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We determine the complete set of generalized spin squeezing inequalities, given in terms of the

collective angular momentum components, for particles with an arbitrary spin. They can be used for the

experimental detection of entanglement in an ensemble in which the particles cannot be individually

addressed. We also present a large set of criteria involving collective observables different from the

angular momentum coordinates. We show that some of the inequalities can be used to detect k-particle

entanglement and bound entanglement.
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With an interest towards fundamental questions in quan-
tum physics, as well as applications, larger and larger
entangled quantum systems have been realized with pho-
tons, trapped ions, and cold atoms [1]. Quantum entangle-
ment can be used as a resource for certain quantum
information processing tasks [1], and it is also necessary
for a wide range of interferometric schemes to achieve the
maximum sensitivity in metrology [2]. Hence, the verifi-
cation of the presence of entanglement is a crucial but
exceedingly challenging task, especially in an ensemble
of many, say 106–1012, particles. In such systems, typically
the particles are not accessible individually and only col-
lective operators can be measured. A ubiquitous entangle-
ment criterion in this context is the spin squeezing
inequality [3]

ð�JxÞ2
hJyi2 þ hJzi2 � 1

N
; (1)

where N is the number of spin- 12 particles, Jl :¼
P

N
n¼1 j

ðnÞ
l

for l ¼ x, y, z are the collective angular momentum com-

ponents and jðnÞl are the single spin angular momentum

components acting on the nth particle. If a state violates
Eq. (1), then it is entangled (i.e., not fully separable [4]).
Such spin squeezed states [5] have been created in numer-
ous experiments with cold atoms and trapped ions [1,6],
and can be used, for instance, in atomic clocks to achieve a
precision higher than the shot noise limit [5].

Recently, after several generalized spin squeezing
inequalities (SSIs) for the detection of entanglement ap-
peared in the literature [7–9] and were used experimentally
[10], a complete set of such entanglement conditions has
been presented in Ref. [11]. However, all of the above
mentioned conditions are for spin-1=2 particles (qubits),
and so far the literature on systems of particles with j > 1

2

is limited to a small number of conditions, specialized for
certain quantum states or particles with a low dimension
[7,12,13]. At this point the question arises: Could one

obtain a complete set of inequalities for j > 1
2? Such

conditions would be very relevant from the practical point
of view since in most of the experiments the physical spin
of the particles is larger than 1

2 and the spin-12 subsystems

are created artificially. Thus, knowing the full set of en-
tanglement criteria for j > 1

2, many experiments for realiz-

ing large scale entanglement could be technologically less
demanding, and fundamentally new experiments could
also be carried out. The solution is not simple: Known
methods for detecting entanglement for spin- 12 particles

by spin squeezing cannot straightforwardly be generalized
to higher spins. For example, for j > 1

2 , Eq. (1) can also

be violated without entanglement between the spin-j
particles [14].
In this Letter, we present the complete set of optimal

spin squeezing inequalities for the collective angular mo-
mentum coordinates for a system ofN particles with spin j.
We also show how existing entanglement conditions for
spin- 12 particles can be transformed into entanglement

conditions for spin-j particles with j > 1
2 (i.e., qudits with

a dimension d ¼ 2jþ 1). Finally, we present a large set of
entanglement conditions for qudit systems that involve
operators different from the angular momentum coordi-
nates, and investigate in detail one of the conditions.
Definitions.—The basic idea for the qudit case is that

besides jl, other single-qudit quantities can also be mea-
sured. Let us consider particles with d internal states. ak for
k ¼ 1; 2; :::;M will denote single-particle operators with
the property TrðakalÞ ¼ C�kl, whereC is a constant. As we
will show later, the ak operators can be, for instance, the
SUðdÞ generators for a d dimensional system. Moreover,
for obtaining our generalized spin squeezing inequalities,
we will need the upper bound K for the inequalityP

