
Evaluating convex roof entanglement measures - Supplemental Material
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Proof of Observation 2.

Let us assume that the state has E(ppt)
lin (!) = 0. Then,

from Eq. (8) it follows that there is a symmetric PPT
state ω12 such that Tr(AAA′ω12) = 0 and Tr1(ω12) = !.
Hence, for this state TrA′B′(ω12) = ! and FAA′ω12 = ω12.
The symmetry of ω12 means that FAA′FBB′ω12 = ω12.
Hence, FBB′ω12 = ω12 also holds. We can write

ωTAB

12 = (FAA′ω12FAA′)TAB = FAA′ωTA′B

12 FAA′ . (S1)

Since FAA′ is unitary, ωTAB

12 ≥ 0 implies ωTA′B

12 ≥ 0.
Finally, we obtain

!TA = TrA′B′(ωTA′B

12 ). (S2)

Hence, ωTA′B

12 ≥ 0 implies !TA ≥ 0. This proves the first
part of our observation.
To prove the second part, note that based on the dis-

cussion above ω12 is a 2:2 symmetric extension of !. It is
not necessarily a PPT symmetric extension since for the
A : BA′B′ partition it can also be non-PPT.
Finally, the third part can be proved as follows. Let us

assume that ! has a 2 : 2 PPT symmetric extension de-
noted by ω12. Hence, FAA′ω12 = ω12 and FBB′ω12 = ω12.
Moreover, ω12 is a PPT state. Hence, Tr(AAA′ω12) = 0.

!

Note that Theorem 2 can be generalized to states that

have E(n)
lin (!) > 0, involving PPT symmetric extensions

and symmetric extensions to several parties.

Quantitative entanglement witnesses

In this section, we describe how our method can be
used to construct quantitative entanglement witnesses.
As an example, we present a condition for entanglement
witnesses, such that the expectation value of all witnesses

satisfying the condition gives a lower bound on E(ppt)
lin

defined in Eq. (8). We also prove that for every state
!AB there is a witness of this type that gives not only a

lower bound, but gives the value of E(ppt)
lin exactly.

For the linear entropy of entanglement we needed to
minimize the expectation value of the operator M =
AAA′⊗ BB′ over all symmetric separable states ω12 with
a fixed reduced marginal Tr2(ω12) = ρAB. Consider now
an operator W = WAB that acts on the original bipartite
Hilbert space. We require that is satisfies

M −Πsym(W ⊗ )Πsym = P +ΠsymQ
T1Πsym (S3)

where P,Q ≥ 0. Here P is an operator acting only on
the symmetric subspace of the two copies Sym(H⊗2

AB),
while Q acts on the full tensor product H⊗2

AB but we only
used the projected symmetric part of the partial trans-
pose. For such a decomposition, it can be shown that its
expectation value for ω12 is

Tr{[M −Πsym(W ⊗ )Πsym]ω12}
= Tr(Pω12) + Tr(Πsymω12ΠsymQT1)

= Tr(Pω12) + Tr(ω12Q
T1)

= Tr(Pω12) + Tr(ωT1

12Q) ≥ 0. (S4)

The projectors onto the symmetric subspace Πsym can be
dropped in the third line since ω12 is supported only on
it. In the last line we used Tr(XY T1) = Tr(XT1Y ), while
nonnegativity holds because all occuring operators are
positive semidefinite. Hence, Eq. (S4) can be rewritten
as

Tr(Mω12) ≥ Tr(Πsym(W ⊗ )Πsymω12)

= Tr(WρAB), (S5)

where we have further simplified the right-hand side us-
ing that ω12 has a fixed reduced density matrix. Since
Eq. (S5) holds for any valid state ω12, it holds in partic-
ular for the one yielding the linear entropy of entangle-
ment, thus we arrive at

Elin(ρAB) ≥ Tr(WρAB). (S6)

Hence the expectation value of our witness provides a
lower bound on the linear entropy of entanglement.
Next, we will show that for a given quantum state ρAB,

if we optimize over all such witness operators, it is always
possible to find one that saturates the inequality (S6).
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Observation 3.—For the linear entropy of entangle-
ment we obtain

Elin(ρAB) ≥ E(ppt)
(lin) (ρAB) = sup

W∈W
Tr(WρAB), (S7)

with W being the set of all operators W of Eq. (S3).

