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Bell Inequalities for Graph States
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We investigate the nonlocal properties of graph states. To this aim, we derive a family of Bell
inequalities which require three measurement settings for each party and are maximally violated by
graph states. In turn, for each graph state there is an inequality maximally violated only by that state. We
show that for certain types of graph states the violation of these inequalities increases exponentially with
the number of qubits. We also discuss connections to other entanglement properties such as the positivity
of the partial transpose or the geometric measure of entanglement.
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FIG. 1. Types of graphs for the case of five vertices: (a) The
linear cluster graph LC5. (b) The ring cluster graph RC5. (c) The
star (or GHZ) graph ST5. This describes a GHZ state. (d) The
fully connected graph FC5. This graph can be obtained from ST5

by local complementation on the second qubit (see Lemma 4). It
also describes a GHZ state [3].
Quantum theory predicts correlations which are stronger
than the correlations of local hidden variable (LHV) mod-
els. By definition, LHV models have to obey the con-
straints of realism and locality: Any observable has a
predetermined value, regardless of whether it is measured
or not, and the choice of which observable to measure on
one party of a multipartite system does not affect the
results of the other parties. These constraints lead to the
so-called Bell inequalities which put bounds on the corre-
lations. These inequalities turn out to be violated by certain
quantum mechanical states [1,2].

In this Letter we address the question of whether graph
states allow a LHV description or not. Graph states form a
family of multiqubit states which comprises many popular
states such as the Greenberger-Horne-Zeilinger (GHZ)
states and the cluster states [3]. Graph states are also
crucial for applications: All code words in the standard
quantum error correcting codes correspond to graph states
[4] and one-way quantum computation uses graph states as
resources [5]. Recently, graph states have been produced in
optical lattices [6] and the basic elements of one-way
quantum computing have been demonstrated experimen-
tally [7]. Also, general methods for the generation of graph
states have been explored [8].

It is a natural and important question whether these tasks
and experiments, including the effects of noise can be
described by LHV models. To answer this question, we
derive a class of Bell inequalities. Each graph state violates
one of these inequalities in the GHZ sense, i.e., by satu-
rating all correlation terms, and for certain types of graph
states the violation of local realism increases exponentially
with the number of qubits. In this way we show that tasks
like measurement based quantum computing and quantum
error correction are far from the realm of LHV theories.
Note that the nonlocality of special examples of graph
states has been shown recently [2].
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Graph states are defined as follows. Let G be a graph,
i.e., a set of n vertices and some edges connecting them.
Some interesting graphs are shown in Fig. 1. For each
vertex i the neighborhood N�i� denotes the vertices which
are connected with i. We can associate to each vertex i a
stabilizing operator gi by

gi � X�i�
O

j2N�i�

Z�j�: (1)

From now on, X�i�, Y�i�, Z�i� denote the Pauli matrices �x,
�y, �z, acting on the ith qubit. For instance, for the fully
connected three vertex graph, the stabilizing operators are
g1 � X�1�Z�2�Z�3�, g2 � Z�1�X�2�Z�3�, and g3 � Z�1�Z�2�X�3�.
The graph state jGi associated with the graph G is the
unique n-qubit state fulfilling

gijGi � jGi; for i � 1; . . . ; n: (2)

Physically, the graph describes the perfect correlations in
the state jGi, since hgii � hX�i�

N
j2N�i�Z

�j�i � 1. At the
same time, it denotes a possible interaction history leading
to jGi; i.e., jGi can be produced by an Ising type interac-
tion acting between the connected qubits.

Given the stabilizing operators gi, we can look at the
group of their products, the so-called stabilizer [9],
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S�G� � fsj; j � 1; . . . ; 2ng; sj �
Y

i2Ij�G�

gi (3)

where Ij�G� denotes a subset of the vertices of G. If a
certain generator gk appears in the product in Eq. (3), [i.e.,
k 2 Ij�G�], we say that sj contains gk. The group S�G� is
commutative and has 2n elements. Of course, for all these
elements sjjGi � jGi holds. A last property we have to
mention is the fact that

X2n

i�1

si � 2njGihGj (4)

holds, as can be checked by direct calculation [3].
Now we present our idea for the derivation of Bell

inequalities. Given a graph G all the stabilizing operators
are of the form

si�G� �
On

k�1

O�k�i ; (5)

where the single qubit observables are either the identity or
one of the Pauli matrices: O�k�i 2 f1;�X

�k�;�Y�k�;�Z�k�g.
We look at the operator

B �G� �
X2n

i

si�G� �
X2n

i

On

k�1

O�k�i : (6)

