PHYSICAL REVIEW E 67, 051705 (2003
Hydrodynamics of domain growth in nematic liquid crystals
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We study the growth of aligned domains in nematic liquid crystals. Results are obtained solving the Beris-
Edwards equations of motion using the lattice Boltzmann approach. Spatial anisotropy in the domain growth is
shown to be a consequence of the flow induced by the changing order parametdbdiekfiow). The
generalization of the results to the growth of a cylindrical domain, which involves the dynamics of a defect
ring, is discussed.
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I. INTRODUCTION vices have been proposed as ideal experimental realizations
of two-dimensional Ising modelsn the plane defined by the
Liquid crystals[1] are an ideal material for the study of walls of the devicg Coarsening of reverse tilt domains in
topological defects due to the complex textures they creatdiquid crystal cells with heterogeneous alignment layers has
which are easily visible to the naked eye. As topologicalbeen shown to be consistent with predictions of the random-
defects arise in many situations the observed phenomena bond Ising mode([10], thus providing experimental confir-
liguid crystals can be used to test theories in other areas ahation of theoretical predictions for domain growth under
physics from cosmic string®] to vortices in superfluid he- conditions of quenched random disorder.
lium [3]. Contrary to the assumption inherent in most previ- The dynamics of a liquid crystal medium is often modeled
ous studies of defect dynamics in liquid crystpds-6], in a by using the Ericksen-Leslie-Parodi equations of motion
recent papef7] we found that backflow, the coupling be- [1,24]. These equations describe the state of the liquid crystal
tween the order parameter and the velocity fields, has a sigh terms of a director fielah, which is related to the orien-
nificant effect on the motion of defects. In particular, thetation of the typically long, thin, rodlike molecules, which
defect speed can depend strongly on the topological strengthake up the liquid crystalline material. The Ericksen-Leslie-
in two dimensions and on the sense of rotation of the directoParodi equations are restricted to an uniaxial order parameter
about the core in three dimensions. field of constant magnitude. Thus they cannot model the dy-
These defects were free, in the sense that they were in aramics of topological defects where in the defect core the
unbounded system. However, it is much easier to study ligmagnitude of order has a steep gradient and the order param-
uid crystals experimentally in a confined system. A veryeter field is biaxial (However, they provide a good descrip-
straightforward example is the geometry used for display detion of the bulk away from the defect coye.
vices. In such a display the liquid crystal is sandwiched be- In order to describe the hydrodynamics of topological de-
tween two plates. As the optical and electrical responses d&cts correctly, we use the more complex Beris-Edwards for-
the liquid crystal are coupled, one can apply an electric fieldnulation of liquid crystal hydrodynamidd.1]. The propen-
between the two plates and directly observe the behavior. sity to order, as well as the direction along which the system
The operational state of many such devices, including piorders are conveniently described by a tensor order param-
cells[8], is topologically distinct from its state at zero volt- eterQ [1]. The Beris-Edwards equations allow for variations
age. Before the device can be used, the operational state muistthe magnitude of the nematic order parameter as well as
be nucleated and grow to fill the displdyA typical cross biaxiality present in defect cores. They model both defect
section through a domain wall separating an operational statynamics and the coupling between the velocity field and the
and a zero voltage state is shown in Figh)2] These inter- motion of the order parameter. We use a recent lattice Boltz-
faces between topologically distinct states can behave diffemann algorithn{12], which has been shown to successfully
ently than nematic-isotropic interfaces studied by othemodel the full Beris-Edwards equations.
groups[9]. Recent experimental work on pi-cell8] has Our aim in this paper is to study the growth of a domain
shown an unusual anisotropy in the domain growth: one sidef a nematic liquid crystal at the expense of a second domain
of a domain grows faster than the opposite side. This wouldvith a different director orientation. Defects form at the
appear to be very similar to the anisotropy observed in ouwalls between domains and their dynamics is vital in con-
simulations of free defec{¥’]. However, there are important trolling the rate of growth. We find that a spatial anisotropy
differences in this system related to the wall tilt angle, whichin domain growth can result from backflow and discuss how
can dominate the defect-defect interaction energy, and théne wall speed varies with the material parameters of the
driving force of the electric field. As such, in order to unam-liquid crystal, such as viscosity and elastic constants, the
biguously characterize the observed anisotropy we need tpeometry and the surface properties of the confining cell, and
directly study the growth of these domain walls, which in-an external electric field. The Beris-Edwards equations of
corporate topological defects, in a confined geometry. motion are presented in Sec. Il, and the results of the domain
In additional to the technological applications, similar de-growth are described in Secs. Ill and IV. In Sec. V we dis-
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cuss the relevance of our results to the experiments on pi- €,5=2€,Q,5+ €md, (5)
. . . . . . apB 3CaxXap mYap
cells [8]. An outline of the numerical algorithm is given in
the Appendix. where
Il. THE HYDRODYNAMIC EQUATIONS OF MOTION €. = 3 (ej—€,) (6)
a 2q l L/

We summarize the formulation of liquid crystal hydrody-
namics described by Beris and Edwaldd], extended to em=12e +1¢, 7
include an electric field and surface potentials. Similar mod-
els have been examined by a number of resear¢h8tsThe  giving results consistent with Eq4) for the uniaxial nem-
continuum equations of motion are written in terms of aatic. The electric contribution to the thermodynamic potential
tensor order paramet€, which is related to the direction of f,_, is
individual moleculesn by Q,,z=(m,mz— 3 8,5), where the
angular brackets denote a coarse-grained ave(@geek in- fo _f D.dE=_ “mp2_ €a
dices will be used to represent Cartesian components of vec-  field A 87 127
tors and tensors, and the usual summation over repeated in-
dices will be assumepQ is a traceless symmetric tensor. Its ~ The equation of motion for the nematic order parameter is
largest eigenvaluéq, 0<q<1, describes the magnitude of [11]

E.EgQap- (8)

the order.