Proof. The proof is given by applying the dual form
of a semidefinite program [59], which has been employed
in a variety of different quantum information problems.
In particular we refer to Ref. [18] which explains such a
procedure very nicely for the separability criterion based
on symmetric extensions. We have structured the proof
in two parts: In the first part, we show an equivalent
formulation on the two-copy level. Afterwards we further
simplify this dual problem to interpret it as an operator
acting on a single density operator using techniques that
were introduced in Ref. [18].

In the first part, we parse the original problem as given
in Observation 1 into the form of a semidefinite program
and invoke its dual, which provides the same solution.
In order to achieve this one should note that the two
conditions, ω12 just supported on the symmetric sub-
space and the linear equations Tr1(ω) = Tr2(ω) = ρAB

can be satisfied automatically with an appropriate ansatz
ω12(x) = ωfix

12 +
∑

i xiFi. Here ωfix
12 =

∑

i siBi is the
fixed part of two-copy density operator such that the
marginals equal to ρAB (its precise form being discussed
later), while the remaining part

∑

i xiFi is the yet to be
determined part on the symmetric subspace, i.e., the set
of operators {Bi}i ∪ {Fi}i is a Hermitian operator basis
for the symmetric subspace Sym(H⊗2). With this the
primal problem reads

inf Tr(Mωfix
12 ) +

∑

i

xiTr(MFi) (S8)

s.t. ω12(x) = ωfix
12 +

∑

i

xiFi ≥ 0,

ω12(x)
T1 = (ωfix

12 )
T1 +

∑

i

xiF
T1

i ≥ 0,

where one should note that ω12(x) acts on the symmetric
subspace, while ω12(x)T1 acts on the full tensor H⊗2.

Taking this into account, it is straightforward to in-
voke the dual and to derive an equivalent optimization
problem. That this dual program provides the same so-
lution is certified for instance via the Slater regularity
condition [59], which holds since this problem has an in-
ner point, i.e., ω12 = Πsym(ρAB ⊗ ρAB)Πsym > 0 if ρAB

has full rank; otherwise one should constrain H anyway
to the range of ρAB. Since such reformulations have been
carried out quite frequently, we refer here only to the lit-
erature, and continue with its solution, which is given

by

sup Tr(Zfixω
fix
12 ) (S9)

s.t. M − Zfix = Psym +ΠsymQ
T1Πsym,

Zfix =
∑

i

ziBi,

Psym ≥ 0, Q ≥ 0,

where similarly Psym acts on Sym(H⊗2) and Q on the
full tensor product space. This finishes the first part.
In the remaining part we show how the objective of

Eq. (S9) can be interpreted as an operator on the single
copy. For that we need some structure of the fixed part
ωfix
12 that is given by the reduced state ρAB. The idea

follows closely the ideas of Ref. [18], though we need to
do it here for the symmetric subspace.
To start, note that any given density operator ρAB

can be written as ρAB = /d +
∑

iTr(SiρAB)Si with
{Si}i being an operator basis for the traceless Hermitian
operators. Next let us define Oi = Πsym(Si ⊗ )Πsym.
The expectation values of all these operators Oi are com-
pletely determined by the reduced state Tr(Oiω12(x)) =
Tr(Oiωfix

12 ) = Tr(SiρAB), and since all these state coef-
ficients are independent this means that the set {Oi}i
is linearly independent. This implies a positive definite
Gram matrix Gij = Tr(OiOj) > 0, a unique inverse G−1,
and the existence of the operators Õi =

∑

j(G
−1)ijOj .