M
k¼1haðnÞk i2 � K.
The N-qudit collective operators used in our criteria will

be denoted by Ak ¼ P
na

ðnÞ
k . In the qubit case, the SSIs

were developed based on the first and second moments and
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variances of the such collective operators [11]. For
j > 1=2, we define the modified second moment

h ~A2
ki :¼ hA2

ki �
�X

n

ðaðnÞk Þ2
�
¼ X

m�n

haðnÞk aðmÞ
k i (2)

and the modified variance

ð~�AkÞ2 :¼ ð�AkÞ2 �
�X

n

ðaðnÞk Þ2
�
: (3)

In the following, the quantities Eqs. (2) and (3) will be used
instead of second moments and variances because other-
wise it is not possible to obtain tight inequalities for
separable states [13].

SSIs for qudits.—First, we present a general inequality
from which the entanglement conditions for the different
operator sets can be obtained.

Observation 1.—For separable states, i.e., for states that
can be written as a mixture of product states [4],

ðN � 1ÞX
k2I

ð~�AkÞ2 �
X
k=2I

h ~A2
ki � �NðN � 1ÞK (4)

holds, where each index set I � f1; 2; :::;Mg defines one of
the 2M inequalities. Note that I ¼ ; and I ¼ f1; 2; :::;Mg
are among the possibilities. The proof can be found in the
Appendix. It is remarkable that the bound on the right-hand
side of Eq. (4) is tight, independent of I, and independent
of the particular choice of the ak operators except for the
value of K.

Equation (4) is the basis for the entanglement conditions
we present in Observations 2 and 4.

Observation 2.—Optimal spin squeezing inequalities for
qudits. For fully separable states of spin-j particles, all the
following inequalities are fulfilled

hJ2xi þ hJ2yi þ hJ2z i � NjðNjþ 1Þ; (5a)

ð�JxÞ2 þ ð�JyÞ2 þ ð�JzÞ2 � Nj; (5b)

h~J2ki þ h~J2l i � NðN � 1Þj2 � ðN � 1Þð~�JmÞ2; (5c)

ðN � 1Þ½ð~�JkÞ2 þ ð~�JlÞ2� � h~J2mi � NðN � 1Þj2; (5d)

where k, l, m take all possible permutations of x, y, z.
Violation of any of the inequalities (5) implies entangle-
ment. The inequalities (5) are a full set for large N in the
sense that it is not possible to add a new entanglement
condition detecting other states based on hJki and h~J2ki.

Proof.—We applied Observation 1 with fakg ¼
fjx; jy; jzg, K ¼ j2 and used j2x þ j2y þ j2z ¼ jðjþ 1Þ1
[15,16]. For j ¼ 1

2 , the inequalities (5) are identical to

the optimal SSIs for qubits [11]. For this case, the com-
pleteness has already been shown [11]. That is, for all
values of hJki and h~J2ki that fulfill Eqs. (5) there is a
corresponding separable state in the large N limit. Direct

calculation shows that if a separable quantum state %sep;12
¼P

mpm�
ð1Þ
m � �ð2Þ

m � ::: � �ðNÞ
m , where �ðnÞ

m are single-qubit
pure states, saturates one of the inequalities Eqs. (5) for

j ¼ 1
2 , then the state %sep;j ¼

P
mpm!

ð1Þ
m �!ð2Þ

m � . . . �
!ðNÞ

m , saturates the same inequality of Eqs. (5) for spin-j

particles. Here, !ðnÞ
m are single-qudit pure-state density

matrices such that Trð�ðnÞ
m �lÞj ¼ Trð!ðnÞ

m jlÞ. For instance,
if the first state is j þ 1

2ix, then the second one is j þ jix.
Thus the proof of completeness of Ref. [11] can be ex-
tended to prove the completeness of the criteria Eqs. (5).j
Equation (5a) is valid for all quantum states. States

maximally violating Eq. (5b) are angular momentum
singlets, while for Eq. (5c), for even N, they are symmetric