We first write down a Landau—de Gennes free energy, (d;+u-V)Q—S(W,Q)=TIH, 9
which describes the equilibrium properties of the liquid crys- ) ) ) o )
tal [1,14] wherel is a collective rotational diffusion constant. The first

term on the left-hand side of E(P) is the material derivative
describing the usual time dependence of a quantity advected

F= f\,dv{fbu'k”e'”fie'd}* Lds{fsurf}- @ by afluid with velocityd. This is generalized by a second
term

fouik describes the bulk free energy SIW.Q) = (6A+ ©)(O+1/3)+ (Q+ 1/3) (¢A— Q)

A A A
fron= | 1 3@ "5 Q00,0 o (@ ~26(Q+ITHQW), 10
(2 where A=(W+WT")/2 and Q=(W-WT")/2 are the sym-
. i . . _ metric part and the antisymmetric part, respectively, of the
For y=2.7 there is a first-order transition from the isotropic velocity gradient tenso, ;= dzu, . S(W,Q) appears in the
to the nematic phase. The minimum &f, describes a gqyation of motion because the order parameter distribution
uniaxial nerlnatlc with an order parameter of the fo@u;  can be both rotated and stretched by flow gradients. This is a
=0q(n.ns—33d,p) Whereqis zero in the isotropic phase and consequence of the rodlike geometry of the liquid crystal
has a finite value in the nematic phase, anid the director  mpjecules.¢ is a constant, which depends on the molecular
field. _ _ details of a given liquid crystal.
fer is the analog of the Frank elastic free energy density  The term on the right-hand side of E@®) describes the
relaxation of the order parameter towards the minimum of

Ly L, the f The molecular fiel, which provides th
f="ts 2,204 P e free energy. The molecular fiek, which provides the
e 2 (0aQpy) 2 (94Quy)(96Qp5) driving motion, is related to the derivative of the free energy
by
+E 94Qye)(95Q,) ()
2Qaﬁ( ade( B yel: SF SF
H=—%+(I/3)Tr%=Hbu|k+ Hel+ Hfield! (11)
This can be easily mapped to give the Frank elastic constants
K1, K, andK; [11]. In particular, the “one elastic constant” \yhere
approximation,K;=K,=K4 corresponds td.;>0 andL,
For a uniaxial nematic, the dielectric constant is aniso- Hbulk:_Ao(l_ 3 Q+AgQ*—(1/3)TrQ?]
tropic measured along or perpendicular to the director. The
relation between the electric displacemBrand fieldE is of —AgyQTrQ?, (12

the form[1]
(He ap=L1(75Qup) + L[ 5(9,0,Q,5% 359,Q,,)

i i - %5aﬁayaeQ'ye] + %LB[ay(deaeQaﬁ)
More generally, the dependence of the dielectric constant on
the order parameter is described by —(04Q,(95Q,)+ 58,5(9,Q,0%], (13

D:gLE—l—(e‘”—GJ_)(n'E)n. (4)
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€a Sap _» y
(Hfiem)as:E E.Ep— 3B, (14 ~N |\ N
~ \
and 6,5 is the Kronecker delta. We work in a two- X ~ | \
dimensional cross section, assuming that the order parameter
does not change in the perpendicular directalthough the — | |
director may point out of the simulation planén addition, — | /
the symmetry and zero trace @f is exploited for simplifi-
cation. - | /
At the surfaces of the device we assume a pinning poten- ~ e e
tal (@) b) ©
—1 _ A0 )2
fsurr= ZaS(QaB Qaﬂ) ) (15) FIG. 1. The possible alignment of directors for a tilt angle

— 6, on the top surface angt 6, on the bottom surfaceg,<45°;

the surface tilt angle is measured with respect to the horizontal
(16) axis): (a) director configuration when the field is switched off and

the system had time to relax to its global minimukh, (or horizon-

where q is set to the equilibrium bulk value. This corre- @l staté; (b) the field is switched on at a fairly high voltage v
(V, or vertical statg (c) the field is at a voltage-2 V or lower.

sponds to specifying a preferred directiohfor the director o i
at the surface. There can be other terms in the surface freTehe system may remain in the metastable staldor some time

energy[15] and a complete treatment of surface dynamicsﬁ\é?irz] oitt aTg/r)odeEgﬁ. Periodic boundary conditions apply in the
can be quite ricf16]. However, in this paper we will be '

operating in the strong pinning l!m'% large S0 that the and its derivatives appear in the equation of motion for the
only effect of the pinning potential is to furnish an almost ) . -
fixed value ofQ,; at the surfacéequal toQy). In all cases order parameter Eq9). Unless the flow field is zeroy

studied here, the results are insensitive to the precise value ﬁ%r (;‘g;n‘;ﬁ‘%rgglz )?i;l/r??n?golrztg?t ‘:‘(;?e ngtorr?vleeli(;éil?/ntﬂeag?der
ag, So long as it is large enough to be in the strong pinnin i A 24
Iirait. g g g gp parameter field affects the dynamics of the flow field through

