerg this can be
After the elimination ofP; the following master equation written with P as

is obtained:

W_rjp, (A?)

ol

d

=TP. (A3)

o

t

L ~ wherer?! is thejth row of I'’ (and also ofl") omitting its jth
i
Thet initial fvta;]Iue ofP cglrrespo_ndst;? the case when all theelement. Substituting firgiA7) and then(A5) into (Al), the
systems ot the ensemble are In state average transition time from staite¢o statej is
i

P(0)=[0...020...0]". (A4) . -
. ~ [ . ] ) <ti4,j>:f trj,Pdt:r},f tPdt
The time dependence &f can be given as the solution of the 0 0
master equatiofA3):

) i i = r}’fo te''dt[0...0 1 0...9". (A8)
P(t)=e'"P(0)=€""[0...010...0]". (A5)
. — Using
For Eq.(A1) we need the time derivative &f;, but (A3)
does not contain it because it was obtained after eliminating w
P;. The time derivative oP; can be found in EqiA2). This f te”“dt=a"?, (A9)
0

master equation represents a differential equation system.
The jth line of the equation system that gives the required . . . . .
time derivative is the tr§n5|t|on tlme in a closed form is obtained as Eﬁz

The right-hand side of EqA9) can be computed becauke

is invertible. The infinite integral can be evaluated becduse

dp;
=r!P, . .
has only negative eigenvalues.
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