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Entanglement and extreme planar spin squeezing
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We introduce an entanglement-depth criterion optimized for planar quantum-squeezed (PQS) states. It is
connected with the sensitivity of such states for estimating a phase generated by rotations about an axis orthogonal
to its polarization. We compare numerically our criterion with the well-known extreme spin-squeezing condition
of Sørensen and Mølmer [Phys. Rev. Lett. 86, 4431 (2001)] and show that our condition detects a higher depth of
entanglement when both planar spin variances are squeezed below the standard quantum limit. We employ our
theory to monitor the entanglement dynamics in a PQS state produced via quantum nondemolition measurements
using data from a recent experiment [Phys. Rev. Lett. 118, 233603 (2017)].
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Introduction. Detecting entanglement in large quantum
systems is a major goal in quantum information science and
underpins the development of quantum technologies [1,2].
Attention has now shifted toward the practical use of entan-
glement as a resource: In particular, entanglement-enhanced
sensing using ensembles of 103–1012 atomic spins has emerged
as a major application [3,4]. In this context, spin-squeezing
inequalities can be used to quantify entanglement-enhanced
sensitivity. Standard treatment studies spin-squeezed states
(SSSs), characterized by a large spin polarization in the y

direction and a small variance in the z direction via the
parameter ξ 2

s := N(�Jz)2

|〈Jy 〉|2 , where Jv = ∑N
n=1 j (n)

v for v = x,y,z

are the collective spin components, j (n)
v are single-particle spin

operators, and N is the total number of atoms. Then, states with
ξ 2
s < 1 provide quantum-enhanced sensitivity for estimating

phases φ ≈ 0 due to small rotations around Jx [5,6]. Such
states have been produced using various platforms, including
cold atoms [7–18], trapped ions [19], magnetic systems [20],
and photons [21].

Their metrological sensitivity is strongly connected to
entanglement: ξ 2

s < 1 also implies entanglement for atoms
with spin j = 1/2 [22]. More quantitatively, the amount of
spin squeezing is also connected with the so-called depth
of entanglement, i.e., the number of particles in the largest
separable subset [23]. Several other highly entangled states
have recently been found useful for quantum metrology.
For example, Dicke states, which are unpolarized and have
a large value of 〈J 2

x + J 2
y 〉 and a small variance in the z

direction. Spin-squeezing inequalities have been developed
to characterize entanglement in such states [24,25], which
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have been produced in experiments with photons [26,27] and
Bose-Einstein condensates [24,28–31].

Here, we focus on so-called planar quantum-squeezed
(PQS) states, studied theoretically in Refs. [32–34], and pro-
duced in a recent experiment [35,36]. They have reduced spin
variances in two directions, i.e., (�J‖)2 := (�Jy)2 + (�Jz)2 is
small, and a large in-plane polarization, i.e., 〈Jy〉 ≈ Nj. They
provide quantum-enhanced sensitivity in estimating phases
generated by rotations about the x̂ axis (see Fig. 1 for an
illustration) and are useful for tracking a changing phase shift
or simultaneous estimation of phase and amplitude beyond
classical limits [35,36]. The planar squeezing parameter,

ξ 2
‖ := (�J‖)2

|〈J‖〉| , (1)

where |〈J‖〉| := √〈Jy〉2 + 〈Jz〉2 is the in-plane polarization,
was introduced by He and co-workers [32,33] to quantify such
enhanced sensitivity and detect entanglement. The relation
between their metrological usefulness and their degree of
multiparticle entanglement is explored here.

In this Rapid Communication, we introduce a method to
detect the depth of entanglement based on the planar-squeezing
parameter ξ 2

‖ . We present the condition,

ξ 2
‖ � ζ 2

J , (2)

where ζ 2
J is the minimum value of the planar-squeezing param-

eter over single-particle states of spin J. We prove that, for all
spin-j ensembles that contain groups of at most k-entangled
particles, called k producible [23,37], Eq. (2) holds with
J = kj. Thus, ξ 2

‖ < ζ 2
J implies a depth of entanglement of at

least k + 1 = J/j + 1. We can even estimate at least how many
particles must be in fully entangled (k + 1)-particle groups.
We stress that our criterion is very simple to use. We need
to calculate ζ 2

J only once for the relevant range of J , then
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FIG. 1. (a) Bloch-sphere representation of: (yellow horizontal
spheroid) spin-coherent states, including uncertainty in Jy arising
from Poissonian fluctuations in the preparation; (blue vertical disk) a
SSS produced by squeezing the Jz variance; (red vertical spheroid) a
PQS state produced by squeezing both Jz and Jy ; (green horizontal
disk) a Dicke state. (b) Sensitivity advantage of a PQS state compared
to a SSS in detecting an unknown phase φ. The dashed black
circles indicate the shot-noise limit �φ = 1/

√
N . The SSS provides

enhanced sensitivity for detecting phases around φ � 0 but reduced
sensitivity for phases around φ � ±π/2. In contrast, although the
sensitivity of the PQS state is slightly worse around φ � 0, it provides
enhanced sensitivity for all phases 0 � φ � 2π .