These operators are the corresponding orthogonal oper-
ators Tr(ÕiOj) = δij , so that the fixed part becomes

ωfix
12 = Πsym/dsym +

∑

i

Tr(Oiω
fix
12 )Õi

= Πsym/dsym +
∑

i

Tr(SiρAB)Õi. (S10)

Note that also the desired dimensionality of d2 matches,
since Tr1(ω12) = Tr2(ω12) = ρAB are excatly d2 indepen-
dent linear equations. To transfer this to the single copy
level we write this solution in terms of a map applied to
Λ[ρAB] = ωfix

12 ,

Λ[ρAB] = Tr(ρAB)Πsym/dsym+
∑

i

Tr(SiρAB)Õi. (S11)

This map has the adjoint map, i.e., the map satisfying
Tr(XΛ[Y ]) = Tr(Λ†[X ]Y ) for all matrices X,Y ,

Λ†[Z] = Tr(Z) /dsym +
∑

i

Tr(ÕiZ)Si. (S12)

Via this we can finally make the connection to the single
copy level by

Tr(Zfixω
fix
12 ) = Tr(ZfixΛ[ρAB])

= Tr(Λ†[Zfix]ρAB) ≡ Tr(WZρAB), (S13)

where we defined the single copy witness WZ = Λ†[Zfix]
in the last equation, parametrized in terms of the coeffi-
cients of Zfix. However since we want to have the witness
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as the open parameter we need to parametrize Zfix(W )
in terms of the witness W . Setting

Zfix(W ) = Πsym(W ⊗ )Πsym,

= dTr(W )Πsym +
∑

i

Tr(SiW )Oi (S14)

achieves Λ[Zfix(W )] = W. Via this we can finally replace
all occurrances of Zfix in Eq. (S9) by W and we obtain
the stated result of the observation. !

Note that one can obtain other quantitative entangle-
ment witnesses if one replaces the decomposable struc-
ture, as given in Eq. (S3), by a different entanglement
witness condition. It is easy to see that if the opera-
tor M −Πsym(W ⊗ )Πsym is non-negative on separable
states then Tr(WρAB) gives a lower bound. Compared
to other possibilities, the advantage of the witness (S3)
is that the optimization (S7) to get the lower bound can
be carried out with semidefinite programming.
We also add that if one only has measured a few ob-

servables {Oi}i then to get a lower bound one merely has
to add the constraint W =

∑

iwiOi, which means that
the witness is a linear combination of the measured ob-
servables with coefficients wi. Then, we have to optimize
∑

iwivi, where vi are the corresponding expectation val-
ues 〈Oi〉ρ.
Finally, if one also wants quantitative entanglement

witness for the other tasks one can proceed similarly. For
instance, if one likes to bound the tangle one demands
that T − Πsym(W ⊗ ⊗3)Πsym is a non-negative on all
fully separable states, thus it is an entanglement witness
to test against full separability.

Other quantities that can be calculated by our
approach

Convex roof of the Meyer-Wallach measure.—The
Meyer-Wallach measure is an entanglement measure for
pure states defined as [36]

Q = 1
N

N
∑

n=1

2Slin(!n), (S15)

where !n is the reduced state of the nth qubits. This
measure can be generalized to include the reduced states
of multi-qubit groups [37]. Our method can calculate
the convex roof of the measure (S15) and the generalized
measures as well.
Holevo capacity.—The linear Holevo χ capacity is de-

fined as [65, 66]

χ2(Λ) = max
{pk,|Ψk〉}

{

Slin(Λ(!)) −
∑

k

pkSlin[Λ(|Ψk〉)]
}

.

