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The supplement contains some derivations to help to understand the details of the proofs of the
main text. It summarizes well-known facts about the quantum theory of angular momentum and
that of SU(d) generators. Further details will be presented elsewhere [S1].

PACS numbers: 03.67.Mn, 05.50.4q, 42.50.Dv,67.85.-d

Angular momentum operators. Next, we summa-
rize the fundamental equations for angular momentum
operators [S2]. For particle with spin-j we have

(2442 +42) =34+ 1. (s1)

Since the angular momentum operators have identical
spectra, it follows from Eq. (S1) that we can write

TH(j2) = 3G+ 12 + 1), (52

Based on Eq. (S2), we get the constant for the orthogo-
nality relation

(i) = bugdGH D@+ 1. (S3)

For the sum of the squares of expectation values we
have

Gk <t (S4)

k=z,y,z

For j = %7 for all pure states the equality holds for
Eq. (S4).
Finally,

((irol+1®5)%) <2j(2+1).  (S5)
l=z,y,z
Hence, using Eq. (S1) we obtain
2(j+1)+2 Y (Gi@q) <2j(2j+1).  (S6)
l=x,y,z
Thus, we arrive at the inequality
ST G < 52 (S7)
l=x,y,z

Local orthogonal observables. Here we summarize
the results of Ref. [S3] for Local Orthogonal Observables
(LOOs, [S4]). For a system of dimension d, these are d?
observables A\, such that

TI'()\k)\l) = 6kl- (88)

For a quantum state g, LOOs have the following proper-
ties

d2
> ()? = di, (S9)
k=1
d2
> (w)? = Tr(e?) <1, (S10)
k=1
Moreover, based on Ref. [S5] we know that
d2
> Me® M =F, (S11)
k=1

where F' is the flip operator exchanging two qudits.
SU(d) generators. Next, we will use the results

known for local orthogonal observables for SU(d) gen-

erators. For a system of dimension d, there are d? — 1

traceless SU(d) generators gi with the property
Tr(gkgl) = 26kl~ (812)

Thus, from SU(d) generators gx we can obtain LOOS
using

1
Ay = —= S13
k= g0 (S13)
for k=1,2,....,d2—1, and \p2 = %]1.
After a derivation similar to that of Ref. [S3], we arrive
at
d*-1 2
-1
Z (%)2 = QdTlL (S14)
k=1
d*-1 1
S =2 () - 3) <2 (1-7). o)
k=1
d>—1
> g @gr=2 (F = 11> (516)



Based on Eq. (S16), for bipartite symmetric states we
have

d*-1
1
<Z 9k®9k>2(+1d), (517)
k=1
while for antisymmetric states we have
d*-1
ng@)gk —2( 1—d> (S18)

It is important to stress that the inequalities presented
are valid for all SU(d) generators, not only for Gell-Mann
matrices.

Equations for the collective operators based on
SU(d) generators.

Here we present some fundamental relations for the
collective operators Gy. First of all, the length of the
vector G = {(Gk>}g2:711 is maximal for a state of the
form |W)®N. This can be seen as for such states G=Ng

where § = {(gk>\y}22:711, and knowing that for pure states
|G| is maximal.
For the sum of the squares of G, we obtain

> (G’ ZZ REDIDIEL S

k k n#m
(S19)
Here we used Eq. (S14) and Eq. (S16). Based on
Eq. (S19) and using (F),,) > —1, we can write
2N
Sz Barna-n. (s

k

Note that the bound on the right-hand side of Eq. (S20)
cannot be zero if N < d. For N = d, the sum Y, ((Gx)?)
is zero for the totally antisymmetric state for which
(Fpn) = —1 for all m,n.

Next, we will show that

YUGH =0 & D (AGK)’=0
k

k

(s21)

In order to prove that, one has to notice that
> (AGE)? = 0 implies Y, (AG})? = 0 for any set of
SU(d) generators G, [S6]. This also implies (AB)? = 0
for all traceless observables B. For every traceless D
one can find traceless By and Bs such that [By, Bs] =
D [S7] and hence (AB;)? 4+ (AB2)? > [(D)|. Hence,
> {(Gr)?) = 0 implies (D) = 0 for all traceless observ-
ables D [S1].

As a consequence of Eq. (S20) and Eq. (S21), for
N < d wehave >, (AGj)? > 0. Hence, for d-dimensional
systems states with less than d particles cannot have
Y L(AGE)* = 0.

Moreover, for symmetric states we have (F,,) = +1
for all m,n, and based on Eq. (S19) we obtain

SU@) = 2~

k

1)(d + N), (S22)

which is the maximal value for Y, ((G)?). Similarly, for
symmetric states,

D (Gw?) =D i@

k k

ZZ )2) (523)

is also maximal.

Naturally, these statements are also true for the an-
gular momentum operators for the j = % case, as these
operators, apart from a constant factor, are SU(2) gen-
erators.

On the other hand, for the angular momentum oper-
ators for j > = thebe statements are not true. In par-
ticular, <Zk(=]k) ) is not maximal for every symmetric
state.
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