Eq. (2) can be applied for entanglement detection without any
additional numerical optimization.

Finally, we examine the usefulness of our criterion. We
compare it to the well-known criterion introduced by Sørensen
and Mølmer in Ref. [23] and find that ours detects a higher
entanglement depth even for nonideal PQS. We also test our
theory using data from a recent experiment in which a PQS state
was generated via a semicontinuous quantum nondemolition
(QND) measurement [35,36].

Link between our parameter and metrological sensitivity.
We consider a protocol in which a collective spin state
is rotated about Jx and accumulates a phase φ such that
J out

z = J in
z cos φ − J in

y sin φ. Afterwards, the phase is inferred
from repeated measurements of J out

z with a sensitivity given by
the error-propagation formula (�φ)2 = (�J out

z )2/|∂φ〈J out
z 〉|2.

We consider as reference an input state with uncertainties at
the standard quantum limit (SQL) (�J in

y )2
SQL = (�J in

z )2
SQL =

1
2 |〈J in

‖ 〉| [34,36]. A SQL-limited state cannot beat the shot-
noise limit corresponding to separable states since (�φ)2

SQL =
|〈J in

‖ 〉|/(〈J in
z 〉2 cos2 φ + 〈J in

y 〉2 sin2 φ) � 1/N . Hence, we
normalize the sensitivity with respect to the SQL and obtain
(�φ)2/(�φ)2

SQL = [(�J in
z )2 cos2 φ + (�J in

y )2 sin2 φ]/|〈J in
‖ 〉|.

By averaging over φ we find∫ 2π

0

dφ

2π
(�φ)2/(�φ)2

SQL = 1

2
ξ 2
‖ . (3)

Thus, the parameter appearing on the left-hand side of Eq. (2)
also quantifies the average sensitivity enhancement over the
interval 0 � φ � 2π compared to the SQL.

Entanglement criterion for planar squeezing. Following
an approach similar to past works [23,25], we derive a tight
criterion to detect the depth of entanglement by computing the
function,

G
(j )
k (X) := 1

kj
min

φ∈(Cd )⊗k

1
kj

〈Ly 〉φ=X

[
(�Ly)2

φ + (�Lz)
2
φ

]
, (4)

where d = 2j + 1, j is the single-particle spin quantum num-
ber, and Lv’s are collective k-particle spin operators, i.e., Lv =∑k

n=1 j (n)
v , where j (n)

v ’s are single-particle spin-j components.
First, we find a tight lower bound on the planar spin variance
valid for all states with a depth of entanglement smaller
than k.

Observation 1. Every k-producible state of a spin-j particle
system with an average number of particles 〈N〉 must satisfy
the tight inequality,

(�J‖)2 � 〈N〉jG(j )
k

( |〈J‖〉|
〈N〉j

)
, (5)

where G(j )
k is defined as the convex hull of (4). Thus, every

state that violates Eq. (5) must have a depth of entanglement
of at least k + 1.

Proof. For pure k-producible states of (constant) N

particles we have (�J‖)2
N = ∑

n[(�L(n)
y )2 + (�L(n)

z )2] �∑
n knjG(j )

kn
(〈L(n)

y 〉/knj ), where L(n)
v ’s are collective operators

of 0 � kn � k particles. The second inequality follows
directly from the definition of G(j )

kn
. Now, we use that

G(j )
kn

’s are as follows: (i) convex and (ii) decreasing for

increasing the index, i.e., G(j )
r � G(j )

s for r � s and that
k � kn and

∑
n kn = N. Then,

∑
n knjG(j )

kn
(〈L(n)

y 〉/knj ) �∑
n knjG(j )

k (〈L(n)
y 〉/knj ) � NjG(j )

k (〈Jy〉/Nj ) follows where
the first inequality comes from property (ii) and the second
comes from property (i) and Jensen’s inequality. Clearly,
if N is divisible by k, then the inequality (5) is tight by
construction. Let us consider now a state with a nonzero
particle number variance � = ∑