(S16)

It is a capacity measure for a channel Λ. For qubit chan-
nels, explicit formula is given in Ref. [66].
Convex and concave roofs in entanglement conditions

with the quantum Fisher information and the variance.—
First, let us see simple entanglement conditions with the
quantum Fisher information and the variance. We start
from the fact that for pure N -qubit states

(∆Jx)
2 + (∆Jy)

2 + (∆Jz)
2 = N

2 (S17)

holds. Next, we need the fundamental properties of the
quantum Fisher information FQ[!, A] in our criteria [67]:
(i) For pure states FQ[!, A] equals four times the variance
(∆A)2". (ii) For mixed states, it is a convex function of
the state. Hence, for separable states follows [38]

1
4

∑

l=x,y,z

FQ[!, Jl] ≤ N
2 . (S18)

Due to the concavity of the variance, we can obtain a
similar entanglement condition with variances as [39]

(∆Jx)
2 + (∆Jy)

2 + (∆Jz)
2 ≥ N

2 . (S19)

Any state that violates Eq. (S18) or Eq. (S19) is entan-
gled.
The conditions (S18) and (S19) can be improved if we

take the concave and convex roofs, respectively, of the
left-hand sides of Eq. (S17). Hence, alternative separa-
bility conditions arise

min
{pk,|Ψk〉}

∑

k

pk
∑

l=x,y,z

(∆Jl)
2
Ψk

≤ N
2 , (S20)

and

max
{pk,|Ψk〉}

∑

k

pk
∑

l=x,y,z

(∆Jl)
2
Ψk

≥ N
2 . (S21)

Any state that violates these is entangled. Numerical ev-
idence shows that Eq. (S20) is stronger than Eq. (S18).
Moreover, numerical evidence shows also that Eq. (S21)
is stronger than Eq. (S19). These ideas can be extended
to improve other entanglement conditions based on vari-
ances [40].
We note that Ref. [41] shows that 2 × 2 covariance

matrices C"(A,B) can always be decomposed as the

C"(A,B) =
∑

k

pkCΨk
(A,B), (S22)

where ! has the decomposition as in Eq. (3). Hence, we
know that the bound on the sum of two variances cannot
be improved this way. However, Ref. [42] demonstrates
that such a decomposition is not always possible for 3×3
covariance matrices. This is connected to the fact that
the bound for separable states for the sum of three vari-
ances can be improved.
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FIG. S1: (a) Lower bound on FQ[!, Jz] based on the fidelity with respect to the three-qubit GHZ state. (b) Lower bound on
FQ[!, Jy ] based on 〈J2

x〉 for various values of 〈Jz〉 and for 〈Jx〉 = 0, for N = 3 qubits.

Quantum Fisher information based on incomplete
data.— The quantum Fisher information can be bounded
from below from partially known data. That is, we know
the expectation value of some operators, and want to find
a lower bound for the quantum Fisher information. The
problem can be mapped to a semidefinite optimization
in the two-copy space. A very good lower bound can be
obtained if we optimize over PPT states.
For that we can use that the quantum Fisher informa-

tion is, apart from a constant factor, the convex roof of
the variance [43]

FQ[!, A] = 4 min
{pk,|Ψk〉}

∑

k

pk(∆A)2Ψk
. (S23)

The variance of a pure state |Ψ〉 can be expressed on two
copies as

(∆A)2Ψ = Tr[(A2 ⊗ 11−A⊗A)|Ψ〉〈Ψ|⊗ |Ψ〉〈Ψ|]. (S24)

Hence, a lower bound on the quantum Fisher information
can be obtained as

F (ppt)
Q [!, A] = min

ω12

Tr[(A2 ⊗ 11−A⊗A)ω12],

s.t. ω12 symmetric, PPT,

Tr(Oiω1) = vi, (S25)

where the constraints are given with the expectation val-
ues vi = 〈Oi〉". The optimization (S25) can straightfor-
wardly be carried out with semidefinite programming.
In Fig. S1(a), we present a simple example where a

lower bound on the quantum Fisher information FQ[!, Jz]
is shown based on measurements of the fidelity with re-
spect to the GHZ state. Below a fidelity of 1/2, the bound
for FQ[!, Jz] is zero. This is due to the fact that the

product state |11..111〉 reaches this fidelity value, while
FQ[!, Jz] is zero for this state. If the fidelity is 1, we
obtain FQ[!, Jz] = N2 and FQ[!, Jx] = N, as expected
[38].
In Fig. S1(b), we present a bound on the quantum

