SUPPLEMENTARY MATERIAL

Atom-light \& atom-field interactions

We define the collective spin operator $\hat{\mathbf{F}} \equiv \sum_{i} \hat{\mathbf{f}}^{(i)}$, where $\hat{\mathbf{f}}^{(i)}$ is the spin of the i 'th atom. The collective spin obeys commutation relations $\left[\hat{F}_{\mathrm{x}}, \hat{F}_{\mathrm{y}}\right]=i \hat{F}_{\mathrm{z}}$. Probe pulses are described by the Stokes operator \boldsymbol{S} defined as $\hat{S}_{i} \equiv \frac{1}{2}\left(\hat{a}_{+}^{\dagger}, \hat{a}_{-}^{\dagger}\right) \sigma_{i}\left(\hat{a}_{+}, \hat{a}_{-}\right)^{T}$, where the σ_{i} are the Pauli matrices and $\hat{a}_{ \pm}$are annihilation operators for $\sigma_{ \pm}$polarization, which obey $\left[\hat{S}_{\mathrm{x}}, \hat{S}_{\mathrm{y}}\right]=i \hat{S}_{\mathrm{z}}$ and cyclic permutations. The input pulses are fully \hat{S}_{x}-polarized, i.e. with $\left\langle\hat{S}_{\mathrm{x}}\right\rangle=N_{\mathrm{L}} / 2,\left\langle\hat{S}_{\mathrm{y}}\right\rangle=\left\langle\hat{S}_{\mathrm{z}}\right\rangle=0$ and $\Delta^{2} S_{i}=N_{\mathrm{L}} / 4$, $i \in\{x, y, z\}$ where N_{L} is the number of photons in the pulse.

The atoms and light interact via an effective hamiltonian

$$
\begin{equation*}
\tau \hat{H}_{\mathrm{eff}}=G_{1} \hat{S}_{\mathrm{z}} \hat{F}_{\mathrm{z}}+G_{2}\left(\hat{S}_{\mathrm{x}} \hat{J}_{\mathrm{x}}+\hat{S}_{\mathrm{y}} \hat{J}_{\mathrm{y}}+\hat{S}_{0} \hat{J}_{m} / \sqrt{3}\right) \tag{1}
\end{equation*}
$$

where G_{1} and G_{2} are coupling constants describing vector and tensor lights shifts, respectively, and τ is the pulse duration [36, 37]. The operators $\hat{J}_{k} \equiv \sum_{i}^{N_{A}} \hat{\jmath}_{i}$ where $\hat{\jmath}_{x} \equiv \hat{f}_{x}^{2}-\hat{f}_{y}^{2}$ and $\hat{\jmath}_{y} \equiv \hat{f}_{x} \hat{f}_{y}+\hat{f}_{y} \hat{f}_{x}$ describe single-atom Raman coherences, i.e., coherences between states with m_{f} different by 2 , and $\hat{\jmath}_{m} \equiv\left(3 \hat{f}_{z}^{2}-\hat{\mathbf{f}}^{2}\right) / \sqrt{3}$ describes the population difference between the $m_{f}=0$ and $m_{f}= \pm 1$ magnetic sublevels.

The first term in Eq. (1) describes paramagnetic Faraday rotation: it rotates the polarization in the \hat{S}_{x}, \hat{S}_{y} plane by an angle $\phi=G_{1} \hat{F}_{\mathrm{z}} \ll 1$, and leaves the atomic state unchanged, so that a measurement of $\hat{S}_{\mathrm{y}}^{(\text {out })} / \hat{S}_{\mathrm{x}}^{(\text {in })}$ indicates \hat{F}_{z} with a shot-noise-limited sensitivity of $\Delta \hat{F}_{\mathrm{z}}=\Delta \hat{S}_{\mathrm{y}} / G_{1}$. Acting alone, this describes a QND measurement of \hat{F}_{z}, i.e., with no back-action on \hat{F}_{z}. The second term, in contrast, leads to an optical rotation $\hat{S}_{\mathrm{x}} \rightarrow \hat{S}_{\mathrm{z}}$ (due to the birefringence of the atomic sample), and drives a rotation of the atomic spins in the $\hat{F}_{\mathrm{z}}, \hat{J}_{y}$ plane (alignment-to-orientation conversion) by an angle $\tan \theta=G_{2} \hat{S}_{\mathrm{x}} / 2$ [21, 37]. This leads to a detected output

$$
\begin{equation*}
\hat{S}_{\mathrm{y}}^{(\text {out })}=\hat{S}_{\mathrm{y}}^{(\text {(in })}+G_{1} \hat{S}_{\mathrm{x}}^{(\text {in })}\left(\hat{F}_{\mathrm{z}}^{(\text {in })}+\tan \theta \hat{J}_{\mathrm{y}}^{(\mathrm{in})}\right) . \tag{2}
\end{equation*}
$$

For the experiments described here $\theta \simeq 0.3$, and the $\tan \theta$ term can be safely ignored. The contribution of the remaining terms in Eq. (1) is negligible.