N QN�N , where �N ’s are
states with fixed N ’s and QN ’s are probabilities. From the
properties above it follows that (�J‖)2 � ∑

N QN (�J‖)2
N �∑

N QNNjG(j )
k (〈Jy〉/Nj ) � 〈N〉jG(j )

k (〈Jy〉/〈N〉j ) holds,
〈N〉 = ∑

N QNN being the average particle number. �
Numerical computation of G(j )

k . In order to detect the depth
of entanglement with our criterion we need to carry out the
optimization in Eq. (4) and then construct the convex hull G(j )

k

that has properties (i) and (ii) mentioned in the proof of Obser-
vation 1. For k = 1 and j = 1, straightforward algebra yields
G

(1)
1 (X) = 3

2 − X2 − 1
2

√
1 − X2. Analytical expressions are

very hard to obtain even for the next simplest cases.
Numerically, the problem of finding the convex hull G(j )

k

can be approached exploiting the Legendre transform in this
framework defined as [38,39]

L
[
(�L‖)2

φ/kj
]
(T ) := inf

φ

[
1

kj
(�L‖)2

φ − 〈T 〉φ
]

(6)

for the normalized planar variance (�L‖)2
φ/kj as a function

of T = Ly/kj . Then, the lower bound (�L‖)2
φ � G(j )

k (X) is
obtained by means of another Legendre transform,

G(j )
k (X) := sup

λ

{
λX − L

[
(�L‖)2

φ/kj
]
(λLy/kj )

}
, (7)

where X is a real number. The function (7) is precisely the
convex hull that we are looking for. Furthermore, (6) can
be written as an eigenvalue problem (see also Refs. [40–42]
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FIG. 2. Lower bounds to (�L‖)2/kj as functions of 〈L‖〉/kj for
a system of k spin-j particles. The cases of k = 4 and j = 1 are
shown. (The dashed curve) The function G

(1)
4 (X). (The solid line)

The function G
sy
4 (X) computed on the symmetric subspace. The

convex hull of G
(1)
4 (X), denoted by G(1)

4 (X) is a linear function for
X � Xmin = argmin[Gsy

4 (X)/X], whereas for X > Xmin it coincides
with G

sy
4 (X). M denotes the point of the curve for which X = Xmin.

The straight line provides a lower bound on G(1)
4 (X). (The inset) The

parameter ζ 2
J as a function of J .

addressing similar problems),

L
[
(�L‖)2

φ/kj
]
(λLy/kj ) = 1

kj
min
sy ,sz

[
min

φ
〈Hsy,sz,λ〉φ

]
, (8)

where the Hamiltonian Hsy,sz,λ = (Ly − sy)2 + (Lz − sz)2 −
λLy is a collective operator acting on a k-partite space of spin-j
particles. Moreover, by writing a general pure state (here we
consider integer values of kj ) as |φ〉 = ∑kj

J=0 aJ |ψJ 〉, i.e., as
a superposition of single spin-J states |ψJ 〉, the expectation
value in Eq. (8) can be written as

〈Hsy,sz,λ〉φ =
kj∑

J=0

a2
J

〈(
L(J )

y − sy

)2 + (
L(J )

z − sz

)2 − λL(J )
y

〉
ψJ

,

(9)

where L(J )
m ’s are single spin-J operators. In particular, for

k > 1 and the kj integer we can easily prove that G(j )
k (0) = 0

where the value on the right-hand side is reached for |φ〉 being
the singlet. More in general, substituting Eqs. (8) and (9) into
Eq. (7) one can see that the function G(j )

k (X) can be obtained
with minimizations in spin-J subspaces with 0 � J � kj

(1/2 � J � kj for the kj half-integer). Thus, by increasing
k one has to minimize over a larger number of subspaces and
consider a higher number of parameters aJ , which makes the
resulting function decreasing with k, which is just property
(ii) needed in the proof of Observation 1. When the minimiza-
tion problem (4) is restricted to the symmetric subspace J = kj

then we call the resulting function G
sy
J (X). Its convex roof can

be obtained based on Eq. (9) if we set akj = 1. In Fig. 2, we
present a concrete example. The function G

(1)
4 (X) is plotted

together with its convex hulls G(1)
4 (X) and G

sy
4 (X). We see in

the figure that a simple linear function can be used as a lower
bound to G(1)

4 (X). This lower bound works in general, as we
show in what follows.

TABLE I. Values of ζ 2
J for 0 � J � 27.

