Spin squeezing inequalities for arbitrary spin - Supplementary material

Giuseppe Vitagliano, ${ }^{1}$ Philipp Hyllus, ${ }^{1}$ Iñigo L. Egusquiza, ${ }^{1}$ and Géza Tóth ${ }^{1,2,3}$
${ }^{1}$ Department of Theoretical Physics, The University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain
${ }^{2}$ IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
${ }^{3}$ Research Institute for Solid State Physics and Optics,
Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
(Dated: December 11, 2011)

Abstract

The supplement contains some derivations to help to understand the details of the proofs of the main text. It summarizes well-known facts about the quantum theory of angular momentum and that of $\mathrm{SU}(\mathrm{d})$ generators. Further details will be presented elsewhere [S 1$]$.

PACS numbers: $03.67 . \mathrm{Mn}, 05.50 .+\mathrm{q}, 42.50 . \mathrm{Dv}, 67.85 .-\mathrm{d}$

Angular momentum operators. Next, we summarize the fundamental equations for angular momentum operators [S2]. For particle with spin- j we have

$$
\begin{equation*}
\left(j_{x}^{2}+j_{y}^{2}+j_{z}^{2}\right)=j(j+1) \mathbb{1} \tag{S1}
\end{equation*}
$$

Since the angular momentum operators have identical spectra, it follows from Eq. (S1) that we can write

$$
\begin{equation*}
\operatorname{Tr}\left(j_{x}^{2}\right)=\frac{1}{3} j(j+1)(2 j+1) \tag{S2}
\end{equation*}
$$

Based on Eq. (S2), we get the constant for the orthogonality relation

$$
\begin{equation*}
\operatorname{Tr}\left(j_{k} j_{l}\right)=\delta_{k l} \frac{1}{3} j(j+1)(2 j+1) \tag{S3}
\end{equation*}
$$

For the sum of the squares of expectation values we have

$$
\begin{equation*}
\sum_{k=x, y, z}\left\langle j_{k}\right\rangle^{2} \leq j^{2} \tag{S4}
\end{equation*}
$$

For $j=\frac{1}{2}$, for all pure states the equality holds for Eq. (S4).

Finally,

$$
\begin{equation*}
\sum_{l=x, y, z}\left\langle\left(j_{l} \otimes \mathbb{1}+\mathbb{1} \otimes j_{l}\right)^{2}\right\rangle \leq 2 j(2 j+1) . \tag{S5}
\end{equation*}
$$

Hence, using Eq. (S1) we obtain

$$
\begin{equation*}
2 j(j+1)+2 \sum_{l=x, y, z}\left\langle j_{l} \otimes j_{l}\right\rangle \leq 2 j(2 j+1) . \tag{S6}
\end{equation*}
$$

Thus, we arrive at the inequality

$$
\begin{equation*}
\sum_{l=x, y, z}\left\langle j_{l} \otimes j_{l}\right\rangle \leq j^{2} \tag{S7}
\end{equation*}
$$

Local orthogonal observables. Here we summarize the results of Ref. [S3] for Local Orthogonal Observables (LOOs, [S4]). For a system of dimension d, these are d^{2} observables λ_{k} such that

$$
\begin{equation*}
\operatorname{Tr}\left(\lambda_{k} \lambda_{l}\right)=\delta_{k l} . \tag{S8}
\end{equation*}
$$

For a quantum state ϱ, LOOs have the following properties

$$
\begin{align*}
& \sum_{k=1}^{d^{2}}\left(\lambda_{k}\right)^{2}=d \mathbb{1} \tag{S9}\\
& \sum_{k=1}^{d^{2}}\left\langle\lambda_{k}\right\rangle^{2}=\operatorname{Tr}\left(\varrho^{2}\right) \leq 1 \tag{S10}
\end{align*}
$$