The fluid momentum obeys the continuity the stress tensofd49) and(20), which appear in the Navier-
Stokes equatior{18) and depend or@Q and H. This back

We typically takeQ° of the form

Q0p=a(NING—5,4/3),

dp+d,pu,=0 (17 action of the order parameter field on the flow field is usually
referred to as backflow. To study these equations we use a
and the Navier-Stokes equation lattice Boltzmann algorithm summarized in the Appendix.
Other than when explicitly stated, the simulation parameters
p(di+Ugdg)U,=0dpTapt dgoapt ndgl(1—3,Po) are those listed in Ref17].
XMy 8ept dUgtdgu,], (18

I1l. DOMAIN GROWTH
where p is the fluid density andy=p7/3 is an isotropic

viscosity (which is controlled by the simulation parameter We consider a liquid c.rystal cqnfined between two planes
described in the AppendixThe form of this equation is not a distancd., apart. The director field may take topologically

dissimilar to that for a simple fluid. However, the details of diStinct states depending on the boundary conditions and ap-

the stress tensor reflect the additional complications of liquid!'€d voltage. In the simulations we set the boundary condi-

. 0 . . .
crystal hydrodynamics. There is a symmetric contribution 10N [Q" in Eq. (15] so as to give a tilt angle- 6, between
the director and thg axis atx=0 and + ¢, at x=L,. At

zero applied voltage these conditions result in a global mini-

mum free energy state with a splayed director configuration,
SF or horizontal(H) state, as shown in Fig.(d). At high volt-

+28(Qupt 3 84p)QyH ye_é’BQyVW (190 ages, typically on the order of 6 V, thé state is no longer
axr the global minimum, and a bend configuratimertical state

Oap=— Po5a/3_ &H ay(Q7E+ % 5yﬁ)_ g(Qa7+%5“7)H75

and an antisymmetric contribution is obtained, such as shown in Figbl At intermediate volt-
ages, the verticalV) state is more relaxed as shown in Fig.
Tap=QayH 5= HayQop. (20 1.

As theH andV states are topologically distinct, the tran-
These additional terms can be mapped onto the Ericksersition fromV to H requires nucleation dff domains and the
Leslie equations to give the Leslie coefficiets?]. The generation of defects. The problem we will investigate is the
background pressuri, is constant in the simulations to a growth (or shrinking of the H state within theV state. In
very good approximation=1%). particular, we are interested in how hydrodynamics affects
The differential equations for order parameter field ). the speed of the domain walls. This is partly motivated by
and the flow field Eq(18) are coupled. The velocity field the observation in Ref8] that the domain growth in a liquid
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crystal device can be anisotropic and the speculation that this
may be due to hydrodynamics.

We have previously observed that the velocity of defects
in unbound systems can be affected by hydrodynamics. In
particular, the defect speed can depend strongly on the topo-
logical strength in two dimensions and on the sense of rota-
tion of the director about the core in three dimensiprk

D I I NN

The crucial difference between the domain growth problem @it T PN
and the motion of free defects is that in the latter case each A
defect moves due the director field of the other. In the do- ~ — ( l;) ___________
main growth problem the defects are not interacting but are o O

dragged by the free-energy-driven movement of the domain

walls. The free defects are accelerated as they approach eachFIG. 2. (a) The initial director configuration is a horizontal do-

other, while in the domain growth problem the defects movemain (H state in an otherwise vertically aligned systerd &tate.

with a constant speed. Due to these differences and the atP) As the system begins to relax, two defects are formed at the

ditional geometrical parameters, a separate analysis is needégtndary of the horizontal and vertical domains. The {eight)

for the confined system, which is also easier to realize exdefect has a topological strengr =3 (s=+3). The curved ar-

perimentally and provides a better control of the parametergj‘f"s indicate t_he dlrectlc_)n of the vortices mduced_ by the reorien-

influencing the defect speed. tation of_the director dyrlng the gro_vvth_of the horlzontal_ domain.
In order to study the role of hydrodynamics in the syste The straight arrows pplnt into the dlrectllcl)n of Qefect mopon. Note

. . . . Mhat there are periodic boundary conditions in the horizotyal

we will examine the_factc_)rs affecting the domain growth so;irection.

that we can clearly identify what causes the wall speed an-

isotropy. The key parameters are the surface directogfilt

the sample thickneds, and material parameters such as co- #Q=TH, (21

efficients in the bulk free energyl): Ay, 7y, and elastic

constantd_;, L,, andLj;. In addition, the rotational diffu-

sion constant’, which appears in the dynamical equati®n

for the order parameter gives an over@lverse time scale

and is related to the Leslie-Ericksen viscosifig].