J ζ 2
J J ζ 2

J J ζ 2
J

1 0.45 10 0.26067 19 0.21111
2 0.44906 11 0.25262 20 0.20758
3 0.38945 12 0.2455 21 0.20428
4 0.35321 13 0.23913 22 0.20118
5 0.32779 14 0.23338 23 0.19826
6 0.30852 15 0.22815 24 0.19551
7 0.29318 16 0.22336 25 0.1929
8 0.28054 17 0.21896 26 0.19043
9 0.26986 18 0.21489 27 0.18809

Linear lower bound. As outlined above, the computation
of G(j )

k (X) still requires some numerics, which can be hard
for high k and j . Here, we simplify further this task by
finding a suitable lower bound that requires only the numerical
computation of G

sy
J (X) with J = kj and is thus easier than

computing the full G(j )
k (X).

Observation 2. A convex lower bound to the curve G
(j )
k (X)

defined as in Eq. (4) is given by

G(j )
k (X) � Xζ 2

J , (10)

where ζ 2
J := min|ψk〉[(�Ly)2

ψk
+ (�Lz)2

ψk
]/〈Ly〉ψk

is the min-
imum value of the planar squeezing parameter over single-
particle states |ψk〉 of spin J = kj . The proof is given in the
Appendix.

With this method we need only to determine ζ 2
J for

the relevant range of J , which can be written as ζ 2
J =

minX[Gsy
J (X)/X]. Thus, as a simple algorithm one can:

(i) Find the ground states |φλ〉 of Hλ restricted to the symmetric
subspace; (ii) compute (�L‖)2

φλ
and 〈Ly〉φλ

; and finally take
ζ 2
J = minφλ

(�L‖)2
φλ

/〈Ly〉φλ
, which is feasible until very large

J , up to the thousands. As an example the values of ζ 2
J up to

J = 27 are given in Table I, whereas the qualitative behavior
can be observed in the inset of Fig. 2. Note that Eq. (10) is a tight
approximation only for k � 2, independent of j . For k = 1 the
original criterion given in Eq. (5) has to be used instead.

From Observations 1 and 2, we immediately obtain Eq. (2),
which connects the metrological performance of PQS states
to their entanglement depth. Next, we show that, apart from
proving that the entanglement depth is k + 1, we also obtain
information about how many particles are in fully entangled
groups of (k + 1). This provides a simple interpretation of the
degree of the violation of Eq. (2).

Observation 3. Let us assume that the total polarization is
equally distributed over all particles. Then, there is at least
a fraction fk+1 = (1 − ξ 2

‖ /ζ 2
J ) of particles in fully entangled

groups of (k + 1) or more with k given by J/j . The proof
is given in the Appendix where the case of varying particle
numbers is included in the model. We discuss that, without the
assumption of equally split polarization, the above statement
still holds for almost totally polarized states, i.e., with 〈Jy〉 ≈
Nj and that similar ideas work also for the Sørensen-Mølmer
criterion.

Practical use of the criterion. Thus, our criterion can be
employed to detect the depth of entanglement whenever two
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FIG. 3. Lower bound on (�Jz)2 given by the (blue) extreme
spin-squeezing and (red) planar-squeezing criteria taken for k = 5
and j = 1 as a function of the ratio between the two planar spin
variances and the in-plane polarization. Our criterion detects a
depth of entanglement higher than that of Sørensen-Mølmer for the
parameter values for which the red plot is above the blue one.

collective spin variances are known as well as the total in-
plane polarization. With the same input information, it would
be possible to use also the Sørensen-Mølmer extreme spin-
squeezing condition [43]. Then, we can numerically compare
the two criteria and study in which cases our criterion is more
suitable to detect entanglement. To do this we parametrize
the states with the ratio α = (�Jz)2/(�Jy)2 between the two
spin variances and the total in-plane polarization β = 〈Jy〉/N .
We plot the lower bound on (�Jz)2 for k = 5 and j = 1 for
various values of α and β and see for which regions of the
(α,β) plane our criterion detects a higher depth. The result
is shown in Fig. 3 where we can observe that our criterion
detects a higher degree of entanglement on most of the plane,
especially whenever the two variances become equal. Vice
versa, totally polarized states that are spin squeezed only
along Jz are detected with a higher depth by the criterion of
Sørensen-Mølmer. All these statements are valid also for other
k and j values. Thus, our criterion is especially tailored for
detecting PQS states and distinguishing those from traditional
spin-squeezed states, which are optimally detected by the
criterion of Sørensen-Mølmer. Furthermore, the linearity of our
criterion makes it directly connected with improved sensitivity
in phase estimations: A value of ξ 2

‖ below the threshold given
by ζ 2

J with J = kj implies that: (1) the state must be (k + 1)
entangled and (2) its average sensitivity to rotations about the
axis orthogonal to the plane of squeezing as compared to the
SQL is better than that of any state with depth of entanglement
k or lower.