Dicke states of the form ðN=2
N Þ�1=2

P
kP kðj þ ji�N=2�

j � ji�N=2Þ, where P k denotes all different permuta-
tions [17].
It is also possible to obtain entanglement conditions for

spin-j particles from criteria for qubit systems.
Observation 3.—Let us consider an inequality valid for

N-qubit separable states of the form

fðfhJligl¼x;y;z; fh~J2l igl¼x;y;zÞ � const; (6)

where f is a concave function of its variables. All of the
generalized SSIs in the literature have this form. Then,
the entanglement condition Eq. (6) can be transformed
to a criterion for a system of N spin-j particles by the
substitution

hJli ! 1
2jhJli; h~J2l i ! 1

4j2
ðh~J2l iÞ: (7)

Proof.—Let us consider product states of N spin-j particles

of the form %j ¼ �n%
ðnÞ
j , and define the quantities rðnÞl ¼

hjðnÞl i=j. Then, the first and second moments can be rewrit-

ten as hJli ¼ j
P

nr
ðnÞ
l and h~J2l i ¼ j2

P
m�nr

ðnÞ
l rðmÞ

l . The only

constraint for the physically allowed values for rðnÞl

is j~rðnÞj � 1 for all j. Hence, for an arbitrary function f,

min
%j

fðf 12jhJli%j
gl¼x;y;z; f 1

4j2
h~J2l i%j

gl¼x;y;zÞ

¼ min
%1=2

fðfhJli%1=2
gl¼x;y;z; fh~J2l i%1=2

gl¼x;y;zÞ:
If f is a concave function of its variables then we have the
same minimum for separable states. j
Using Observation 3, for instance, the standard

spin squeezing inequality Eq. (1) from Ref. [3] becomes

ð�JxÞ2
hJyi2 þ hJzi2 þ

P
n
ðj2 � hðjðnÞx Þ2iÞ
hJyi2 þ hJzi2

� 1

N
: (8)

Equation (8) is violated only if there is entanglement
between the spin-j particles. Because of the second, non-
negative term on the left-hand side of Eq. (8), for j > 1

2

there are states that violate Eq. (1), but do not violate
Eq. (8). Remarkably, it can be proven that Eq. (5c) is
strictly stronger than Eq. (8) [17].
The last application of Observation 1 is the following.
Observation 4.—For a system of d-dimensional parti-

cles, we can define collective operators based on the SUðdÞ
generators fgkgMk¼1 with M ¼ d2 � 1 as Gk ¼ PN

n¼1 g
ðnÞ
k .

The SSIs for Gk have the general form

PRL 107, 240502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

240502-2



ðN� 1ÞX
k2I

ð~�GkÞ2�
X
k=2I

h ~G2
ki ��2NðN� 1Þ ðd� 1Þ

d
: (9)

For instance, for the d ¼ 3 case, the SUðdÞ generators can
be the Gell-Mann matrices [18].

Proof.—We used Observation 1 with C ¼ 2 and
K ¼ 2ð1� 1

dÞ [15,19]. j

Observation 4 presents an abundance of inequalities.
Here, we will analyze in detail Eq. (9) for I ¼
f1; 2; . . . ;Mg. Using

P
kg

2
k ¼ 2ðdþ 1Þð1� 1

dÞ1 [15],

Eq. (9) for this case can be rewritten as

Xd2�1

k¼1

ð�GkÞ2 � 2Nðd� 1Þ: (10)

Equation (10) is maximally violated by many-body SUðdÞ
singlets. Such states appear often in statistical physics of
spin systems and condensed matter physics [20]. They are
invariant under operations of the type U�N [4], which can
be exploited in differential magnetometry [21], encoding
quantum information in decoherence free subspaces and
sending information independent from the reference frame
direction [22].