For s!mplicity, we will first study the undriven case ofan  the Ginzburg-Landau equatid@1) with a single elastic
H domain growing at the expense olestate. We will later . qtant is invariant under a local coordinate transformation

examine growth under the influence of an electric field. Theyioring the director on the axis. This corresponds to the
initial configuration, depicted in Fig.(d), is a horizontal transformation

(i.e., along they direction) domain in an otherwise vertically

aligned state. This models a time shortly after the electric

field has been switched off when small but macroscopic do- Quy— —Qyxyr  Qyx— —Qyx. (22

mains have formed in the device. As the simulation proceeds,

the director configuration relaxes rapidly to that shown in

Fig. 2(b). During the relaxation defects are formed at theThe order parameter fields of the twoovingdefects with

center of each domain wall with strengthss and—1, re-  topological charges=+ 3 shown in Fig. 2b) (even includ-

spectively. Once the two defects have formed the verticalnd the deformation due to the boundajigsansform into

domain begins to grow and the$ and — £ defects move in each other. Thus approaches based on a simple Ginzburg-

opposite directions. Landau equation predict that as the defects move they follow
Our simulations correspond to a two-dimensional cros$ymmetric dynamical trajectories.

section of the two line defects, assuming that the order pa- We can construct a simple model for the domain motion

rameter does not Change in the perpendicu|ar d”'ec(m.n in the absence of hydrodynamic flow. In the bulk I’egionS

though the director may point out of the simulation plane (@way from the domain walls fp is minimized with a

The two defects are topologically distinct only in two dimen- uniaxial - order parameter of the formQ,s;=q(n.ng

sions, but even in three dimensions they are usually sepa= %5aﬁ). We can then restrict our attention to the elastic free

where the molecular fieltl is given by Eq(11). Comparing

the dynamics obtained from the Ginzburg-Landau model and
the full hydrodynamic equations, the effect of the backflow
can be unambiguously identified.

rated by an energy barrier. energyf.,. With this form of the order parameter andLif
A particular advantage of the simulations is that the back—=| ,=0, the elastic free energy density has the fofg

flow can easily be switched off by setting,;=—Pod,5  =L,9%(V6)? if the director remains in the plane so that

and 7,4 to zero.[Compare this with Eqs(19) and (20).]  =(cos6,sin6,0). The minima in the bulk regiongaway

Since there is no flow imposed, there is a zero velocity fieldrom the domain walls correspond to the director angle
throughout the whole simulation. The dynamiE:aI equation inchanging linearly along the coordinate from— 0, to + 6,

this case can be obtained from E§) by settingu to zero. It  in the H domain, and from— ¢, to (+ ¢,—180°) in theV
corresponds to the purely relaxational Ginzburg-Landawdomain. The difference of the free energy densities of the
model[23] two domains can then be written as
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035 ' ' ' ' ' ' error. The effective viscosities areyn, ,,=0.083 Pas
0l ] <7_41=0.123 Pas. These values are comparable to the ro-
3 a tational viscosityy;=0.08 Pas[8]. The speed anisotropy
B8] R defined as
E [
o, o a ] Av  Veoy1pVs=—1p2
= S~ ~. a=—= (25)
8 ... ° a v (Vs=t1pTUs=—112)/2
C0.15) ‘6. o 1
8 e & is independent of, and its value isx=36%.
g o1 ’\‘“8 . I The order parameter field affects the flow field through
S~ s the symmetric and antisymmetric stress tensors, Et.
0.05¢ el and(20). The total nonviscous streéise., the combination of
o , , , , , , RN all the stress terms not related to the velocity gradient ténsor
5 10 15 20 25 30 35 40 45 is the sum of three terms
ep(deg)
o+ =0t oytoy. (26)

FIG. 3. The velocity of the two defects as a function of surface
tilt if backflow is ignored(diamond$ or included. Note that if back- Here Ti ap="— Po5ag is the stress due to the isotropic pres-
flow is not included then the two defects move with the same speedsyre, ¢ wp=—035Q,,(8F153,Q,,) is the deformation
which is well described by the dashed line based on E2f.and  gtress, IforL2= L;=0 the deformation stress s ,z=
(24). Hydrodynamics accelerates the + 3 defect(triangle$ sub- —L;Tr(3,Q35Q). The rest of the terms in Eq$195 and
stantially, while it affects the= — 3 defect(circles much less. The (20) give what we will refer to as the molecular field stress,

speed anisotropy is 36%. o, which is a function oH andQ. o and the diagonad;
do not change under the transformati@®) that transforms
4ol 02 the defects of topological chargel/2 into each other. Con-
Af=fy— fH:T(Z_ 9p) (23 versely, the off-diagonal elements of; have their sign in-

X verted. Thus the stress fields and the resultant backflow are

For 6.<45° the horizontal d . b this d different for the two defects.
or % » (N€ norizontal domain grows because this de- g gyregg fieldry is related to the deformation free en-

