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We present a scalable method for the tomography of large multiqubit quantum registers. It acquires

information about the permutationally invariant part of the density operator, which is a good approxi-

mation to the true state in many relevant cases. Our method gives the best measurement strategy to

minimize the experimental effort as well as the uncertainties of the reconstructed density matrix. We apply

our method to the experimental tomography of a photonic four-qubit symmetric Dicke state.
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Because of the rapid development of quantum experi-
ments, it is now possible to create highly entangled multi-
qubit states using photons [1–5], trapped ions [6], and cold
atoms [7]. So far, the largest implementations that allow
for an individual readout of the particles involve on the
order of 10 qubits. This number will soon be overcome, for
example, by using several degrees of freedom within each
particle to store quantum information [8]. Thus, a new
regime will be reached in which a complete state tomog-
raphy is impossible even from the point of view of the
storage place needed on a classical computer. At this point
the question arises: Can we still extract useful information
about the quantum state created?

In this Letter we propose permutationally invariant
(PI) tomography in multiqubit quantum experiments [9].
Concretely, instead of the density matrix %, we propose to
determine the PI part of the density matrix defined as

%PI ¼ 1

N!

X
k

�k%�k; (1)

where �k are all the permutations of the qubits.
Reconstructing %PI has been considered theoretically for
spin systems (see, e.g., Ref. [10]). Recently it has been
pointed out that photons in a single mode optical fiber will
always be in a PI state and that there is only a small set of
measurements needed for their characterization [11,12].

Here, we develop a provably optimal scheme, which is
feasible for large multiqubit systems: For our method, the
measurement effort increases only quadratically with the
size of the system. Our approach is further motivated by
the fact that almost allmultipartite experiments are donewith
PI quantum states [2–4,6]. Thus, the density matrix obtained
from PI tomography is expected to be close to the one of the
experimentally achieved state. The expectation values of
symmetric operators, such as some entanglement witnesses,
and fidelities with respect to symmetric states are the same

for both density matrices and are thus obtained exactly from
PI tomography [2–4]. Finally, if %PI is entangled, so is the
state % of the system, which makes PI tomography a useful
and efficient tool for entanglement detection.
Below, we summarize the four main contributions of this

Letter. We restrict our attention to the case of N qubits—
higher-dimensional systems can be treated similarly.
(1) In most experiments, the qubits can be individually

addressed whereas nonlocal quantities cannot be measured
directly. The experimental effort is then characterized by
the number of local measurement settings needed, where
‘‘setting’’ refers to the choice of one observable per qubit,
and repeated von Neumann measurements in the observ-
ables’ eigenbases [13]. Here, we compute the minimal
number of measurement settings required to recover %PI.
(2) The requirement that the number of settings be

minimal does not uniquely specify the tomographic proto-
col. On the one hand, there are infinitely many possible
choices for the local settings that are both minimal and
give sufficient information to find %PI. On the other hand,
for each given setting, there are many ways of estimating
the unknown density operator from the collected data. We
present a systematic method to find the optimal scheme
through statistical error analysis.
(3) Next, we turn to the important problem of gauging

the information loss incurred due to restricting attention to
the PI part of the density matrix. We describe an easy test
measurement that can be used to judge the applicability of
PI tomography before it is implemented.
(4) Finally, we demonstrate that these techniques are

viable in practice by applying them to a photonic experi-
ment observing a four-qubit symmetric Dicke state.
Minimizing the number of settings.—We will now

present our first main result.
Observation 1. For a system of N qubits, permuta-

tionally invariant tomography can be performed with
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D N ¼ N þ 2
N

� �
¼ 1

2
ðN2 þ 3N þ 2Þ (2)

local settings. It is not possible to perform such a tomog-
raphy with fewer settings.

Proof.—First, we need to understand the information
obtainable from a single measurement setting. We assume
that for every given setting, the same basis is measured at
every site [14]. Measuring a local basis fj�1i; j�2ig is
equivalent to estimating the expectation value of the trace-
less operator A ¼ j�1ih�1j � j�2ih�2j. Merely by mea-
suring A�N , it is possible to obtain all the N expectation
values

hðA�ðN�nÞ � 1�nÞPIi; ðn ¼ 0; . . . ; N � 1Þ; (3)

and, conversely, that is all the information obtainable about
%PI from a single setting.