Fisher information based on collective measurements, rel-
evant to spin squeezing. Note that for well polarized en-
sembles, increasing 〈J2

x〉 leads to decreasing FQ[!, Jy]. On
the other hand, for small 〈Jz〉, increasing 〈J2

x〉 leads to
increasing FQ[!, Jy]. Some of the curves have points only
in certain ranges of 〈J2

x〉, as there are no physical states
corresponding to measurement results outside of these
ranges, assuming a given value for 〈Jz〉 and 〈Jx〉 = 0.
Similar methods can be used for bounding the variance

of an observable from above based on the expectation
value of other observables. We can use that the variance
is the concave roof of itself [43]

(∆A)2 = max
{pk,|Ψk〉}

∑

k

pk(∆A)2Ψk
. (S26)

The difference between the two cases is that for the quan-
tum Fisher information we have to look for the minimum,
while for the variance we have to look for the maximum.
Genuine multipartite entanglement.—It is possible to

define quantities that detect true multipartite entangle-
ment and can be evaluated with our method. Let us
define

G = min
{pk,|Ψk〉}

∑

k

pk
∏

n

Slinn(|Ψ〉k) (S27)

where Slinn(|Ψ〉) is the linear entropy for the nth biparti-
tion of the qudits. To be more precise, Slinn(|Ψ〉) is the
linear entropy of the reduced state of the qudits in one of



5

the two partitions for the nth bipartion. If G = 0 then the
state is biseparable, otherwise it is genuine multipartite
entangled.
Similar idea can work such that only a sum of entropies

must be computed by defining

H = min
{"n}

∑

n

pnElinn(!n), (S28)

s.t.
∑

pn!n = !,

where Elinn is linear entropy for the nth bipartition. If
H = 0 then the state is biseparable, otherwise it is gen-
uine multipartite entangled. If, instead of Elin(!), we

calculate E(ppt)
lin given in Eq. (8) then Eq. (S28) can be

obtained via a semidefinite program. The advantage of
Eq. (S28) is that only two copies of the original state are
needed to calculate the value with our approach, while
for the formula (S27) we need much more copies. The
formalism of Eq. (S28) is in the spirit of the PPT mixer
detecting genuine multipartite entanglement [44].
Note that a three-qubit state mixed from states that

are PPT with respect to some partitions have been found
that is genuine multipartite entangled [45]. Thus, de-
tecting genuine multipartite entanglement is a non-trivial
task.

Device independent programs

In this section, we explain the methods to obtain lower
bounds on the linear entropy of entanglement for the de-
vice independent scenarios; either in the steering case
where only the apparatus of one side is uncharacterized,
or in Bell-type scenarios where both sides are unknown.
We will use the tool presented in Ref. [15], resting on

ideas from Ref. [46, 47], which transforms the problem
of estimating entanglement in a device independent sce-
nario into the more common problem to lower bound the
entanglement of a given fixed finite-dimensional system
having only partial information. The method uses in-
stead of the quantum state ! of unkown dimension, a
finite dimensional object χ which captures most of the
properties of the state.
To set the stage, let us assume that on a given side,

say system A, one only knows the number of settings
x = 1, . . . , n and respective outcomes a = 1, . . . ,m.
This measurement scheme is described by a collection
of POVM elements Ma|x, which act on a Hilbert space
HA of unknown dimension. To this measurement sce-
nario one now associates a specific completely positive
local map: ΛA(!A) =