Next, we employ our criterion (2) to analyze entanglement
in a PQS state produced in a recent experiment with an
ensemble of N = 1.75 × 106 cold 87Rb atoms via semicon-
tinuous QND measurements [36]. In Fig. 4 we plot the
observed planar-squeezing parameter ξ 2

‖ as a function of the
measurement strength, parametrized by the number of photons
NL used in the QND measurement. As NL increases, the input
spin-coherent state evolves into a planar-squeezed state with

FIG. 4. Top: The shaded curves: lower bound for the number of
atoms in fully entangled groups of at least (k + 1) particles. From
top to bottom: k = 1–4. Bottom: The squeezing parameter ξ 2

‖ as a
function of the number of photons NL used in the QND measurement.
The orange shaded area represents the ±1σ confidence interval.

squeezing observed betweenNL � 2 × 108 andNL � 3 × 108

photons after which the spin variances increase due to noise
and decoherence introduced by off-resonant scattering of probe
photons. We also plot the corresponding fraction fk+1 of
atoms in fully entangled groups of (k + 1) or more, detected
using our criterion. We observe the corresponding increase
in entanglement depth with NL up to the optimum of NL =
2.47 × 108 photons after which entanglement is gradually
lost. At the optimum NL we observe a spin-coherence 〈J‖〉 =
0.83N and a planar-squeezing parameter ξ 2

‖ = 0.32 ± 0.02.
For comparison, using the criterion developed by He and
co-workers [32,33], one would detect a fraction 0.39 of atoms
in entangled states without any information about the depth of
entanglement. The details of the experiment are given in the
Supplemental Material [44] (see also Ref. [45]).

Conclusions. We have introduced a criterion suitable to
detect the depth of entanglement in planar-squeezed states
and to distinguish them from traditional spin-squeezed states,
detectable with the criterion of Sørensen-Mølmer [23]. Our
criterion is simple to evaluate and directly connected with the
sensitivity of the PQS states for phase estimations that do
not require any prior knowledge of the phase. By numerical
comparison, we have also shown that our criterion represents
an important alternative to that of Sørensen-Mølmer suitable
to detect entanglement in PQS states. Finally, we tested our cri-
terion with data from a recent experiment in which a PQS state
was generated via semicontinuous QND measurement [36].
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Appendix. Proof of Observation 2. Let us consider a
general pure k-particle state |φ〉 = ∑

J aJ |ψJ 〉 where each
|ψJ 〉 is a single spin-J particle state. We assume that the
mean planar spin points into the y direction. We now
need that the collective k-particle spin components Lv can
be written as the direct sum of operators L(J )

v acting on
spin-J particle spaces with 0 � J � kj (or 1/2 � J � kj

for odd k and half-integer j ). Then, since the collective
angular momentum operators do not couple the different
spin-J subspaces of the total k-particle space to each

other, we have (�L‖)2
φ � ∑

J>0 a2
J 〈L(J )

y 〉ψJ

(�L
(J )
‖ )2

ψJ

〈L(J )
y 〉ψJ

. Hence,

(�L‖)2
φ � ∑

J>0 a2
J 〈L(J )

y 〉ψJ
ζ 2
J follows. Finally, we obtain∑

J>0 a2
J 〈L(J )

y 〉ψJ
ζ 2
J � ζ 2

Jmax

∑
J>0 a2

J 〈L(J )
y 〉ψJ

= JmaxXζ 2
Jmax

,
where Jmax = kj since X = 1

kj
〈Ly〉φ = 1

kj

∑
J>0 a2

J 〈L(J )
y 〉ψJ

and ζ 2
J � ζ 2

J ′ for J � J ′. The last property can be observed
numerically, cf. Fig. 2 (the inset). Due to the concavity of the
variance, the statement follows for mixed states. �

Proof of Observation 3. Let us consider the criterion in
Eq. (5) as in Observation 1. Given a certain k, we interpret
the degree of violation of the criterion with an estimate of the
minimal fraction of particles in (k + 1)-entangled groups. Let
us consider a pure state of N particles |�N 〉 = ⊗N

n=1 |φn〉 ⊗
|�rest〉 for some partition that contains N groups of kn � k

particles with
∑N

n=1 kn = MN and the rest in a collective
state |�rest〉 of N − MN particles that are entangled in groups
of k + 1 or more. For such a state we have (�J‖)2

N �∑N
n=1(�L‖)φn

� MN jG(j )
k (

∑N
n=1〈Ly〉φn

/MN j ) due to con-
vexity and the fact that G(j )

k (X) � G(j )
kn

(X) for kn � k.

