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Entanglement witnesses in spin models
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We construct entanglement witnesses using fundamental quantum operators of spin models which contain
two-particle interactions and have a certain symmetry. By choosing the Hamiltonian as such an operator, our
method can be used for detecting entanglement by energy measurement. We apply this method to the Heisen-
berg model in a cubic lattice with a magnetic field, % model, and other familiar spin systems. Our method
provides a temperature bound for separable states for systems in thermal equilibrium. We also study the
Bose-Hubbard model and relate its energy minimum for separable states to the minimum obtained from the
Gutzwiller ansatz.
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[. INTRODUCTION spin lattices. We will also consider models with a different
pology.

If observableO is taken to be the Hamiltonian, then our
method can be used for detecting entanglement by energy
measuremeni9]. While our approach does not require that
) . . ONShe system is in thermal equilibrium, it can readily be used to
differ. In this general case, a quantum state is entangled if ityo o0 entanglement for a range of well-known systems in
density matrix cannot be written as a convex sum of pf‘?‘?‘”%is case. The energy bound for separable states correspond
states. Based on this definition, several sufﬁuent cond|t|on§0 a temperature bound. Below this temperature the thermal
for entanglement have.been develom_ep 'T‘ special cases, state is necessarily entangled. Numerical calculations have
e.g., for 2><2 (two-qubip and 2X3 bipartite systemgz2], been carried out for some familiar spin models. They show
and for multimode Gaussian stati], even necessary and ¢ for the parameter range in which substantial entangle-
sufficient conditions are known. ment is present in the thermal ground state, our method de-

. prever, Inan experimental situation, _usually only lim- tects the state as entangled. Thus our work contributes to
ited information about the quantum state is available. Only

. Jrecent efforts connecting QIT and the statistical physics of

those approaches for entanglement detection can be applied,:
. ) in modelq10].

which require the measurement of not too many observables.

One such approach is using entanglement witnesses. They

are observables which have a positive expectation value or II. ENERGY BOUND FOR SEPARABLE STATES

one that is zero for all separable states. Thus a negative ex- ) _ _

pectation value signals the presence of entanglement. The We consider a general observalileon a spin Iatnceﬂ(%e-

theory of entanglement witnesses has recently been rapidﬂ“eﬁ'() n, t%ms of the Pauli spin operators

developing[4]. It has been shown how to generate entangle-:[tfx 10y, 0, ] as

mgnt vyitnesses that detect states close to a given one, even if 0= OUFIN ) @)

it is mixed or a bound entangled stdfs. It is also known B k=1

how to optimize a witness operator in order to detect theyhere® is some multivariable functiofL.1]. We will discuss

most entangled stat¢s]. _ o ~ how to find the minimum expectation value of such an op-
Beside ConStrUCtlng entanglement witnesses, It Is also IMerator for Separab|e states of the form

portant to find a way to measure them. For example, they can
easily be measured by decomposing them into a sum of lo- p=2pp"@p? e ... @p". 3
cally measurable termd]. In this paper we follow a differ- [

ent route. We will construct witness operators of the form

Entanglement lies at the heart of quantum mechanics ant(?
also plays an important role in the field of quantum informa-
tion theory (QIT) [1]. While for pure quantum states it is
equivalent to correlations, for mixed states the two notion

The minimum of(O) for pure product states is obtained
Wo := O— inf [(¥]O]W)], 1) by replacing t_h(_a F_’auli gpin_ matrices by rgal variab{g?z in_
Ves Eq.(2) and minimizing it with the constraint that are unit
vectors[12]. The minimum obtained this way is clearly valid
whereSis the set of separable states, “inf” denotes infimum,also for mixed separable states, since the set of separable
and O is a fundamental quantum operator of a spin systenstates is convex
which is easy to measure. In the general casgigf¥’|O|¥)
is difficult, if not impossible, to computgB]. Thus we will
concentrate on operators that contain only two-particle inter-
actions and have certain symmetries. We derive a general In the most general case many-variable minimization is
method to find bounds for the expectation value of such opneeded for obtainin@s,, In some cases, to which many of
erators for separable states. This method will be applied tthe most studied lattice Hamiltonians belong, it is possible to

Ogepi= Inf (W[O[W) = inf OGSVIL,). (4)
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state of the system is given agpr=exp—H/kgT)/
Trlexp(-H/kgT)], whereT is the temperature arkk is the
Boltzmann constant. For simplicity we will skg=1. Using
-2—o—n—on Eqg. (6) a temperature boundlg, can be found such that
whenT<Tg, then the system is detected as entangled.
()

A. Heisenberg lattice

®)

Let us consider an antiferromagnetic Heisenberg Hamil-
tonian with periodic boundary conditions ordalimensional
cubic lattice

Hy = > ool + a{,k)a'g,') + W) +BoX. (7)
© @

z
(kl)