∑

k Fk!AF
†
k with Kraus operators

Fk =
∑

$i |i〉Ā A〈k|Mi. Here |k〉A and |i〉Ā are respective
basis states of the input and output Hilbert spaces, while
Mi are operators out of a chosen setM on which we com-
ment shortly. However, via this structure, first observe

that this map transforms a given input state !A to

χĀ = ΛA[!A] =
∑

i,j

|i〉〈j|Tr(M †
j Mi!A), (S29)

hence an output with matrix elements given by certain
expectation values. At this stage the specific opera-
tor set M becomes important, since so far we know
nothing about χĀ because we neither know !A nor Mi.
The only knowledge that we have are certain generic
properties of the POVM elements Ma|x, more precisely
we have (i) positivity Ma|x ≥ 0, (ii) normalization
∑

a Ma|x = and (iii) that each operator Ma|x is a
projector. Here note that by Naimark’s extension any
measurement can be written as a projector onto a larger
dimensional space. Since for most device independent
tasks this extension does not change the underlying tasks
this property can be assumed without loss of generality.
Ma|xMa′|x = δaa′Ma|x. In addition note that the expec-
tation values of each measurement operator is observable,
(iv) Tr(Ma|x!A) = P (a|x).
Via these four properties one can thus choose specific

operator sets M such that one has at least some partial
information on χĀ. For instance, if one chooses M to
consist of the measurement operators M = {Ma|x}a,x
one knows for instance

Tr(Ma|xMa′|x!A) = δaa′Tr(Ma|x!A)

= δaa′P (a|x), (S30)

while other entries like Tr(Ma|xMa′|x′!A) with x *= x′

are still unknown. Nevertheless via this one gets some
partial knowledge and some structure of χĀ, which can
be captured by an explicit parametrization as

χĀ[P, u] = χfix[P ] + χopen[u]

=
∑

a|x

P (a|x)Za|x +
∑

v

uvZv, (S31)

using appropriate operators Za|x and Zv. Here the first
part represents the known part of χĀ, while the second
one is the restricted open unknown part.
Such a structure can be inferred for any choice of M.

For instance, one could remove some linear dependencies
of the just given example set if one adds the identity
and erases the last outcome for each measurement setting
M1 = { } ∪ {Ma|x}a<n,x. In addition note that one
could also enlarge this set by including also products up
to N POVM elements MN , so for instance M2 = M1 ∪
{Ma|xMa′|x′}a,a′<n,x '=x′ , already removing trivial parts.
In this way one gets further relations like

∑

a′

Tr(Ma|xMa′|x′Ma′|x′Ma|x) = P (a|x) (S32)

if x *= x′. The advantage of including products is that one
gets a tighter, more constrained, description. This set of



6

operatorsMN is precisely the one which has been mostly
used [15], since it is very straightforward to “decode” all
the known structure. Still there are other possibilities,
like Mt = {Ma1|1Ma2|2 . . .Man|n}a1,...,an

. Here it might
be harder to deduce all the structure but it has for in-
stance the advantage that the associated map ΛA is then
even trace-preserving, thus χĀ can be completely inter-
preted as an output quantum state; something which is
not directly possible if one uses MN .
Now let us come to the concrete cases. At first let

us discuss the fully device independent case where both
sides are completely uncharacterized. If we locally ap-
ply the just described trace-preserving physical map (us-
ing for instance the choice Mt) we transform any state
!AB into another bipartite state χĀB̄ = ΛA ⊗ ΛB(!AB).
Since an entanglement monotone does not increase un-
der local operators and classical communication, we get
E(!AB) ≥ E(χĀB̄) and thus we obtain a valid lower
bound by estimating the entanglement of the output
state. Hence if we want to bound the linear entropy of en-
tanglement by seeing a certain value of a Bell inequality
I · P = V we use

Emin(I · P = V ) (S33)