At this point, we assume that 〈Ly〉 is distributed among
the N groups and the rest of the particles in propor-
tion of the number of particles in these two groups,
i.e.,

∑N
n=1〈Ly〉φn

/MN j = 〈Jy〉N /Nj . Hence, we arrive at
(�J‖)2

N � MN jG(j )
k (〈Jy〉N /Nj ). Due to the concavity of the

variance and the convexity of G(j )
k (X) this inequality also holds

for mixtures of states of the type |�N 〉 with a fixed particle
number N , denoted by �N . Hence, we obtain (�J‖)2

�N
�

〈M〉�N
jG(j )

k (〈Jy〉�N
/Nj ).

Now we consider states � = ∑
N rN�N , where rN ’s

are probabilities associated with different numbers of
particles N and groupings and define Q = 〈M〉�/〈N〉�,
where 〈N〉� = ∑

N rNN is the average particle number and
〈M〉� = ∑

N rN 〈M〉N . We have (�J‖)2
� � ∑

N rN (�J‖)2
N �∑

N rN 〈M〉NjG(j )
k (〈Jy〉N/Nj ) = Q

∑
N rNNjG(j )

k (〈Jy〉N/Nj )
and by using the Jensen inequality we arrive at
(�J‖)2

� � Q〈N〉�jG(j )
k (〈Jy〉�/〈N〉�j ). Using Eqs. (1) and

(10), Observation 3 follows. �
An argument similar to the above can be applied also to the

criterion of Sørensen-Mølmer, which states that

(�Jz)
2 � NjFJ

( 〈Jy〉
Nj

)
(A1)

holds in a system of spin-j particles for states with an
entanglement depth of at most J/j . Here, FJ (X) is a convex
function analogous to G

sy
J (X) [23].

So far, in the derivations we made the assumption that the
total polarization splits equally for the different subensembles
of atoms. Without such an assumption, first for pure states,
we analyze the worst-case scenario in which for a state, such
as |�N 〉, the polarization splits unequally and state |�rest〉 is
polarized as much as possible. Hence, we assume 〈Jy〉�rest =
(N − MN )j , and it follows that

∑N
n=1〈Ly〉φn

= 〈Jy〉N −
(N − MN )j and consequently (�J‖)2

N � MN jG(j )
k [(〈Jy〉N −

(N − MN )j )/MN j ]. Using Eq. (10), we obtain (�J‖)2
N �

ζ 2
J [〈Jy〉N − (N − MN )j ]. This is clearly valid for mixed

states with a varying particle number as (�J‖)2
� � ζ 2

J [〈Jy〉� −
(〈N〉� − 〈M〉�)j ], which can further be rewritten as Q �
(ξ 2

‖ /ζ 2
J + W − 1)/W where W = 〈N〉�j/〈Jy〉�. Then, for a

state that is almost fully polarized, i.e., 〈Jy〉N ≈ 〈N〉N j , we
recover the statement of Observation 3.
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tation of Cavity Squeezing of a Collective Atomic Spin, Phys.
Rev. Lett. 104, 073602 (2010).

[14] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler,
Nonlinear atom interferometer surpasses classical precision
limit, Nature (London) 464, 1165 (2010).

[15] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner, Z. Chen,
and J. K. Thompson, Reduced spin measurement back-action
for a phase sensitivity ten times beyond the standard quantum
limit, Nat. Photonics 8, 731 (2014).

[16] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N.
Behbood, and M. W. Mitchell, Magnetic Sensitivity Beyond the
Projection Noise Limit by Spin Squeezing, Phys. Rev. Lett. 109,
253605 (2012).

[17] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson,
Deterministic Squeezed States with Collective Measurements
and Feedback, Phys. Rev. Lett. 116, 093602 (2016).

[18] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Ka-
sevich, Measurement noise 100 times lower than the quantum-
projection limit using entangled atoms, Nature (London) 529,
505 (2016).

[19] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano,
C. Monroe, and D. J. Wineland, Experimental Demonstration
of Entanglement-Enhanced Rotation Angle Estimation using
Trapped ions, Phys. Rev. Lett. 86, 5870 (2001).