Next, we will use the fact that any PI density operator
can be written as a linear combination of the pairwise
orthogonal operators ðX�k � Y�l � Z�m � 1�nÞPI, where
X, Y, and Z are the Pauli matrices. We consider the space
spanned by these operators for one specific value of n.
Simple counting shows that its dimension is DðN�nÞ. The
same space is spanned by DðN�nÞ generic operators of the
type ðA�ðN�nÞ � 1�nÞPI. We draw two conclusions: First,
any setting gives at most one expectation value for every
such space. Hence the number of settings cannot be smaller
than the largest dimension, which isDN . Second, a generic
choice of DN settings is sufficient to recover the correla-
tions in each of these spaces, and hence completely char-
acterizes %PI. This concludes the proof [15].

The proof implies that there are real coefficients cðk;l;mÞ
j

such that

hðX�k � Y�l � Z�m � 1�nÞPIi

¼ XDN

j¼1

cðk;l;mÞ
j hðA�ðN�nÞ

j � 1�nÞPIi: (4)

Wewill refer to the numbers on the left-hand side of Eq. (4)
as the elements of the generalized Bloch vector. The ex-
pectation values on the right-hand side can be obtained by
measuring the settings with Aj for j ¼ 1; 2; . . . ;DN .

Minimizing uncertainties.—We now have to determine
the optimal scheme for PI tomography. To this end, we
define our measure of statistical uncertainty as the sum of
the variances of all the Bloch vector elements

ðEtotalÞ2 ¼
X

kþlþmþn¼N

E2½ðX�k � Y�l � Z�m � 1�nÞPI�

�
�

N!

k!l!m!n!

�
; (5)

where the term with the factorials is the number of differ-
ent permutations of X�k � Y�l � Z�m � 1�n. Based on
Eq. (4), the variance of a single Bloch vector element is

E 2½ðX�k � Y�l � Z�m � 1�nÞPI�

¼ XDN

j¼1

jcðk;l;mÞ
j j2E2½ðA�ðN�nÞ

j � 1�nÞPI�: (6)

Equation (5) can be minimized by changing the Aj matrices

and the cðk;l;mÞ
j coefficients.We consider the coefficients first.

For any Bloch vector element, finding cðk;l;mÞ
j ’s thatminimize

the variance Eq. (6) subject to the constraint that equality
holds in Eq. (4) is a least squares problem. It has an analytic
solution obtained as follows: Write the operator on the left-
hand side of Eq. (6) as a vector ~v (with respect to some basis).
Likewise, write the operators on the right-hand side as ~vj and

define a matrix V¼½ ~v1; ~v2; .. . ; ~vDN
�. Then Eq. (4) can be

cast into the form ~v ¼ V ~c, where ~c is a vector of the cðk;l;mÞ
j

values for given ðk; l; mÞ. If E is the diagonal matrix with en-

triesE2
j;j ¼ E2½ðA�ðN�nÞ

j � 1�nÞPI�, then the optimal solution

is ~c ¼ E�2VTðVE�2VTÞ�1 ~v, where the inverse is taken over
the range [16].
Equipped with a method for obtaining the optimal

cðk;l;mÞ
j ’s for every fixed set of observables Aj, it remains to

find the best settings tomeasure. Every qubit observable can
be defined by the measurement directions ~aj using Aj ¼
aj;xX þ aj;yY þ aj;zZ. Thus, the task is to identify DN

measurement directions on the Bloch sphere minimizing
the variance. In general, finding the globally optimal solu-
tion of high-dimensional problems is difficult. In our case,
however, Etotal seems to penalize an inhomogeneous distri-
bution of the ~aj vectors; thus, using evenly distributed vec-

tors as an initial guess, usual minimization procedures can
be used to decrease Etotal and obtain satisfactory results [16].