Moreover, based on Ref. [S5] we know that

$$
\begin{equation*}
\sum_{k=1}^{d^{2}} \lambda_{k} \otimes \lambda_{k}=F \tag{S11}
\end{equation*}
$$

where F is the flip operator exchanging two qudits.
$\boldsymbol{S U}(d)$ generators. Next, we will use the results known for local orthogonal observables for $\mathrm{SU}(\mathrm{d})$ generators. For a system of dimension d, there are $d^{2}-1$ traceless $\mathrm{SU}(\mathrm{d})$ generators g_{k} with the property

$$
\begin{equation*}
\operatorname{Tr}\left(g_{k} g_{l}\right)=2 \delta_{k l} \tag{S12}
\end{equation*}
$$

Thus, from $\mathrm{SU}(\mathrm{d})$ generators g_{k} we can obtain LOOS using

$$
\begin{equation*}
\lambda_{k}=\frac{1}{\sqrt{2}} g_{k} \tag{S13}
\end{equation*}
$$

for $k=1,2, \ldots, d^{2}-1$, and $\lambda_{d^{2}}=\frac{1}{\sqrt{d}} \mathbb{1}$.
After a derivation similar to that of Ref. [S3], we arrive at

$$
\begin{gather*}
\sum_{k=1}^{d^{2}-1}\left(g_{k}\right)^{2}=2 \frac{d^{2}-1}{d} \mathbb{1} \tag{S14}\\
\sum_{k=1}^{d^{2}-1}\left\langle g_{k}\right\rangle^{2}=2\left(\operatorname{Tr}\left(\varrho^{2}\right)-\frac{1}{d}\right) \leq 2\left(1-\frac{1}{d}\right), \tag{S15}\\
\sum_{k=1}^{d^{2}-1} g_{k} \otimes g_{k}=2\left(F-\frac{1}{d} \mathbb{1}\right) . \tag{S16}
\end{gather*}
$$

Based on Eq. (S16), for bipartite symmetric states we have

$$
\begin{equation*}
\left\langle\sum_{k=1}^{d^{2}-1} g_{k} \otimes g_{k}\right\rangle=2\left(+1-\frac{1}{d}\right), \tag{S17}
\end{equation*}
$$

while for antisymmetric states we have

$$
\begin{equation*}
\left\langle\sum_{k=1}^{d^{2}-1} g_{k} \otimes g_{k}\right\rangle=2\left(-1-\frac{1}{d}\right) . \tag{S18}
\end{equation*}
$$

It is important to stress that the inequalities presented are valid for all SU(d) generators, not only for Gell-Mann matrices.

Equations for the collective operators based on $S U(d)$ generators.
Here we present some fundamental relations for the collective operators G_{k}. First of all, the length of the vector $\vec{G}=\left\{\left\langle G_{k}\right\rangle\right\}_{k=1}^{d^{2}-1}$ is maximal for a state of the form $|\Psi\rangle{ }^{\otimes N}$. This can be seen as for such states $\vec{G}=N \vec{g}$ where $\vec{g}=\left\{\left\langle g_{k}\right\rangle_{\Psi}\right\}_{k=1}^{d^{2}-1}$, and knowing that for pure states $|\vec{g}|$ is maximal.

For the sum of the squares of G_{k} we obtain

$$
\begin{align*}
\sum_{k}\left(G_{k}\right)^{2} & =\sum_{k} \sum_{n}\left(g_{k}^{(n)}\right)^{2}+\sum_{k} \sum_{n \neq m} g_{k}^{(m)} g_{k}^{(n)} \\
& =2 N \frac{d^{2}-1}{d} \mathbb{1}+\sum_{n \neq m} 2\left(F_{m n}-\frac{\mathbb{1}}{d}\right) . \tag{S19}
\end{align*}
$$

Here we used Eq. (S14) and Eq. (S16). Based on Eq. (S19) and using $\left\langle F_{m n}\right\rangle \geq-1$, we can write

$$
\begin{equation*}
\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle \geq \frac{2 N}{d}(d+1)(d-N) \tag{S20}
\end{equation*}
$$

Note that the bound on the right-hand side of Eq. (S20) cannot be zero if $N<d$. For $N=d$, the sum $\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle$ is zero for the totally antisymmetric state for which $\left\langle F_{m n}\right\rangle=-1$ for all m, n.