Noise tolerance of Eq. (10).—First, we will ask
how efficiently Eq. (10) can be used for entanglement
detection. Let us consider SUðdÞ singlet states (i.e.,
states with hG2

ki ¼ 0) mixed with white noise as %noisy ¼
ð1� pnoiseÞ%singlet þ pnoise

1
dN
1. Direct calculation shows

that such a state is detected as entangled if pnoise <
d

dþ1 .

Thus, the noise tolerance in detecting SUðdÞ singlets is
increasing with d. Note that Eq. (5b) detects a noisy state as
entangled for an analogous situation if pnoise <

2
dþ1 .

Equation (10) detects k-particle entanglement.—The
criteria presented so far detect any type of nonseparability.
It would be important to find similar criteria that detect
higher forms of entanglement, that is, k entanglement. This
type of strong entanglement, rather than simple nonsepa-
rability, is needed, for instance, to achieve maximal preci-
sion in many interferometric tasks [23]. A pure state is said
to possess k entanglement if it cannot be written as a tensor
product �njc ni such that each jc ni is a state of at most
k� 1 qubits. A mixed state is k entangled if it cannot be
obtained mixing states that are at most k� 1 entangled
[24]. Otherwise the state is called (k� 1) producible.

While Eq. (10) can be maximally violated by two-
producible states for j ¼ 1

2 [21], it is not the case for

j > 1
2 . For the SUðdÞ case, a d-particle entangled state is

needed to violate Eq. (10) maximally [15]. Thus, the
amount of violation of Eq. (10) can be used to detect
k entanglement.

Observation 5.—For two-producible states the following
bound holds

Xd2�1

k¼1

ð�GkÞ2 �
�
2Nðd� 2Þ for evenN;
2Nðd� 2Þ þ 2 for oddN:

(11)

The violation of Eq. (11) signals 3-particle entanglement.
Note that for large d the bound in Eq. (11) is very close to
the bound for separable states in Eq. (10). The proof can be
found in the Appendix.
Equation (10) detects bound entanglement.—In

Ref. [11], it has already been shown the optimal SSIs for
the j ¼ 1

2 case can detect bound entanglement [25], i.e.,

entangled states with a positive partial transpose (PPT,
[26]), in the thermal states of common spin models. We
find numerically that the criterion Eq. (10) detects bound
entanglement in the thermal state of several Hamiltonians,
such as for example H ¼ P

kG
2
k, even for j > 1

2 [17].

Symmetric states.—Next, it is important to ask how our
entanglement criteria behave for symmetric states, as such
states naturally appear in many systems such as Bose-
Einstein condensates of two-state atoms.
Observation 6.—(i) Symmetric states can violate Eq. (4)

for some I only if %T1
av2 6�0, where T1 denotes the partial

transposition [26] and the average two-qudit density matrix
is defined as %av2 ¼ 1

NðN�1Þ
P

m�n%mn. (ii) For symmetric

states, if ak are the SUðdÞ generators gk, Eq. (4) is equiva-
lent to X

k2I

Nð~�GkÞ2 þ hGki2 � 0: (12)

For this case, Eq. (12) is violated for at least one I and some
choice of the collective operators if and only if %T1

av2 6�0. For
the proof, see the Appendix.
Implementation.—The angular momentum coordinates

Jk and their variances can be measured in cold atoms by
coupling the atomic spin to a light field, and then measur-
ing the light [6]. The collective spin can be rotated by

magnetic fields. Measuring the operators
P

nðjðnÞk Þ2 can be

realized by rotating the spin by a magnetic field, and then
measuring the populations of the jz eigenstates. In some
cold atomic systems, such operators might also be mea-
sured directly, as in such systems in the Hamiltonian a

szðjðnÞk Þ2 term appears, where ~s is the photonic pseudospin
[27]. For the SUðdÞ generators, the Gk operators can be
measured in a similar manner, however, SU(2) rotations
realized with a magnetic field are not sufficient. For larger
spins, it is advantageous to choose the gk operators to be