To give a simple example, this operator for the fully con-
nected graph state for three qubits reads

B�FC3� � 1�1�1�2�1�3� � X�1�Z�2�Z�3� � Z�1�X�2�Z�3�

� Z�1�Z�2�X�3� � Y�1�Y�2�1�3� � Y�1�1�2�Y�3�

� 1�1�Y�2�Y�3� � X�1�X�2�X�3�: (7)

We take this B as the Bell operator and compute a bound

C �G� � C�B� � max
LHV
jhBij; (8)

where the maximum of the absolute value of the mean
value hBi is taken over all LHV models. Here, it suffices to
look at deterministic LHV models which have to assign
definite values f�1;�1g to the observables O�i�k , whenever
O�i�k � 1 [10]. This is due to the fact that nondeterministic
LHV models can be viewed as deterministic LHV models
where the hidden variables are not known. In principle, in
the definition of B the Pauli matrices can be replaced by
arbitrary dichotomic observables. Since we are interested
in graph states, we will, however, always use X; Y; Z.

If we can find for a given graph G a bound C�G�< 2n,
the nonlocality of the graph state jGi is detected. This is
due to Eq. (4), which implies that for the graph state hBi �
2n holds. Also, the graph state violates the Bell inequality
maximally. In the example of Eq. (7) we will see later that
C�FC3� � 6. This gives rise to the Bell inequality
jhB�FC3�ij � 6 which is violated by the state jFC3i. In
the following, it will also be useful to compare the strength
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of the Bell inequalities by the normalized parameter
D�G� �: C�G�=2n or 1=D. Note that we have a valid
Bell inequality whenever D< 1.

So the main task is to find the value of C�G� or D�G�.
An exact calculation is, in general, very demanding.
However, as we will show, it is quite easy to obtain bounds
on D�G� depending on the structure of the graph G,
especially when we can identify some subgraphs where
the bounds are already known. Together with the exact
calculation of D�G� for graphs with a small number of
qubits this allows us to derive some general results for
arbitrary graphs. Let us first note two useful facts about the
dependence of D on the LHV models.

Lemma 1.—We can restrict our attention to LHV models
which assign �1 to all Z measurements.

Proof.—In an element sj of the stabilizer we haveO�i� 2
fY�i�; Z�i�g iff the number of Y and X in N�i� is odd. So if a
LHV model assigns �1 to Z�i�, we can, by changing the
signs for Z�i�; Y�i� and for all X�k� and all Y�k� with k 2 N�i�,
obtain a LHV model with the same mean value of B and
the desired property. �

Lemma 2.—Let B be a Bell operator for an arbitrary
graph and let B0 be the Bell operator which is obtained
from B by making a permutation

P : f1�i�; X�i�; Y�i�; Z�i�g ! f1�i�; X�i�; Y�i�; Z�i�g (9)

of the observables on one qubit. Then D�B� �D�B0�.
Proof.—It suffices to show the Lemma for a transposi-

tion O�i� $ ~O�i�. Some transpositions are a renaming of
variables, and the interesting transpositions are of the type
A�i� $ 1�i� with A�i� � X�i�; Y�i�; Z�i�, say A�i� � X�i� for
definiteness. If a given LHV model LHV1 assigns �1 to
X�i� the transposition X�i� $ 1�i� does not change hBi. If the
LHV model assigns �1 to X�i� we can construct a new
LHV model LHV2 from LHV1 by flipping the signs from
Y�i�; Z�i�. This fulfills hB0iLHV1

� �hBiLHV2
This proves

the claim, since C is defined via the absolute value. �
Now we derive an estimate for D�G�, when G is built

out of two other graphs G1 and G2 in a certain way.
Lemma 3.—Let G1; G2 be two graphs and let G be the

graph which comprises G1 and G2 and one single connec-
tion between one vertex of G1 and one of G2; i.e., G �
G1 �G2 Then

D �G� �D�G1�D�G2�: (10)

Proof.—The proof is given in the Appendix. �
It is much more demanding to derive bounds on D�G�

when G is made out of subgraphs in a more complicated
way than the way above. However, it is easy to see that
D�G�< 1 whenever G contains a subgraph G1 with
D�G1�< 1. This is due to the fact that the stabilizer of
G1 is a subset of the stabilizer of G up to some extra Z
terms which can be neglected due to Lemma 1.