creases the free energy of the system. #pr45° the hori- o o/ jensity. which is the same for both defects. It induces
zonta[ domain should begin to shrink, andigt=45° the two £%ces sin¥ilar to those around a solid cylinder moving in a
domains _have the same free energy and the defects shoq\t cous liquid. The flow points in the direction of defect
stop moving. motion at the defect core. The contributiof, describes the
If the H domain grows by a length aiL, then th_e free stress due to the reorientation of the director. The reorienta-
energy of the system decreases &XL,XAL,. Simple tion is the strongest around the core while molecules near the
relaxational arguments then suggest that the speed of domaé'ﬁrfaces reorient much less. The director reorientation in-
growth can be described by the formula duces vortices around the two defects, as shown in Fig. 2
The direction of these vortices is determined by the gradient
v=i(Af)Lx, (24) of the director angle taken moving around the defect in
e the positive direction. It is positivénegative for the + 3
(—3) defect.
where 7, is an effective viscosity. The two contributions to the backflow reinforce each
Surface tilt: We first investigate the effect of the surface other for thes=+3 defect but partially cancel for the=
tilt 6, on the defect speed. Equatiof®3) and (24) suggest —3 defect. The resulting flow fields can be seen in Fig. 4.
that asf, increases, the free energy difference decreases, arthe flow is stronger around the=+3 defect. Around the
the defects should move more slowly. The defect speel s=—1 defect the flow is much weaker and the flow field
plotted as a function of surface t#, in Fig. 3. Consider first  points opposite to the defect propagation at the core. How-
the diamonds. These correspond to the case with backflowver, even in this case backflow accelerates the relaxational
switched off. For this case both defects move at the samgynamics.
speed(but in opposite directionsNotice that the defect ve-  Sample dimensionsAs the sample becomes wider the
locity is proportional to ¢,—45°). From Eqs(23) and(24)  speed of the defect propagation decredds, as can be
this leads to the conclusion that the effective viscosityis  seen in Fig. &). The dependence of the defect velocity on
independent of the tilt angle and its value is found to beL, follows from Eqgs.(23) and(24), which gives
0.138 Pas for the parameters of the simulation.
Back-flow: The triangles and circles in Fig. 3 show the 1
velocity of the defects when backflow is included in the v Nely
model. Thes=+3 defect is considerably speeded up,
whereas thes= — 7 defect is only slightly accelerated. The The effective viscosity can be calculated fromy,
defect speed remains proportional #, ¢ 45°) withina 2%  =1/(27sL,I") [(V aq)zdr, where g, is the field due just to

(27)
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FIG. 4. Velocity field corresponding to th@) s= —% and (b) x W
s=+3 defects shown in Fig. (®). There is a strong vortex pair (a)
around thes= +% defect which, at the defect core, points in the
direction of defect movement. The flow at the core of ﬂa:e—% 0.24 ",,
defect is weaker and points opposite to the direction of defect 0.20} e
propagation. LT
0.2} L&
the defect itself5,6] and the integral is over the volume of 018l »,»"
the system. Due to the confining geometry, one expects the 4 l,"
integral to be dominated by the near-field contributies., o.18f ra
the field near the defect cqrewhich is the same for both a = ,/
static or moving defecf5]. The gradient ofd caused by a o-14r 4
static defect drops off asrland hence one expects the ef- o012k 14
fective viscosity to go like lod(/L,g) [6]. ¢
This dependence is observed in Figh)s The fit is 7, ] B
=0.62 Pa sxlog(L,/L,g), whereL,,=0.076 um is compa- 0.08 4 ) ) ) . .
rable to the defect core diameter. The dashed line in K&. 5 o 05 1 15 2 25 3 3.5
. . . « (um)
shows the fit to Eq(27) including theL, dependence of the
viscosity. (b)

When backflow is considered, the relative speed anisot- Lo 1
ropy increases with, and saturates at about 60%, as shown /G- 5- (@ Speed of thet 3 (triangleg and -5 (circles defects
in the inset of Fi é) The increase is probabl aue to the @5 @ function of the thickness of the sample. The diamonds corre-
. . 9. " P - y . .~ spond to the case without hydrodynamics. The inset shows the rela-
|ncrea3|_ngly I_arger regions around the core |nyolved n dlrec'tive speed anisotropy as a function of sample thicknéssEffec-
t(zr reorler?tztlog. Thls. |eE—11:dettO stronger vortices and henCﬁve viscosity 7, as a function of sample thickness for the case
S ronger. Y ro_ynamlc etects. s g . . . without hydrodynamics. The dashed lines in both figures corre-
Electric field: When an exterr_lal electric field is appl_led, It spond to the fit to the theoretical results discussed in the text.
changes the free energy densities of Hheand V domains.
Thus, it also influences the speed of the domain grOMhV|imn~0-9 V domain growth is reversed since the effect of

Figure 6 shows the speed of the two defects as the functiofyg g rfaces is balanced by the influence of the electric field.
of applied voltage. For low voltages the free energy differ-

. . At high voltages ¥~0.6 V), theH domain is replaced
ence between thi ?”dV QOmams can be estimated. If we by Ha, an asymmetric horizontal domain shown in Fig. 7. It
assume that the orientation of tm}. and v states are un- 1 5q o Jower free energy than thkdomain due to the more
changed fro'm the Zero voltage cdse., t'he director angle favorable alignment with the electric field. As a result of the
remains a Ilnga_r function of, as useql in Eq(23)], the_n deformation of thed , domain, the defects move towards the
substituting this into Eqe8) and integrating over space gives surfaces. Foiv>1 V the molecules in the bulk are almost
completely aligned with the vertical field. The horizontal re-
V2Lysin 20,, (29 gipn is then cor_lfined_ to a thin layer near _the surfaces. For

this type of configuration, the free energy difference between
the domains is proportional to the voltaf. This gives the
for a sample of lengtih, . The total free energy difference linear slope of the curve in Fig. 6 seen for the higher volt-
between the domains is the sum of the elastic and the fieldges.
contributions, Eqs(23) and (28), respectively. Substituting For low voltages the speed anisotropy is 36% and inde-
this into Eq.(24) results in a parabolic dependence of thependent of the voltage. As shown in the inset of Fig. 6, at
velocity on V for low voltages, as shown in Fig. 6. At high voltages ¥>1 V) the speed anisotropy decreases. The

AF &Qq (1 1
feld™48aL,\ 6, w/2—0,
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FIG. 6. Speed of the- % (triangles and — 3 (circles defects as FIG. 8. Speed of the- 3 (triangle$ and — 5 (circles defects as
a function of the external fiel&. Without hydrodynamics the de- a function of the viscosityy=p /3. The dashed line corresponds
fects move at the same spe@libmonds. The inset shows the rela- to the velocity without backflow. The inset shows the relative speed
tive speed anisotropy as a function \6f anisotropy as a function of.

effect on the anisotropy can be explained by the relativmportant for practical devices with nontrivial surface an-
weight of the relaxational dynamics and the backflow. In thechoring.