The atoms interact with the applied magnetic field via the hamiltonian

$$
\begin{equation*}
\hat{H}_{\mathrm{mag}}=-\gamma \hat{\mathbf{F}} \cdot \mathbf{B} \tag{3}
\end{equation*}
$$

During a single probe-pulse the atomic spins rotate by an angle $\Theta=\gamma B \tau$, where $B=|\mathbf{B}|$. For our parameters $\Theta=0.08$ radians, so we can neglect the rotation of the spins during the probe pulses.

FIG. 1. (Color online) (a) Calibration of G_{1} coupling constant. We correlate the observed rotation angle ϕ against an independent measurement of atom number N_{A} via absorption imaging. Inset: from a fit to G_{1} vs. the probe detuning Δ we estimate the effective atom-light interaction area A and tensor light shift G_{2}. (b) Free induction decay (FID) measurement of the applied magnetic field using atoms as an insitu vector magnetometer. Blue circles: input \hat{F}_{z}-polarized atomic state. Blue circles: input $\hat{F}_{\text {y }}$-polarized atomic state. Solid line: fit described by Eq. (4). Dashed line: gaussian envelope of FID signal. (c) Length of spin vector $|\hat{F}|$ detected by the first (blue circles) and second (green squares) measurement. Inset: length of individual spin components \hat{F}_{i} detected by the first measurement. (d) Noise scaling of total variance $\mathcal{V}_{p}=\operatorname{Tr}\left(\Gamma_{p}\right)$ of the first two QND measurements, and conditional variance $\mathcal{V}_{2 \mid 1}=\operatorname{Tr}\left(\Gamma_{2 \mid 1}\right)$. Blue squares: first measurement. Yellow triangles: second measurement. Purple inverted triangles: conditional variance.

Probe calibration

The light-atom coupling constant G_{1} is calibrated by correlating the DANM signal with an independent count of the atom number via absorption imaging [12, 21, 41]. In Fig. 1(a) we show the calibration data. We find $G_{1}=$ $9.0 \pm 0.1 \times 10^{-8}$ radians per spin at the detuning $\Delta=$ -700 MHz . In the inset of Fig. 1 (a) we plot G_{1} vs. Δ. We fit this data to find the effective atom-light interaction area A 41, from which we estimate the tensor light shift $G_{2}=-4.1_{-0.5}^{+0.4} \times 10^{-9}$ radians per spin at $\Delta=-700$ MHz .

FIG. 2. (Color online) (a) Measured spin distribution (in units of 10^{3} spins) of the input TSS following the state preparation procedure described in the main text. (b) Correlation matrix between two consecutive three-component collective spin measurements showing strong correlations between measurements of each spin component \hat{F}_{i}.

Noise scaling \& Read-Out Noise

To estimate the atomic noise contribution to the observed total variance $\mathcal{V}=\operatorname{Tr}(\Gamma)$ of the QND measurements we fit the polynomial $\mathcal{V}\left(N_{A}\right)=\mathcal{V}_{0}+2 N_{A}+c N_{A}^{2}$ to the measured data, and calculate $\widetilde{\mathcal{V}}_{p}=\mathcal{V}_{p}-\mathcal{V}_{0}$, subtracting the read-out noise \mathcal{V}_{0} from the measured total variances. The data and resulting fits are shown in Fig. 1(b). The fit to the first (second) measurement yields $\mathcal{V}_{0}=2.59 \pm 0.08 \times 10^{6}\left(2.49 \pm 0.08 \times 10^{6}\right)$ and $c=4 \pm 2 \times 10^{-7}\left(1 \pm 2 \times 10^{-7}\right)$. We fit the polynomial $\mathcal{V}_{2 \mid 1}\left(N_{A}\right)=\mathcal{V}_{0}+a N_{A}+c N_{A}^{2}$ to the measured conditional variance, giving $\mathcal{V}_{0}=9.2 \pm 0.8 \times 10^{5}, a=0.9 \pm 3$ and
$c=-4 \pm 2 \times 10^{-7}$, indicating the presence of some correlated technical noise in the detection system.

