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The supplement contains some derivations to help to understand the details of the proofs of the
main text. It summarizes well-known facts about the quantum theory of angular momentum and
that of SU(d) generators. Further details will be presented elsewhere [S1].
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Angular momentum operators. Next, we summa-
rize the fundamental equations for angular momentum
operators [S2]. For particle with spin-j we have

(j2
x + j2

y + j2
z ) = j(j + 1)11. (S1)

Since the angular momentum operators have identical
spectra, it follows from Eq. (S1) that we can write

Tr(j2
x) =

1

3
j(j + 1)(2j + 1). (S2)

Based on Eq. (S2), we get the constant for the orthogo-
nality relation

Tr(jkjl) = δkl
1

3
j(j + 1)(2j + 1). (S3)

For the sum of the squares of expectation values we
have ∑

k=x,y,z

〈jk〉2 ≤ j2. (S4)

For j = 1
2 , for all pure states the equality holds for

Eq. (S4).
Finally,∑

l=x,y,z

〈(jl ⊗ 11 + 11⊗ jl)2〉 ≤ 2j(2j + 1). (S5)

Hence, using Eq. (S1) we obtain

2j(j + 1) + 2
∑

l=x,y,z

〈jl ⊗ jl〉 ≤ 2j(2j + 1). (S6)

Thus, we arrive at the inequality∑
l=x,y,z

〈jl ⊗ jl〉 ≤ j2. (S7)

Local orthogonal observables. Here we summarize
the results of Ref. [S3] for Local Orthogonal Observables
(LOOs, [S4]). For a system of dimension d, these are d2

observables λk such that

Tr(λkλl) = δkl. (S8)

For a quantum state %, LOOs have the following proper-
ties

d2∑
k=1

(λk)2 = d11, (S9)

d2∑
k=1

〈λk〉2 = Tr(%2) ≤ 1. (S10)

Moreover, based on Ref. [S5] we know that

d2∑
k=1

λk ⊗ λk = F, (S11)

where F is the flip operator exchanging two qudits.
SU(d) generators. Next, we will use the results

known for local orthogonal observables for SU(d) gen-
erators. For a system of dimension d, there are d2 − 1
traceless SU(d) generators gk with the property

Tr(gkgl) = 2δkl. (S12)

Thus, from SU(d) generators gk we can obtain LOOS
using

λk =
1√
2
gk (S13)

for k = 1, 2, ..., d2 − 1, and λd2 = 1√
d
11.

After a derivation similar to that of Ref. [S3], we arrive
at

d2−1∑
k=1

(gk)2 = 2
d2 − 1

d
11, (S14)

d2−1∑
k=1

〈gk〉2 = 2

(
Tr(%2)− 1

d

)
≤ 2

(
1− 1

d

)
, (S15)

d2−1∑
k=1

gk ⊗ gk = 2

(
F − 1

d
11

)
. (S16)
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Based on Eq. (S16), for bipartite symmetric states we
have

〈
d2−1∑
k=1

gk ⊗ gk〉 = 2

(
+1− 1

d

)
, (S17)

while for antisymmetric states we have

〈
d2−1∑
k=1

gk ⊗ gk〉 = 2

(
−1− 1

d

)
. (S18)

It is important to stress that the inequalities presented
are valid for all SU(d) generators, not only for Gell-Mann
matrices.

Equations for the collective operators based on
SU(d) generators.

Here we present some fundamental relations for the
collective operators Gk. First of all, the length of the

vector ~G = {〈Gk〉}d
2−1

k=1 is maximal for a state of the

form |Ψ〉⊗N . This can be seen as for such states ~G = N~g

where ~g = {〈gk〉Ψ}d
2−1

k=1 , and knowing that for pure states
|~g| is maximal.

For the sum of the squares of Gk we obtain∑
k

(Gk)2 =
∑
k

∑
n

(g
(n)
k )2 +

∑
k

∑
n 6=m

g
(m)
k g

(n)
k

= 2N
d2 − 1

d
11 +

∑
n 6=m

2

(
Fmn −

11

d

)
.

(S19)

Here we used Eq. (S14) and Eq. (S16). Based on
Eq. (S19) and using 〈Fmn〉 ≥ −1, we can write∑

k

〈(Gk)2〉 ≥ 2N

d
(d+ 1)(d−N). (S20)

Note that the bound on the right-hand side of Eq. (S20)
cannot be zero if N < d. For N = d, the sum

∑
k〈(Gk)2〉

is zero for the totally antisymmetric state for which
〈Fmn〉 = −1 for all m,n.

Next, we will show that∑
k

〈G2
k〉 = 0 ⇔

∑
k

(∆Gk)2 = 0. (S21)

In order to prove that, one has to notice that∑
k(∆Gk)2 = 0 implies

∑
k(∆G′k)2 = 0 for any set of

SU(d) generators G′k [S6]. This also implies (∆B)2 = 0
for all traceless observables B. For every traceless D
one can find traceless B1 and B2 such that [B1, B2] =
iD [S7] and hence (∆B1)2 + (∆B2)2 ≥ |〈D〉|. Hence,∑

k〈(Gk)2〉 = 0 implies 〈D〉 = 0 for all traceless observ-
ables D [S1].

As a consequence of Eq. (S20) and Eq. (S21), for
N < d we have

∑
k(∆Gk)2 > 0. Hence, for d-dimensional

systems states with less than d particles cannot have∑
k(∆Gk)2 = 0.
Moreover, for symmetric states we have 〈Fmn〉 = +1

for all m,n, and based on Eq. (S19) we obtain∑
k

〈(Gk)2〉 =
2N

d
(d− 1)(d+N), (S22)

which is the maximal value for
∑

k〈(Gk)2〉. Similarly, for
symmetric states,∑

k

〈(G̃k)2〉 =
∑
k

〈(Gk)2〉 − 〈
∑
k

∑
n

(g
(n)
k )2〉 (S23)

is also maximal.
Naturally, these statements are also true for the an-

gular momentum operators for the j = 1
2 case, as these

operators, apart from a constant factor, are SU(2) gen-
erators.

On the other hand, for the angular momentum oper-
ators for j > 1

2 these statements are not true. In par-
ticular, 〈

∑
k(Jk)2〉 is not maximal for every symmetric

state.
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