V=1V to 1.6 V range the relaxational dynamics are substan- E|astic constantsReal liquid crystals have multiple elas-
tially speeded up by the increasing voltage due to the electrigc constants. We now consider the effect of nonzero elastic
field contribution(8) in the free energy. The backflow is constantd , andL ;. If L,#0 in the expression of the mo-
induced by the stress fields given in Eds9) and (20).  |ecular field Eq.(13), the dynamical equation in the absence
These stress fields do not depend directly on the electrigf hackflow Eq.(21) loses its invariance under the transfor-
field, only on the order parameter field, which changes onlymation (22). However, the speed anisotropy is very small.
slightly in this voltage range. Therefore, the stress fields derpe reason for this is that the relaxational dynamics are still
not increase with the increasing voltage, and the hydrodymyariant under the mirroring transformation for a uniaxial
namics is dominated by the relaxational dynamics at highyrger parameter with a constant magnit{iti]. In our setup
fields. (In comparison, for the experiment presented in Refinese conditions hold except for close to the defect cores.

[8] the domain wall speed was0.1 um/ms and the anisot- A |arger anisotropy in speed is obtainedLi§#0. If L,
ropy also decreased with increasing voltage. >0 (L3<0) then thes=+1 (s=—1) defect is faster. For
L,=8.73 pN and_;=15.87 pN, we measure a speed anisot-
IV. OTHER CONTROL PARAMETERS ropy of a=3%, in a system without hydrodynamics. This

_ _ _ o anisotropy due to the unequal elastic constants increases with

The equations governing the dynamics of liquid crystalsincreasing sample thickness. Fog=1.25 um (our bench-
covered in Sec. Il contain a large set of parameters. In thighark system has,=0.7 um [17]) the anisotropy due to
section we explore some of this parameter space. In particyronzerol 5 is «=6%. This may be due to the fact that, for
lar, we examine the case of multiple elastic constants, impofree defects, the elastic anisotropy causes significant devia-
tant for comparing to any real liquid crystal. In addition we tions from the case of isotropic elasticity in the order param-
look at the influence of the different viscosities and free eneter field away from the axis determined by the two defect
ergy parameters on the balance of the relaxational dynamiGsores[1]. In the thinner sample, the surfaces “cut off” this
and the backflow. We also examine the case of asymmetriﬁart of the field, decreasing the anisotropy.
and inhomogeneous surface tilts since they give deeper in- |f the surface tilt is close to vertical and the horizontal
sights about the underlying symmetries of the system and argomain is shrinking, then the; dependence of the speed