Next, we will show that

$$
\begin{equation*}
\sum_{k}\left\langle G_{k}^{2}\right\rangle=0 \Leftrightarrow \sum_{k}\left(\Delta G_{k}\right)^{2}=0 . \tag{S21}
\end{equation*}
$$

In order to prove that, one has to notice that $\sum_{k}\left(\Delta G_{k}\right)^{2}=0$ implies $\sum_{k}\left(\Delta G_{k}^{\prime}\right)^{2}=0$ for any set of $\mathrm{SU}(\mathrm{d})$ generators $G_{k}^{\prime}[\mathrm{S} 6]$. This also implies $(\Delta B)^{2}=0$ for all traceless observables B. For every traceless D one can find traceless B_{1} and B_{2} such that $\left[B_{1}, B_{2}\right]=$ $i D$ [S7] and hence $\left(\Delta B_{1}\right)^{2}+\left(\Delta B_{2}\right)^{2} \geq|\langle D\rangle|$. Hence, $\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle=0$ implies $\langle D\rangle=0$ for all traceless observables D [S1].

As a consequence of Eq. (S20) and Eq. (S21), for $N<d$ we have $\sum_{k}\left(\Delta G_{k}\right)^{2}>0$. Hence, for d-dimensional systems states with less than d particles cannot have $\sum_{k}\left(\Delta G_{k}\right)^{2}=0$.

Moreover, for symmetric states we have $\left\langle F_{m n}\right\rangle=+1$ for all m, n, and based on Eq. (S19) we obtain

$$
\begin{equation*}
\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle=\frac{2 N}{d}(d-1)(d+N) \tag{S22}
\end{equation*}
$$

which is the maximal value for $\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle$. Similarly, for symmetric states,

$$
\begin{equation*}
\sum_{k}\left\langle\left(\tilde{G}_{k}\right)^{2}\right\rangle=\sum_{k}\left\langle\left(G_{k}\right)^{2}\right\rangle-\left\langle\sum_{k} \sum_{n}\left(g_{k}^{(n)}\right)^{2}\right\rangle \tag{S23}
\end{equation*}
$$

is also maximal.
Naturally, these statements are also true for the angular momentum operators for the $j=\frac{1}{2}$ case, as these operators, apart from a constant factor, are $\mathrm{SU}(2)$ generators.

On the other hand, for the angular momentum operators for $j>\frac{1}{2}$ these statements are not true. In particular, $\left\langle\sum_{k}\left(J_{k}\right)^{2}\right\rangle$ is not maximal for every symmetric state.

References

[S1] G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth, in preparation.
[S2] D. M. Brink and G. R. Satchler, Angular momentum, (Oxford University Press, USA, third edition, 1994).
[S3] O. Gühne et al., Phys. Rev. A 74, 010301 (2006).
[S4] S. Yu and N.-L. Liu, Phys. Rev. Lett. 95, 150504 (2005).
[S5] G. Tóth and O. Gühne, Phys. Rev. Lett. 102, 170503 (2009).
[S6] Note that $\sum_{k}\left(\Delta G_{k}\right)^{2}=\operatorname{Tr}(\gamma)$, where the covariance matrix is defined as $\gamma_{k l}=\frac{1}{2}\left(\left\langle\Delta G_{k} \Delta G_{l}\right\rangle+\right.$ $\left.\left\langle\Delta G_{l} \Delta G_{k}\right\rangle\right) . \operatorname{Tr}(\gamma)$ is independent of the particular choice of the G_{k} matrices.
[S7] This is true because the group generated by G_{k} is a simple group. See also L. O'Raifeartaigh, Group structure of gauge theories (Cambridge University Press, New York, 1986).