Finally, we want to show the invariance of D under the
so-called local complementation of a graph. This trans-
5-2



PRL 95, 120405 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005
formation acts as follows: One picks up a vertex i0 and
inverts the neighborhood N�i0�; i.e., all connections be-
tween two vertices belonging to N�i0� are cut and vertices
in N�i0� which were unconnected become connected.
Connections between N�i0� and the rest of the graph are
not affected. To give an example the graph STn can be
transformed by a local complementation on the central
qubit into the graph FCn (see Fig. 1). The local comple-
mentation of a graph acts on the graph state as a local
unitary transformation of the (local) Clifford group [3,11].
This means that it transforms on each qubit Pauli matrices
into Pauli matrices. So we have:

Lemma 4.—Let G1 be a graph and G2 be a graph which
arises from G1 by local complementation. Then D�G1� �
D�G2�.

Proof.—Since the local complementation maps Pauli
matrices to Pauli matrices on each qubit, D is not changed
due to Lemma 2. �

It is now time to calculate D�G� for small graphs (see
Table I). This can be done by checking hBi for all the 8n

LHV models by computer. Here, Lemma 1 reduces the
effort significantly.

Let us shortly discuss these results. First, note that all of
the states in the table violate a Bell inequality of the type
jhBij � C�G� since for all states and n in Table I D�G�<
1 holds. Then, it is remarkable, that long linear chains and
large rings have a small D (i.e., the violation of the Bell
inequality is large), while the violation for the GHZ state is
not so large. This in contrast to the usual Mermin inequal-
ity for several qubits. Because of Lemma 4, the values
D�STn� and D�FCn� always coincide. However, it is
interesting that D�FC6� 6�D�FC3�D�FC3�, thus a general-
ization of Lemma 3 to arbitrary connections between the
graphs is not true. In general, we have:

Theorem 1.—Any graph state violates local realism.
Proof.—If the graph consists only of two connected

vertices, the graph state is equivalent to a two qubit singlet
state, which violates the original Bell inequality [1].
Connected graphs with more vertices always contain a
subgraph with three vertices. Because of Table I and the
argumentation after Lemma 3 this implies that the graph
state violates local realism. �

Theorem 2.—Let G1; G2; G3; . . . be a family of tree
graphs (i.e., graphs which do not contain any closed rings)
with an increasing number of vertices such that each Gi
contains as a subgraph a linear chain of a size which
increases linearly with i. Then violation of a Bell inequality
TABLE I. Value for D�G� for different interesting graphs (see
Fig. 1) and different numbers of qubits n.

n 3 4 5 6 7 8 9 10

LCn 3=4 3=4 5=8 9=16 8=16 7=16 25=64 22=64
RCn 3=4 3=4 5=8 7=16 7=16 6=16 21=64 19=64
STn 3=4 3=4 5=8 10=16 9=16 9=16 34=64 34=64
FCn 3=4 3=4 5=8 10=16 9=16 9=16 34=64 34=64
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for jGii increases exponentially with i. Similar statements
hold for other families of graphs.

Proof.—From Lemma 3 and Table I it follows that for
linear cluster graphs LCi the value 1=D�LCi� increases
exponentially. For tree graphs Lemma 3 can be applied
again to show that D�Gi� is smaller than the D from the
longest linear cluster in Gi. �

Let us compare the Bell inequalities with other entan-
glement properties. Here, our restriction to the observables
X, Y, Z becomes crucial. A Bell inequality jhBij � C�G� is
equivalent to a witness of the type

W �D�G� � jGihGj; (11)

i.e., a quantum mechanical state violates the Bell inequal-
ity iff hW i< 0 [10]. This has two consequences. First,
since all fully separable states j i � jaijbi . . . jni admit a
LHV description, here D�G�	maxjaijbi...jnijha;b;...;njGij2

has to hold. The quantity 1�maxjaijbi...jnijha; b; . . . ; njGij2

has been shown to be an entanglement monotone for multi-
partite systems, the so-called geometric measure of entan-
glement [12]. So our bounds on C also deliver lower
bounds for this measure of entanglement for graph states.
In turn, the fact that the geometric measure equals 1=2 for
all GHZ states implies that always D�STn� 	 1=2.
Second, we can state:

Theorem 3.—If D�G� 	 1=2 then the Bell inequality
jhBij � C�G� detects only states which have a negative
partial transpose with respect to each partition.