The variance E2½ðA�ðN�nÞ
j � 1�nÞPI� of the observed

quantities depends on the physical implementation. In the
photonic setup below, we assume Poissonian distributed
counts. It follows that (see also Refs. [17,18])

E 2½ðA�ðN�nÞ
j � 1�nÞPI� ¼

½�ðA�ðN�nÞ
j � 1�nÞPI�2%0

�j � 1
; (7)

where ð�AÞ2% ¼ hA2i% � hAi2%, %0 is the state of the system,

and �j is the parameter of the Poissonian distribution,

which equals the expected value of the total number of
counts for the setting j. The variance depends on the un-
known state. If we have preliminary knowledge of the
likely form of %0, we should use that information in the
optimization. Otherwise, %0 can be set to the completely
mixed state. For the latter, straightforward calculation

shows that E2½ðA�ðN�nÞ
j � 1�nÞPI� ¼ ðNnÞ�1=ð�j � 1Þ. For

another implementation, such as trapped ions, our scheme
for PI tomography can be used after replacing Eq. (7) by
a formula giving the variance for that implementation.
Estimating the information loss due to symmetriza-

tion.—It is important to know how close the PI quantum
state is to the state of the system as PI tomography should
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serve as an alternative of full state tomography for experi-
ments aiming at the preparation of PI states.

Observation 2. The fidelity between the original state
and the permutationally invariant state, Fð%; %PIÞ, can

be estimated from below as Fð%; %PIÞ � hPsi2%, where Ps ¼P
N
n¼0 jDðnÞ

N ihDðnÞ
N j is the projector to the N-qubit symmetric

subspace, and the symmetric Dicke state is defined as

jDðnÞ
N i ¼ ðNnÞ�1=2

P
kP kðj0i�ðN�nÞ � j1i�nÞ, where the sum-

mation is over all the different permutations of the qubits.
Observation 2 can be proved based on Ref. [19] and elemen-
tary matrix manipulations. Note that Observation 2 makes
it possible to estimate Fð%; %PIÞ based on knowing only %PI.

Lower bounds on the fidelity to symmetric Dicke states,

i.e., TrðjDðnÞ
N ihDðnÞ

N j%Þ can efficiently be obtained by mea-
suring X, Y, and Z on all qubits, i.e., measuring only three
local settings independent of N [20]. With the same
measurements, one can also obtain a lower bound on the
overlap between the state and the symmetric subspace.
For four qubits, this can be done based on Ps � ½ðJ4x þ
J4y þ J4z Þ � ðJ2x þ J2y þ J2z Þ�=18, where Jx ¼ ð1=2ÞPkXk,

Jy ¼ ð1=2ÞPkYk, etc. Operators for estimating hPsi for

N ¼ 6; 8 are given in Ref. [16]. This allows one to judge
how suitable the quantum state is for PI tomography before
such a tomography is carried out.

Experimental results.—We demonstrate the method and
the benefits of our algorithm for PI tomography for a four-

qubit symmetric Dicke state with two excitations jDð2Þ
4 i.

First, we optimize the ~aj’s and the cðk;l;mÞ
j ’s for %0 ¼ 1=16

and only for the uncertainty of full four-qubit correlation
terms, which means that when computing Etotal, we carry out
the summation in Eq. (5) only for the termswith n ¼ 0. With
simple numerical optimization,wewere looking for the set of
Aj basis matrices that minimize the uncertainty of the full

correlation terms. Then,we also looked for the basismatrices
that minimize the sum of the squared error of all the Bloch
vector elements and considered also density matrices differ-
ent from white noise, such as a pure Dicke state mixed with
noise. We find that the gain in terms of decreasing the
uncertainties is negligible in our case and that it is sufficient
to optimize for %0 ¼ 1=16 and for the full correlation terms.
To demonstrate the benefits of the optimization of the mea-
surement directions, we also compare the results with those
obtained with randomly distributed basis matrices.

The Dicke state was observed in a photonic system.
Essentially, four photons emitted by the second-order col-
linear type-II spontaneous parametric down-conversion
process were symmetrically distributed into four spatial
modes. Upon detection of one photon from each of the

outputs, the state jDð2Þ
4 i is observed. Polarization analysis

in each mode is used to characterize the experimentally
observed state. We collected data for each setting for 5 min,
with an average count rate of 410 per minute. The experi-
mental setup has been described in detail in Refs. [2,3].