Residual polarization

We observe a small residual atomic polarization due to atoms that are not entangled in the mascroscopic singlet state. In Fig. 1] (c) we plot the length of the spin vector $|\hat{F}|$ detected in the two measurements. With $N_{A}=1.1 \times 10^{6}$ atoms, we observe a maximum $|F|=13.3 \pm 0.2 \times 10^{3}$ $\left(18.3 \pm 0.2 \times 10^{3}\right)$ spins for the first (second) measurement, i.e. a residual polarization $|\hat{F}| /\left(f N_{A}\right)=1.66 \pm$ 0.02×10^{-3}. In principle with these values we could achieve 20 dB of spin squeezing, entangling up to 99% of the atoms in a macroscopic singlet, before back-action due to the spin uncertainty relations limits the achievable squeezing. This residual polarization could be removed by adding a feedback loop to the measurement sequence [40, which would produce an unconditionally squeezed macroscopic singlet centered at the origin.

Magnetic field calibration

We measure the applied magnetic field using the atoms as an in-situ vector magnetometer. Our technique is described in detail in Ref. 39. We polarize the atoms via optically pumping along first \hat{F}_{z} and then \hat{F}_{y}, and observe the free induction decay (FID) of the resulting Larmor precession using the Faraday rotation probe. We model density distribution along the length of the trap with a gaussian $A \exp \left(-\left(z-z_{0}\right)^{2} / 2 \sigma^{2}\right)$, with an RMS width $\sigma=2.68 \pm 0.3 \mathrm{~mm}$. A typical density profile and gaussian fit is shown in Fig. 1(d). This leads to observed signals for the two input states

$$
\theta(t)=\frac{G_{1}}{B^{2}}\left\{\begin{array}{l}
\left(B_{z}^{2}+\left(B_{x}^{2}+B_{y}^{2}\right) \cos \omega \exp \left(-t^{2} / T_{2}^{2}\right)\right) F_{z}(0) \tag{4}\\
\left(B_{y} B_{z}\left(1-\cos \omega \exp \left(-t^{2} / T_{2}^{2}\right)\right)+B_{x} B \sin \omega \exp \left(-t^{2} / T_{2}^{2}\right)\right) F_{y}(0)
\end{array}\right.
$$

where $\omega=\gamma B t, B=|\mathbf{B}|$, and $\gamma=\mu_{B} g_{f} / \hbar$ is the atomic gyromagnetic ratio. By fitting theses signals, we extract the vector field \mathbf{B} and the FID transverse relaxation time $T_{2}=1 /(\sigma \gamma \partial B / \partial z)$. For the data shown we find $B_{x}=$ $9.6 \pm 0.4 \mathrm{mG}, B_{y}=9.7 \pm 0.4 \mathrm{mG}, B_{z}=9.9 \pm 0.1 \mathrm{mG}$ and $T_{2}=745 \pm 45 \mu \mathrm{~s}$.

Input state

In Fig. 2(a) we plot the spin distribution $\mathbf{F}^{(1)}$ of the collective spin of a sample with $N_{A}=1.4 \times 10^{6}$ atoms measured by the first three probe pulses. We measure an
initial spin covariance matrix of

$$
\Gamma_{1}=\left(\begin{array}{lll}
1.90 & 1.10 & 1.10 \tag{5}\\
1.10 & 1.40 & 0.81 \\
1.10 & 0.81 & 1.30
\end{array}\right) \times 10^{6} \text { spins }^{2}
$$

For comparison, an ideal TSS would have $\Gamma=$ $\operatorname{diag}(0.93,0.93,0.93) \times 10^{6}$ spins 2 with the same number of atoms. The larger measured variances, and nonzero covariances, in Γ_{1} indicate the presence of atomic technical noise due to imperfect state preparation and shot-to-shot fluctuations in the atom number and applied magnetic field.

Measurement correlations

In Fig. 2(b) we plot the correlations $\rho_{i j} \equiv$ $\operatorname{cov}\left(\hat{F}_{i}, \hat{F}_{j}\right) / \Delta \hat{F}_{i} \Delta \hat{F}_{j}$ between the first six QND measurements. The off-diagonal elements indicate that successive measurements of the same spin component \hat{F}_{k} are
well correlated. This allows us to predict the outcome of the second measurements $F_{k}^{(2)}$ with a reduced conditional uncertainty. The residual correlation between measurements of different spin components is due to correlated technical noise in the atomic state preparation, and in the detection system.