Proof.—Let us fix a bipartite splitting for the multi-
partite system. The graph state has a Schmidt decomposi-
tion jGi �

Pk
i�1 aijiii with respect to this splitting. It is

known that then 1=k � a2
0 � 1=2 if a0 is the biggest

Schmidt coefficient [13]. If we define j i �
Pk
i�1 jiii=

���
k
p

it is also known that the witness ~W � 1=k� j ih j de-
tects only states which have a nonpositive partial transpose
with respect to this partition [14]. However, the witness W

detects even less states, since W � ka0
2 ~W � �D�

a2
0�1� jGi hG j � ka

2
0 j i h j 	 ka2

0 j i h j� jGi hGj 	 0

which implies that hW i< 0 only if h ~W i< 0. �
In conclusion, we have derived a family of Bell inequal-

ities for multipartite systems based on the graph state
formalism. These inequalities are maximally violated by
graph states and allow the detection of the nonlocality of
all graph states. Also, the inequalities can be related to
other topics as the geometric measure of entanglement and
the criterion of the partial transposition. The fact that graph
states do not admit a LHV model strongly suggests that
tasks like measurement based quantum computation and
quantum error correction cannot be described within clas-
sical physics.
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Appendix.—Here we give the proof of Lemma 3. Let us
consider a given LHV model and assume that the connec-
tion is between the vertices i0 2 G1 and j0 2 G2. We can
write any stabilizing operator of G as sij�G� � aibj where
ai contains only gk with k 2 G1 and bj contains only gk
belonging to G2. We can arrange the set faig � a1 [ . . . [
a6 into six disjoint subsets in the following way: a1, a2

contain the ai where gi0 is absent, a3, a4 have an X�i0� at the
vertex i0 and a5, a6 have a Y�i0�. Note that this implies that
a3, a4, a5, and a6 comprise the ai which contain gi0 . For
ai 2 a1; a3; a5 the LHV model gives haii � �1 while for
the ai 2 a2, a4, or a6 we have haii � �1. Let us denote the
number of elements in the sets a1, a2, a3, a4, a5, and a6 by
pa, qa, ra, sa, ta, and ua. We can define �a �: pa � qa,
�a :� ra � sa, and "a � ta � ua. Then we have
jhB�G1�ij � j�a � �a � "aj � C�G1�. We can do the
same ordering for the bj, introducing b1; . . . ;b6 and
pb; . . . ; ub and �b; �b; "b, with j�b � �b � "bj � C�G2�.

Let us investigate the relationships between �, �, and "
in some more detail. By flipping the sign which is assigned
to X�i0� by the given LHV model we can construct a new
LHV model with jhB�G1�ij � j�a � �a � "aj � C�G1�.
We can also flip the signs of Y�i0�, X�j0�, or Y�j0� leading
to new bounds of the type j�� �� "j � C. Thus, for all
16 combinations of signs

j��a � �a � "a���b � �b � "b�j � C�G1�C�G2� (A1)

holds. Finally, note that the operators sij can be grouped
into 36 groups according to sij � aibj. The mean values
hsiji � haibji would factorize if there were no connection
between the graphs. In this case, the Lemma is trivial.

What changes for the hsiji due to the extra connection?
The hsiji can be written in a 6
 6 block matrix according
to the grouping into the sij, where each block bears the sign
of the corresponding hsiji. In the blocks sij with i � 2 or
j � 2 the extra connection only introduces transformations
of the type Z$ 1 at i0 or j0, which can be neglected due to
Lemma 1. More interesting is the 4
 4 block matrix of the
blocks sij with 3� i;j�6. One can calculate that here the
extra connection induces the transformation fX�i0�X�j0�;
X�i0�Y�j0�; Y�i0�X�j0�; Y�i0�Y�j0�g � fY�i0�Y�j0�; �Y�i0�X�j0�;
�X�i0�Y�j0�; X�i0�X�j0�g on the vertices i0 and j0. So, de-
pending on the LHV model, this results in this block matrix
in two possible changes of signs. They can be written in the
following way:
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For the first possible transformation we have to show that
j
P
ijhsijij � j�a��b � �b � "b� � �a��b � �b � "b� �

"a��b � �b � "b�j � C�G1�C�G2� This can be derived
from Eq. (A1), distinguishing 64 cases depending on the
signs of �a; �b; �a; �b; "a and "b. For instance, if
�a; �a; �b 	 0 and �b; "a; "b < 0 we use ��a��a�"a�

��b��b�"b� ��a��b��b�"b���a��b��b�"b��
"a��b��b�"b� �

P
ijhsiji ����a��a�"a���b��b�

"b�; yielding an upper and a lower bound for
P
ijhsiji. The

proof of the other 63 cases and the second transformation is
similar. �
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