First, to check the applicability of the PI tomography,
we apply our tools described above requiring only the

measurement of the three settings, X�4, Y�4, and Z�4.
We determine the expectation value of the projector to
the symmetric subspace, yielding hPsi � 0:905� 0:015.
Based on Observation 2, we obtain Fð%; %PIÞ � 0:819�
0:028. These results show that the state is close to be PI
and has a large overlap with the symmetric subspace. Thus,
it makes sense to apply PI tomography.
For PI tomography of a four-qubit system, the measure-

ment of 15 settings is needed. We used Eq. (4) to obtain the
Bloch vector elements from the experimentally measured
quantities. This way, we could obtain all the 34 symmetric
correlations of the form ðX�k � Y�l � Z�m � 1�nÞPI. In
Fig. 1, we give the values of the correlations for optimized
and for randomly chosen measurement directions, com-
pared to the results obtained from full tomography, which
needed 81 measurement settings. As can be seen in Fig. 1,
the uncertainty for the optimized settings is considerably
smaller than the one for the randomly chosen settings.
Moreover, the results from the optimized settings fit very
well the results of the full tomography. In Fig. 2, we
compare the density matrices obtained from full tomogra-
phy [Fig. 2(a)], from PI tomography for optimized
[Fig. 2(b)], and for random measurement directions
[Fig. 2(c)]. Because of noise, the fidelity of the result of

the full tomography with respect to jDð2Þ
4 i is 0:873� 0:005,

which is similar to the fidelity of the results of the PI
tomography with optimized settings, 0:852� 0:009 [21].
In contrast, for the method using random measurement
directions, the fidelity is 0:814� 0:059, for which the
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FIG. 1 (color online). (a) Comparison of the 34 symmetrized
correlations coming from (crosses with error bars) 15 permutation-
ally invariant measurement settings with optimized Aj matrices for

N ¼ 4 qubits and (diamonds) from full tomography requiring 81
local settings. The average uncertainty of all symmetrized correla-
tions obtained from full tomography is�0:022, and is not shown in
the figure. The labels refer to symmetrized correlations of the form
given in the left-hand side of Eq. (4). The results corresponding to
the 15 full four-qubit correlations are left from the vertical dashed
line. (b)Measurement directions.A point at ðax; ay; azÞ corresponds
to measuring operator axX þ ayY þ azZ. (c) Results for randomly

chosen Aj matrices and (d) corresponding measurement directions.
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uncertainty is the largest compared to all previous fidelity
values. Finally, we also computed the fidelity of the results
with respect to the PI density matrix obtained from full
tomography [22]. The results of the PI tomography with
optimized settings show a good agreement with full to-
mography: the fidelity is 0.947, which is quite close to the
fidelity between the results of full tomography and its PI
part, 0.964. On the other hand, for the PI tomography with
random settings the corresponding fidelity is much lower,
0.880. Overall, the PI tomography shows a good agreement
with the full tomography for this particular experiment.
However, a reasonable choice of measurement directions is
needed to obtain uncertainties in the reconstructed Bloch
vector elements similar to the ones from full tomography.

Finally, let us comment on how our method can be ex-
tended to lager systems. Permutationally invariant operators
can be represented efficiently on a digital computer in the
basis of ðX�k�Y�l�Z�m�1�nÞPI operators.Wedetermined
the optimal Aj operators for PI tomography for systems with

N ¼ 6; 8; . . . ; 14 qubits. To have the same maximum uncer-
tainty of theBlochvector elements as for theN ¼ 4 case, one
has to increase the counts per setting by less than 50% [16].

In summary, we presented a scalablemethod for permuta-
tionally invariant tomography, which can be used in place of
full state tomography in experiments that aim at preparing
permutationally invariant many-qubit states. For our ap-
proach, the same operator has to be measured on all qubits,

which is a clear advantage in some experiments.We showed
how to choose themeasurements such that the uncertainty in
the reconstructed density matrix is the smallest possible.
This paves the way of characterizing permutationally in-
variant states of many qubits in various physical systems.
Moreover, this work also shows that, given some knowledge
or justifiable assumptions, there is a way to obtain scalable
state tomography for multiqubit entangled states.
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