ðjkihlj þ jlihkjÞ= ffiffiffi
2

p
, iðjkihlj � jlihkjÞ= ffiffiffi

2
p

and jkihkj [28].
The corresponding collective operators can all be mea-
sured based an SU(2) rotation within a two-dimensional
subspace and a population measurement of at most two
quantum states.
In summary, we have presented a complete set of gen-

eralized SSIs for detecting entanglement in an ensemble of
qudits based on knowing only hJki and h~J2ki for k ¼ x, y, z.
We extended our approach to collective observables based
on the SUðdÞ generators. We showed that some of the
inequalities can be used to detect k entanglement and
bound entanglement. Finally, we discussed the experimen-
tal implementation of the criteria.
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Appendix: Proof of Observation 1.—We consider prod-
uct states of the form j�i ¼ �nj�ni. For such states, we

have h ~A2
ki� ¼ hAki2 �

P
nhaðnÞk i2. Hence, the left-hand side

of Eq. (4) equals �P
nðN�1ÞPk2IhaðnÞk i2�P

k=2IðhAki2�P
nhaðnÞk i2Þ��P

nðN�1ÞPM
k¼1haðnÞk i2��NðN�1ÞK. We

used that hAki2 � N
P

nhaðnÞk i2 [11]. j

Proof of Observation 5.—We will find a lower bound on
the left-hand side of Eq. (11) for N ¼ 2. Let us consider
first antisymmetric states. We will use that

P
khG2

ki ¼P
khg2k � 1i þP

kh1 � g2ki þ 2
P

khgk � gki. Then, we

need that
P

kgk � gk ¼ 2F� 2
d1 where F is the flip opera-

tor [15,19]. Hence,
P

khG2
ki ¼ 4ðdþ 1Þð1� 2

dÞ. For the

nonlinear part, we have that
P

khgki2%red
¼ 2Trð%2

redÞ � 2
d

[15,19], and using the Cauchy-Schwarz inequality forP
khgk � 1ih1 � gki, we obtain a bound

P
khGki2 �

4� 8
d . Here we used that for antisymmetric states, for the

reduced single-qudit state Trð%2
redÞ � 1

2 [29]. This leads to

Eq. (11) for antisymmetric states. For symmetric states the
bound on the left-hand side of Eq. (11) can be obtained
similarly and it is larger. Finally, since the equation is
invariant under the permutation of qudits, the variances
give the same value for % as for 1

2 ð%þ F%FÞ � Pa%Pa þ
Ps%Ps, where Ps and Pa are the projectors to the symmet-
ric and antisymmetric subspaces, respectively. Thus, it is
sufficient to consider mixtures of symmetric and antisym-
metric states. The bound for the product of such two-qudit
states and of single-qudit states for the left-hand side of
Eq. (11) can be obtained using ½�ða�1þ1�aÞ�2c 1�c 2

¼
ð�aÞ2c 1

þð�aÞ2c 2
. Because of the concavity of the variance,

the bound is the same for mixed 2-producible states. j
Proof of Observation 6.—Equation (4) can be rewritten

as
P

k2INð~�AkÞ2 þ hAki2 � P
M
k¼1h ~A2

ki � NðN � 1ÞK,
which can be reexpressed as

P
k2INðhak�aki%av2

�
hak�1i2%av2

Þ�P
khak�aki%av2

�K. From Eq. (4) for I¼;
it follows that

P
khak � aki%av2

¼ 1
NðN�1Þ

P
kh ~A2

ki � K,

while the equality holds for symmetric states for SUðdÞ
generators gk [15]. We also need that a density matrix of a
two-qudit symmetric state has a positive partial transpose if
and only if hO �Oi � hO � 1i2 � 0 for every O [30].
Hence the statement of Observation 6 follows. For qubits,
we obtain the results of Ref. [8]. j
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