anisotropy is the opposite. lf;<0 (L3;>0), then thes=

SIS SNNNNNNNNNNNNNSISSSSSRRRY fa (s=—3) defectis faster. Since in the two cadgsow-
NN NN NN NN NN N N N NN ing vs shrinking domainthe order parameter fields near the
NN NN N N R NN axis of the two cores are the same, this should also be attrib-
NNNNNNANNNNE R SRR SRR S R R INNNNNNNNN uted to the differences in the order parameter fields far from
IITTIIITIN Ll 3TN the defect cores, which results from the different tilts.
~~~~~~~~~ LSS IS ST S SIS S S ——— e e e e . . .

—————————— L Viscosities and diffusionConsider now the effect of the

o o o o o o o o o e P P o o o o e o " e e it et e o o e e o e e e

parameters governing the time scales in the equation of mo-

FIG. 7. AV domain growing in an asymmetri¢, environment.  tion for the domain growthr; is proportional to the viscosity
At high fields the horizontal domain is deformed moving the defectsin the Navier-Stokes equatiofl8). Increasingr; increases
towards one of the boundaries. the viscosity, slows the defects, and decreases their velocity
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FIG. 9. Speed of the- 3 (triangles and — 3 (circles defects as
a function ofl". The diamonds correspond to the case without hy-
drodynamics when «I". The inset shows the relative speed anisot- : :
ropy as a function of". o

)

anisotropy, as shown in Fig. 8. The velocity tends to that (b) (c)
measured without backflow, as represented by a dashed line

in the figure. This is as expected since backflow will be(c) —1/2 defects for asymmetric surface anchoring. The director tilt

suppresse-d by a Igrge V'SCOS'tY' . is ,(x=0)=—10° at the top and,(x=L,) = +60° at the bottom
Increasingl’ which appears in Eq(9) increases the ve- gyrface. The qualitative differences between the flow fields of the
locity of both defects, but decreases the relative speed anisafyo defects are the same as for the symmetric case in Fig. 4.

ropy as shown Fig. 9. The defects move faster, due to the fact
thatl” governs the speed of the relaxational dynamics. Sinc?ribution'
the stress fields in Eq$19) and (20) do not depend o1, '
they do not increase. As a result, Bsincreases, the relax-
ational dynamics speed up, but the backflow does not change Op(X=0)=— 0, s+ 0, 4, (29
as significantly, and as a result the anisotropy decreases.
Free energy:y is the parameter in free energ®), which
controls the magnitude of order in the bulk of the domains. Op(X=Ly)=+0p st 0pa-
(The isotropic-nematic phase transition isyat 2.7.) When
v decreases, the defect core gets bigger and this results in a
smaller effective viscosity5]. Thus the defects move faster The dynamical equations fdr,=L3;=0 and without flow
under the relaxational dynamics. The decrease in the magri'® invariant under the local rotation of all the molecules by

tude of order results in a smaller backflow due to the reorifne€ same angle. The dynamics for a nonsymmetric surface
entation andx decreases. tilt can, therefore, be obtained from the symmetric case by

ChangingA, in free energy(2) does not affect the homo- rotating.all the molecules by, ,. Th.us even for nonsym-
geneously aligned bulki andV domains, only the defect metric tilts the two defects move with the same speed and
stucture. The large, the larger the energy cost of any TR 0% FRCET TERERR 0 0 P T N e
deviation from the magnitude of order corresponding to th ' !

" £t i Ea. (2). D : . h Sation of molecules if flow is includedor if L,#0, Lj
minimum of fyu in Eq. (2). DecreasingA, increases the #0). Thus the defects will move with a different speed.

size of the defects, and as above, the defects move fasigfy eqver, they are no longer constrained by symmetry to lie
under the relaxational dynamics. Since the defect core sizg;igyay between the two plates. Typical director and velocity
increases, the magnitude of order around the core decreasgsids for an asymmetric surface tilt are shown in Fig. 10.
resulting a smaller backflow due to reorientation and hence |t js also possible to construct a patterned alignment of
decreases. The effect of increasingis similar. It increases liquid crystals on surfacei?0]. If the surface tilt is not ho-
the defect core size, speeds up the defects, and leads tonfogeneous, then, when the defect arrives at a region with a
smaller velocity anisotropy. different tilt, it assumes the velocity corresponding to this

Nonsymmetric surface tilfThe director surface tilt at the tilt. On the boundary of two bend domains with opposite
top and bottom surfaces does not have to be symmetric. laurface tilt the defect can even “change” topological strength
this more general case, tilt angles at the surfaces can H®/ merging with the two defects located at the surface, as
written as a sum of a symmetric and an antisymmetric conshown in Fig. 11.

FIG. 10. (a) Director and velocity field about th@) +1/2 and
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e~~~ e~ e ~mrrrrrrrrrs fining plates. Based on our experience with the two-

A O R R e e e A N SSSNNN\N/SSS S S00 S0 1 1 1
NN dimensional system we can discuss how backflow can affect

PANMAAAA X N R . N

PRV UL s e =SS\ the growth of a cylindricaH domain in aV environment.

I T T T O T O B B Vivibrrerolnid . . . .

R R R L — ZITVA L At the domain boundary there is a defect ring, as shown in
Yyt A INNNNNNNNNNNN Fig. 12a). The defect configuration of a vertical cross sec-
AN tion through the ring(perpendicular to the plateghanges

gradually from a— 3 to a + 3 defect. Although this problem
is three dimensional, a vertical cross section indicated by
T T ——— . dashed lines in Fig. 13) gives a geometry similar to that
A e e et P LSS considered in Sec. IV.
AT R T T R R et it D bbbt 71110 . .. L

For simplicity, assume that the domain is a perfect cyl-
inder. In this case the director field of any vertical cross

VA
[N
[NRW
[N
1114

—_———

Vil
Ll
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IR
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!
Y NNNNNNNNNAN section pass_ing through the midgle of t'his cylindricgl domain
SO L oSS SSSSSosooos e TINIINNNNY can be obtained from our two-dimensional simulation plane

//////////////////////////////////////////////////

by rotating the director field locally by a given angle around
the vertical axis.

FIG. 11. The influence of surface tilt inhomogeneity: the surface  Let us now examine the effect of the backflaw; and the
tilt changes fromd,= +15° to §,= —15° towards the right-hand diagonal o; do not change during the local rotation of the
side of the figure(a) Upon reaching the border of the two bend tensor order parameter fiel@ around the vertical axiz by
domains with opposite surface tilt, the defee merges with the  the same angle. The generated velocity vortices always lie in