The strength of the exchange interaction is set tdbé, B
FIG. 1. Some of the most often considered lattice mod@ls: is the magnetic field, antk,|) denotes spin pairs connected

Chain, (b) two-dimensional cubiac) hexagonal, andd) triangular. by an interaction. The expectation value of Ef). for sepa-
Different symbols at the vertices indicate a possible partitioningrgple states is bounded from below

into sublattices.
-dN(B%8+1) if |B|<4
-dN(B|-1) if |B|>4

ayvhereN is the total number of spins. This bound was ob-
tained using two sublattices, minimizing the expression
r{H(§A,§B)::§A§E‘+B(§+SZB)/2. Based on this, Eysep

(Hy) = EH,sep:: { , (8

find a simple recipe for computing the minimum ©f

(i) Let us consider an operat@ which is the sum of
two-body interactions. It can be described by a lattice or
graph. The vertice¥:={1,2, ... N} correspond to spins and
the edges between two vertices indicate the presence of i
teractign. P =dNinf[fy] [13]. _ , _ _

(i) Let us assume that this lattice can be partitioned intg L€t US now consider a one-dimensional spin-1/2 Heisen-
sublattices in such a way that interacting spins correspond tB€r9 chain of even number of particles B0 then Eq(8)
different sublattices. Figure 1 shows lattices of some com&0rresponds to
mon one- and two-dimensional spin models. The different 1
symbols at the vertices indicate a possible partitioning into NE (dWgy = -1, (9
sublattices with the above property. For simplicity, next we (kD)

will consider the case with only two disjoint sublatticés, \yhich is simply a necessary condition for separability in

andB, and assume tha® can be written in the form terms of nearest-neighbor correlations. The energy minimum
for entangled states can be obtained using the Bethe ansatz as
2Ny — =B
O(sMe)= 2 1830, () E..=-4N(In2-1/4~-1.7MN [14]. The energy gap be-
LA <B tween the minimum for separable states and the ground-state
wheref is some two-spin function, aré’® denotes spins of energy ofHy, is thusAEg,,~ 0.7, which increases linearly
sublatticeA/B. with the number of spins. As shown in Refd6,17, when

If conditions (i) and i) are met, then it is enough to find B=0 the concurrence of the two-qubit reduced density ma-
spins&* and & corresponding to the minimum dfs*,§8).  trix in the thermal state is obtained &=max{-((Hy)/N
Then, setting all the spins in sublattiéeto §* and in sublat-  +1)/2,0]. HenceC>0 if (Hy)<-N and Ey s¢, coincides
tite B to S8, respectively, gives a solution which minimizes with the energy bound for nonzero concurrence.

Let us now consider the ca8>0. Figure Za) shows the
. EXAMPLES nearest-neighbor entanglement verBlendT. The entangle-
ment of formation was computed from the concurrefics.

In the following we will use the Hamiltoniaki for con- | jght color indicates the region where the thermal ground
structing entanglement witnesses. The energy minimum fogtate is detected as entangled. There are regions@viti
separable states is the same as the ground state of the corjghich are not detected. However, it is clear that when the
sponding classical spin model. Our method detects entanglgystem contains at least a small amount of entanglement
ment if (~0.07 the state is detected as entangled. Note that the

- _ sharp decrease of the nearest-neighbor entanglement around
AB = (H) = Bsep= 0. © Bgit=4 for T=0 is due to aguantum phase transition
If AE<O then |AE| characterizes the state of the system Another important question is how the temperature bound
from the point of view of the robustness of entanglement. ItTz depends on the number of particles. For the Heisenberg
is a lower bound on the energy that the system must receivenodel of even number of spins witB=0 this temperature
to become separable. decreases slowly witN and saturates dt~ 3.18. Reference

We will use the previous results to detect entanglement iff17] finds the same bound temperature for nonzero concur-

thermal states of spin models. In thermal equilibrium therence for an infinite system.

010301-2
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Hgi= B+ X+, (12)

the expectation value for separable states is bouf2i@d

(Hg) = Eggepi= 2N. (13
HereJx,y,Z:Ekai',‘),Z and for simplicityN is taken to be even.

Now we could not use the method for partitioning the
spins into sublattices. The proof of E{.3) is based on the
theory of entanglement detection with uncertainty relations
[20,2]. For separable states one obtdia6]

(AJY?+(AJ,)? + (AJ,)?
=2 p2 [(Ac)+ (A + (Ao ]=NLs,  (14)
| k

where index | denotes the Ith subensemble and
Ls=infy[(Ady)3 +(Aay)3 +(Aop)3]1=2. Hence Eq(13) fol-
lows. The measured energy even gives information on the
entanglement properties of the system. Based on the previous
considerations, it can be proved that the number of unen-
tangled spins is smaller thahig)/2.