[20] R. Auccaise, A. G. Araujo-Ferreira, R. S. Sarthour, I. S. Oliveira,
T. J. Bonagamba, and I. Roditi, Spin Squeezing in a Quadrupolar
Nuclei Nmr System, Phys. Rev. Lett. 114, 043604 (2015).

[21] M. W. Mitchell and F. A. Beduini, Extreme spin squeezing for
photons, New J. Phys. 16, 073027 (2014).

[22] A. Sørensen, L.-M. Duan, J. Cirac, and P. Zoller, Many-particle
entanglement with bose–einstein condensates, Nature (London)
409, 63 (2001).

[23] A. S. Sørensen and K. Mølmer, Entanglement and Extreme Spin
Squeezing, Phys. Rev. Lett. 86, 4431 (2001).

[24] B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,
and C. Klempt, Detecting Multiparticle Entanglement of Dicke
States, Phys. Rev. Lett. 112, 155304 (2014).

[25] G. Vitagliano, I. Apellaniz, M. Kleinmann, B. Lücke, C. Klempt,
and G. Toth, Entanglement and extreme spin squeezing of
unpolarized states, New J. Phys. 19, 013027 (2017).

[26] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth,
and H. Weinfurter, Experimental Entanglement of a Six-Photon
Symmetric Dicke State, Phys. Rev. Lett. 103, 020504 (2009).

[27] R. Prevedel, G. Cronenberg, M. S. Tame, M. Paternostro, P.
Walther, M. S. Kim, and A. Zeilinger, Experimental Realization
of Dicke States of up to Six Qubits for Multiparty Quantum
Networking, Phys. Rev. Lett. 103, 020503 (2009).

[28] B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P.
Hyllus, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, and
C. Klempt, Twin matter waves for interferometry beyond the
classical limit, Science 334, 773 (2011).

[29] C. Hamley, C. Gerving, T. Hoang, E. Bookjans, and M. Chap-
man, Spin-nematic squeezed vacuum in a quantum gas, Nat.
Phys. 8, 305 (2012).

[30] T. M. Hoang, M. Anquez, M. J. Boguslawski, H. M. Bharath,
B. A. Robbins, and M. S. Chapman, Adiabatic quenches and
characterization of amplitude excitations in a continuous quan-
tum phase transition, Proc. Natl. Acad. Sci. USA 113, 9475
(2016).

[31] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K. Tey,
and L. You, Deterministic entanglement generation from driving
through quantum phase transitions, Science 355, 620 (2017).

[32] Q. Y. He, S.-G. Peng, P. D. Drummond, and M. D. Reid, Planar
quantum squeezing and atom interferometry, Phys. Rev. A 84,
022107 (2011).

[33] Q. Y. He, T. G. Vaughan, P. D. Drummond, and M. D. Reid, En-
tanglement, number fluctuations and optimized interferometric
phase measurement, New J. Phys. 14, 093012 (2012).

[34] G. Puentes, G. Colangelo, R. J. Sewell, and M. W. Mitchell,
Planar squeezing by quantum non-demolition measurement in
cold atomic ensembles, New J. Phys. 15, 103031 (2013).

[35] G. Colangelo, F. M. Ciurana, L. C. Bianchet, R. J. Sewell, and
M. W. Mitchell, Simultaneous tracking of spin angle and
amplitude beyond classical limits, Nature (London) 543, 525
(2017).

[36] G. Colangelo, F. Martin Ciurana, G. Puentes, M. W. Mitchell,
and R. J. Sewell, Entanglement-Enhanced Phase Estimation
Without Prior Phase Information, Phys. Rev. Lett. 118, 233603
(2017).

[37] O. Gühne, G. Tóth, and H. J. Briegel, Multipartite entanglement
in spin chains, New J. Phys. 7, 229 (2005).

[38] O. Gühne, M. Reimpell, and R. F. Werner, Estimating Entan-
glement Measures in Experiments, Phys. Rev. Lett. 98, 110502
(2007).

[39] J. Eisert, F. G. S. L. Brandão, and K. M. R. Audenaert,
Quantitative entanglement witnesses, New J. Phys. 9, 46
(2007).

[40] L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty
relations for angular momentum, New J. Phys. 17, 093046
(2015).

[41] I. Apellaniz, M. Kleinmann, O. Gühne, and G. Tóth, Optimal
witnessing of the quantum fisher information with few measure-
ments, Phys. Rev. A 95, 032330 (2017).