two — 5 defects located at the surfacél) a — 5 defect is formed.  the plane of the cross sections across the defects ring. These
generate flow, which is always in such a direction as to ex-

V. GROWTH OF A CYLINDRICAL DOMAIN: pand the defect ring, indicated by straight arrows in Figs.
THE HYDRODYNAMICS OF A DEFECT RING 12(a—0.

In this section we consider the three-dimensional analog The tensoroy does, however, change under a local rota-
of our system, where a liquid crystal is held between parallefion aroundx. For the cross section, which includestd&
plates~ um apart. A domain nucleated at a point will grow defect the resultant backflow points in the direction of defect
to a cylindrical shape with its axis perpendicular to the con-motion. For the—3 defect, the flow points opposite to the
defect motion, as shown in Fig. @3. In both cases the
vortices are in the plane of the cross section. Figuree)12
shows the cross section indicated by the dashed-dotted lines
in Fig. 12a). Now the directors and the vortices due to the
reorientation are in a plane perpendicular to the cross section.
Thus, the total flow field will vary around the domain wall
and will lead to anisotropy in the domain growth.

An experimental setup similar to this was considered by
Acosta, Towler, and Walton in their investigation of domain
growth and switching in pi-cell liquid crystal devicé8].

The growth of a horizontal domain in a befid) or twisted
bend environment was studied: such a transition is needed to
produce the operational state of the devi¢Ehe twisted
bend configuration has a lower energy than the bend state for
i small surface tilts and low voltage, if the Frank elastic con-
®) ©) stantK, is sufficiently small. The twisted bend state is re-
placed by a bend state for larger-80°) surface tilts. A

FIG. 12. (a) Confined between two horizontal surfaces, a cylin- cylindrical bend or twisted bend domain was formed iRl a
drical H domain is growing in & environment. There is a defect gnyironment and the domain wall velocity was measured at
ring (dotted ling at the domain boundaryb) The cross sections four points around the ring, where its cross section corre-

indicated by dashed lines i) are shown. This corresponds to the 1 1 .
simulation plane considered in this paper. The director and the vor§p0nds to a-; and a—; defect, and at two points halfway

tices due to the reorientation are in the plane of the cross se@tjon. between these. !t was found that the wall at Ehé defect

The cross section indicated by dashed-dotted linég)irThe direc- Moved substantially faster than that at the other three. It
tors are perpendicular to the plane of the cross section. The plane §€€MSs very plausible that the essential physics is captured by
vortices due to the reorientation is also perpendicular to the crosgur model.

section. However, for bottb) and(c) the vortices due to the defor- Further measurements of defect dynamics in confined ge-
mation stress are in the plane of the cross section and the flow at tigmetries have been done very recenf] and these tech-
core points in the direction of defect propagation indicated byniques should allow further testing of the concepts we
straight arrows. present here.
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VI. SUMMARY a nine-velocity model on a square lattice with velocity vec-

In this paper we explored domain growth in nematic lig- fors &=(+1,0),(0+1),(+1,=1),(0,0). Physical variables
uid crystals. Defects form at moving domain walls. We find@re defined as moments of the distribution functions
that a wall incorporating a=+3 defect is substantially
speeqed up by backﬂo.w effects, wherea; a wall confcainin_g a p:E fi, puazz fie.,, Q:E Gi. (A1
s=—5 defect is only slightly affected. This was explained in i ' '
terms of the symmetry properties of the different stresses
acting on the defects. These reinforce each other forsthe
= + 3 defect while partially cancelling for the= — 3 defect.
The influence of different material and geometrical param- - - -
eters on the velocity anisotropy was interpreted by compar- filx+eALt+A) —fi(x,0)
ing the relative weight of the relaxational dynamics and the At
backflow. By generalizing two-dimensional simulation re- =5
sults, a qualitative picture was proposed for the role of the
backflow in three dimensions. (A2)

Results were obtained using a lattice Boltzmann algo-
rithm to solve the Beris-Edwards equations of liquid crystal ~G;(x+eAt,t+At)—G;(X,t)
hydrodynamics. Working within the framework of a variable At
tensor order parameter it was possible to correctly incorpo- _2ts 2 _ .z *
rate variations in the magnitude of order and hence the dy- -2 [Cei LG+ Cai(x &AL AL{GT D]
namics of domain walls and their associated topological de-
fects.

The distribution functions evolve in a time stég ac-
cording to

[CrX,t{fD) +CrilX+ e At t+ At {f* 1],

(A3)

This represents free streaming with veloogyand a colli-
ACKNOWLEDGMENTS sion step that allows the distribution to relax towards equi-

We would like to thank E. J. Acosta, C. M. Care, S. El- librium. f and G are first-order approximations tf(x
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APPENDIX: A LATTICE BOLTZMANN ALGORITHM stability of the scheme is improved.
FOR LIQUID CRYSTAL HYDRODYNAMICS The collision operators are taken to have the form of a
single relaxation time Boltzmann equatid@2], together

We now summarize a lattice Boltzmann algorithm that™. .
with a forcing term

solves the hydrodynamic equations of motion of a liquid

crystal(9), (17), and(18). Lattice Boltzmann algorithms are 1

defined in terms of a set of continuous variables, usefully ¢(;(x,t,{f;})=— —[f;(x,t) = f2%x,t,{f;H ]+ pi(X,t.{f;}),

termed partial distribution functions, which move on a lattice Tt

in discrete space and tinjg2]. (A4)
The simplest lattice Boltzmann algorithm, which de- 1

scribes the Navier-Stokes equations of a simple fluid, is de- Coi(X,t{GH) = — —[Gi(X,t) — GEUx,t,{G})]

fined in terms of a single set of partial distribution functions Ty

that sum on each site to give the density. For liquid crystal -

hydrodynamics this must be supplemented by a second set, FMi(XL{Gi). (AS)

which are tensor variables, and which are related to the ten]:he form of the equations of motion and thermodynamic

sor order _paramete_!@ [_12]'_ i - equilibrium follow from the choice of the moments of the

We define two distribution functions, the scaléy&) and  ¢qyjlibrium distributionsfe® and G2 and the driving terms
the symmetric traceless tens@g(x) on each lattice sit¢.  p; andM; . Full details of the algorithm can be found in Ref.
Eachf;, G; is associated with a lattice vecter. We choose [12].
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