Following the approach of Refl16], the concurrence can

FIG. 2. (a) Heisenberg chain of eight spins. Nearest-neighborb€ computed as a function of the energy. For edethe

entanglement as a function of magnetic fi@ldaind temperatur@.
(b) The same for an Ising spin chain. Hekg is the Boltzmann

concurrence isC=maxX-[(Hg+N(N-4)]/[2N(N-1)],0O}.
Since for all quantum stat€gls) = 0, the concurrence is zero

constant,J and J, are coupling constants. Light color indicates the for any temperature iN=4. Thus our condition can detect

region where entanglement is detected by our method.

B. XY model

The XY Hamiltonian on a-dimensional cubic lattice with
periodic boundary conditions is

N
Hyy = 2 hoWal + Jool) + B o, (10)
k

(4

The energy of separable states is bounded from below
—dNM(1 +b%4) if b=<2,
- dNMb if b>2.

Here J,), is the nearest-neighbor coupling along thg di-
rection, B is the magnetic field,M:=max(J,,|J,|) and

(Hxy) = EXY,sep:: { (11)

b:=|B|/M. This bound is simply the mean-field ground-state
energy. It was obtained using two sublattices and minimizing

fxr(§,°) = L L; +3,S)s) +B(s) +50) /2.

multiqubit entanglement even when two-qubit entanglement
is not present.

The thermodynamics dfig can be obtained by knowing
the energy levels and their degeneragi2g,

_(2j+1)? ( N
N2+

N/2 +j ) 19
where 0<j=<N/2. Approximating the binomial in Eq.15)

by a Gaussian, and taking the linfit—c while keeping
T/N constant, we obtaigHg)~3NT/(T+2N) and Tg=4N,
which is in agreement with our numerical calculations. Thus
Te increases linearly witN, the reason being that the num-
ber of two-body interaction terms increases quadratically
with the system size.

D. Bose-Hubbard model

Consider now a lattice model, the one-dimensional Bose-

A one-dimensional spin-1/2 Ising chain is a special casgyphard model, in which the number of particles can vary

of anXY lattice with J,=1 andJ,=0. Figure 2b) shows the
nearest-neighbor entanglement as a functioB® @ind T for

this system. According to numerics; (computed forB=1)

decreases with increasing For N=o we obtainTg~0.41
[18].

C. Heisenberg coupling between all spin pairs

on the lattice sites. We use the language of second quantiza-
tion. Each lattice site corresponds to a bosonic mode with a
destruction operatagy,. The Hamiltonian ig24]

Hg:=-J2 ala+aa +UX alalaa, (16

ki) k

From a theoretical point of view, it is interesting to con- wherelJ is the intersite tunneling and is the onsite interac-
sider a system in which the interactions are described by ton. Let us consider the case when there is at most a single

complete graph rather than a lattifE9]. For the following
Hamiltonian ofN spin-1/2 particles,

particle per lattice sitgU>J) [25]. Then, for separable
states the energy is bounded from below as
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(Hp) = Eg sep= = 2INp(1 = Ny/N), (17 [24] when used to realize the Bose-Hubbard mpdél) The
) ) ) Sy temperature can be measured and used for entanglement de-

whereN is the number of lattices sites ad:=(Z.&a) IS tection.(iii ) The expectation value of the Hamiltonian can be
the number of bosonic particles. FOt=10 andN,=N/2  optained indirectly if the correlation terms of the Hamil-
(half filling) we obtainTg~0.69. tonian are measured. For example, average correlations

Equation(17) can be proved as follows. Let us consider ay, (,® 0Dy a=x,y z can be measured in a Heisenberg
site in_a pure Statékp>:“|o>+ﬁ|l> such thatla|*+|B=1. chairi1 re%tlized with two-state bosonic atof@§]. From these
For this single-site statfa)|=|ap| and (a'a)=|BJ%. Hence correlations(H,,) can be computed.
Kay?=(a’a)(1—-(a'a)). Now using = (@b a)+H.c.
<23,/(a)|* one can show thafg se,is an energy bound for
product states. It is a bound also for mixed separable states of |n summary, we used the Hamiltonian for witnessing en-
the form Eq.(3) sinceEg e fNp) is a convex function. tanglement in spin models. We also considered bosonic lat-

Remarkably, the energy minimum for separable statesices. Our further results concerning this system will be pre-
equals the minimum for translationally invariant productsented in a future publicatiof27]. While our method works
states. In other words, it equals the energy minimum obfor nonequilibrium systems, we have shown that entangle-
tained from the Gutzwiller ansat23] if the expectation ment can efficiently be detected by measuring energy in a
value of the particle number is constrainedNg Note that  thermal equilibrium.
for our calculations we assumed that there is at most a single We thank J.I. Cirac, A.C. Doherty, O. Giihne, P. Hyllus, V.
atom per lattice site. Murg, and M.M. Wolf for useful discussions. We also thank
J.J. Garcia-Ripoll for helpful discussions on the Bose-
Hubbard model, and K. Hammerer for suggesting R2%].
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