[42] O. Marty, M. Cramer, G. Vitagliano, G. Toth, and M. B. Plenio,
Multiparticle entanglement criteria for nonsymmetric collective
variances, arXiv:1708.06986.

[43] Note that the Sørensen-Mølmer condition requires as input just
one variance, that must be the one orthogonal to the polarization.

[44] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.97.020301 for details of the experiment.

[45] G. Colangelo, R. J. Sewell, N. Behbood, F. M. Ciurana, G.
Triginer, and M. W. Mitchell, Quantum atom–light interfaces
in the gaussian description for spin-1 systems, New J. Phys. 15,
103007 (2013).

020301-6

https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature07332
https://doi.org/10.1038/nature07332
https://doi.org/10.1038/nature07332
https://doi.org/10.1038/nature07332
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nphoton.2014.151
https://doi.org/10.1038/nphoton.2014.151
https://doi.org/10.1038/nphoton.2014.151
https://doi.org/10.1038/nphoton.2014.151
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1103/PhysRevLett.116.093602
https://doi.org/10.1103/PhysRevLett.116.093602
https://doi.org/10.1103/PhysRevLett.116.093602
https://doi.org/10.1103/PhysRevLett.116.093602
https://doi.org/10.1038/nature16176
https://doi.org/10.1038/nature16176
https://doi.org/10.1038/nature16176
https://doi.org/10.1038/nature16176
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1103/PhysRevLett.114.043604
https://doi.org/10.1103/PhysRevLett.114.043604
https://doi.org/10.1103/PhysRevLett.114.043604
https://doi.org/10.1103/PhysRevLett.114.043604
https://doi.org/10.1088/1367-2630/16/7/073027
https://doi.org/10.1088/1367-2630/16/7/073027
https://doi.org/10.1088/1367-2630/16/7/073027
https://doi.org/10.1088/1367-2630/16/7/073027
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020503
https://doi.org/10.1103/PhysRevLett.103.020503
https://doi.org/10.1103/PhysRevLett.103.020503
https://doi.org/10.1103/PhysRevLett.103.020503
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1103/PhysRevA.84.022107
https://doi.org/10.1103/PhysRevA.84.022107
https://doi.org/10.1103/PhysRevA.84.022107
https://doi.org/10.1103/PhysRevA.84.022107
https://doi.org/10.1088/1367-2630/14/9/093012
https://doi.org/10.1088/1367-2630/14/9/093012
https://doi.org/10.1088/1367-2630/14/9/093012
https://doi.org/10.1088/1367-2630/14/9/093012
https://doi.org/10.1088/1367-2630/15/10/103031
https://doi.org/10.1088/1367-2630/15/10/103031
https://doi.org/10.1088/1367-2630/15/10/103031
https://doi.org/10.1088/1367-2630/15/10/103031
https://doi.org/10.1038/nature21434
https://doi.org/10.1038/nature21434
https://doi.org/10.1038/nature21434
https://doi.org/10.1038/nature21434
https://doi.org/10.1103/PhysRevLett.118.233603
https://doi.org/10.1103/PhysRevLett.118.233603
https://doi.org/10.1103/PhysRevLett.118.233603
https://doi.org/10.1103/PhysRevLett.118.233603
https://doi.org/10.1088/1367-2630/7/1/229
https://doi.org/10.1088/1367-2630/7/1/229
https://doi.org/10.1088/1367-2630/7/1/229
https://doi.org/10.1088/1367-2630/7/1/229
https://doi.org/10.1103/PhysRevLett.98.110502
https://doi.org/10.1103/PhysRevLett.98.110502
https://doi.org/10.1103/PhysRevLett.98.110502
https://doi.org/10.1103/PhysRevLett.98.110502
https://doi.org/10.1088/1367-2630/9/3/046
https://doi.org/10.1088/1367-2630/9/3/046
https://doi.org/10.1088/1367-2630/9/3/046
https://doi.org/10.1088/1367-2630/9/3/046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1103/PhysRevA.95.032330
https://doi.org/10.1103/PhysRevA.95.032330
https://doi.org/10.1103/PhysRevA.95.032330
https://doi.org/10.1103/PhysRevA.95.032330
http://arxiv.org/abs/arXiv:1708.06986
http://link.aps.org/supplemental/10.1103/PhysRevA.97.020301
https://doi.org/10.1088/1367-2630/15/10/103007
https://doi.org/10.1088/1367-2630/15/10/103007
https://doi.org/10.1088/1367-2630/15/10/103007
https://doi.org/10.1088/1367-2630/15/10/103007