≥ min
ω12,u,P

Tr(A12ω12)

s.t. ω12 is dĀ × dB̄, symmetric, separable,

ω1 = χĀB̄ = χfix
ĀB̄[P ] + χopen

ĀB̄
[u] ≥ 0,

Ichsh · P = V,

Now let us turn to the steering case, where we as-
sume that Alice’s side is uncharacterized while Bob ob-
tains complete tomography. Then the data are given
by the collection of unnormalized density operators E =
{!a|x}a,x for Bob with P (a|x) = Tr(!a|x). In principle
we can use the same method as for the fully device inde-
pendent case by employ the trace-preserving local map
only on one side χĀB = ΛA⊗ id[!AB] and then bounding
the linear entropy of entanglement of the output state.
However in this case we can do slightly better, since it

is possible to bound the linear entropy of entanglement
more directly on the original state !AB. This is in similar
spirit as the negativity of Ref. [15] and Ref. [16]. Suppose
we apply the same local, not necessarily trace-preserving,
local map to the two copies χ12 ≡ χĀĀ′BB′ = ΛA⊗ΛA⊗
id[ω12]. Then we can relax the constraint that ω12 is the
symmetric PPT state of two qudits by χ12 ≥ 0, χT1

12 ≥ 0
and the permutation invariance

Fχ12F = ΛA ⊗ ΛA ⊗ id[Fω12F ]

= ΛA ⊗ ΛA ⊗ id[ω12] = χ12. (S34)

Note that since the identity is within the set M we have
that the data of χAB = ΛA ⊗ id[!AB] are included in
χ12, thus we can directly parametrize χ12 = χfix

12 [E ] +
χopen
12 [u]. The key difference compared to the previous

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6  0.7  0.8  0.9  1

M
in

im
al

 e
nt

an
gl

em
en

t

Weight pD

Entanglement estimation from steering

2 settings
3 settings

FIG. S2: Entanglement quantification via the simplest steer-
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case is that the objective value is still accessible. Due to
the symmetry of the linear entropy of pure states, it is
not surprising that AAA′ BB′ = AA′ABB′ holds on the
symmetric subspace of the two copies. However, because
the identity is included in M and because Bob’s side is
charaterized, the expectation value of AA′ABB′ is given
by a linear function of the values χ12; this linear function
is denoted by Tr(Êχ12) as a shorthand. Then we get as
a lower bound

Emin(E) ≥ min
u

Tr(Êχ12) (S35)

s.t. χ12 = χfix
12 [E ] + χopen

12 [u] ≥ 0, χT1

12 ≥ 0.

Before we conclude, let us point out that for both pro-
grams one can obtain sharper bounds if one includes more
products into the generating setM. This is very straight-
forward for the steering case, but even such programs
quickly reach the border of being feasible. Here it remains
to investigate which particular sets M are more suitable
than others. We leave this open for further investiga-
tion. If one combines these ideas with, for instance, the
Schmidt number program then one could access even the
Schmidt number (often taken as a synonym for quantum
dimension) also in a device independent way.
As an example we were investigating the simplest steer-

ing scenarios, where Alice, the uncharacterized side, has
either two or three dichotomic measurements and Bob
performs full tomography on his qubit. In this case the
available data are given by the corresponding probabil-
ities for Alice P (r|s), with r ∈ {±1} denoting the out-
come and s ∈ {1, 2, 3} the setting, and the corresponding
conditional states for Bob ρr|s.
For the examples we assume the following data

P (r|s) = 1
2 , ρr|s =

1
2 ( − rpDσs), (S36)

with σs denoting the standard Pauli matrices. Such data
are for instance generated by measuring the noisy singlet
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state of two qubits in the standard spin directions. Fig-
ure S2 shows the corresponding lower bound for the lin-
ear entropy of entanglement. We remark that the points
where the lower bound becomes trivial coincide with the

analytic cut-off value pD ≤ 1/
√
2 and pD ≤ 1/

√
3 respec-

tively, while the lower bound at the maximum, Emin = 1
is exact, since such observations require at least a maxi-
mally entangled two-qubit state.


