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We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds
for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states
that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the
gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is
needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a
measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain
of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an
arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for

experiments. Our model can take into account even correlations between particle positions. While in most of the
discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of
freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
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I. INTRODUCTION

Metrology plays an important role in many areas of physics
and engineering [1]. With the development of experimental
techniques, it is now possible to realize metrological tasks in
physical systems that cannot be described well by classical
physics and instead quantum mechanics must be used for their
modeling. Quantum metrology [2-5] is the novel field that
is concerned with metrology using such quantum mechanical
systems.

One of the basic tasks of quantum metrology is magnetom-
etry with an ensemble of spin-j particles. Magnetometry with
a completely polarized state works as follows. The total spin
of the ensemble is rotated by a homogeneous magnetic field
perpendicular to it. We would like to estimate the rotation angle
or phase 6 based on some measurement; this phase parameter
can then be used to obtain the field strength. To determine
the rotation angle, one needs, for instance, to measure a spin
component perpendicular to the mean spin.

Up to now, it looks as if the total spin behaves like a clock
arm and its position tells us the value of 6 exactly. At this
point, one has to remember that we have an ensemble of N
particles governed by quantum mechanics, and the uncertainty
of the spin component perpendicular to the mean spin can never
be zero. Hence, simple calculation shows that the scaling of
the precision of the phase estimation is (Af)~2 ~ N, which
is called shot-noise scaling [2-5]. However, spin squeezing
[6-10] can decrease the uncertainty of one of the components
perpendicular to the mean spin and this can be used to increase
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the precision of the measurements [10]. While it is possible to
surpass the shot-noise limit, for the case of a linear Hamiltonian
[2-5], no quantum state can have a better scaling in the
precision than (A@)~2 ~ N2, called Heisenberg scaling.

In recent years, quantum metrology has been applied
in many scenarios, from atomic clocks [11-13] and preci-
sion magnetometry [14-20] to gravitational wave detectors
[21-23]. So far, most of the attention has been paid to
the problem of estimating a single parameter. The case of
multiparameter estimation for quantum systems is much less
studied, possibly, since it can be more complicated due to the
noncommutative nature of the problem [24-38].

In this paper, we compute precision bounds for the esti-
mation of the magnetic field gradient (see Fig. 1). In gen-
eral, in order to achieve these bounds, an estimate of the
constant (homogeneous) part of the field is required. Hence,
we have to use the formalism of multiparameter estimation.
Magnetometry of this type can be realized with differential
interferometry with two particle ensembles, which has raised
a lot of attention in quantum metrology [15,39-44]. Another
possibility is considering spin chains, which can be relevant in
trapped cold ions or optical lattices of cold atoms, where we
have individual access to the particles [45—47].

Finally, gradient magnetometry can be carried out using
a single atomic cloud, which is very relevant from the point
of view of cold gas experiments. One can consider both
atomic clouds of localized particles, as well as Bose-Einstein
condensates. While most works in magnetometry with a single
ensemble focus only on the determination of the strength
and direction of the magnetic field, certain measurement
schemes for the gradient have already been proposed and
tested experimentally. Some schemes use an imaging of the
ensemble with a high spatial resolution. They do not count as
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FIG. 1. Schematic representation of an atomic ensemble (blue
cloud) placed in a magnetic field (green lines) in a Stern-Gerlach
apparatus. From the final state the gradient of the field can be
estimated. Note that the field intensity changes along the cloud of
atoms, while the direction is always the same from north (N) to south
(S) within the cloud. For an easier presentation, a setup is shown where
the direction of the magnetic field is parallel to the cloud, however,
this does not have always to be the case.

single-ensemble methods in the sense we use this expression
in our paper since in this case not only collective observables
are measured [18-20]. There is a method based on collective
measurements of the spin length of a fully polarized ensemble
given in Ref. [48]. There is also a scheme based on many-body
singlet states described in Ref. [45].

We use the quantum Fisher information (QFI) and the
Cramér-Rao (CR) bound in our derivations [4,49-53]. Due to
this, our calculations are generally valid for any measurement,
thus they are relevant to many recent experiments [14-20,48].
We note that in the case of the spin singlet, our precision bounds
are saturated by the metrological scheme presented in Ref. [45].

We can also connect our results to entanglement theory
[54-56]. We find that the shot-noise scaling cannot be sur-
passed with separable states, while the Heisenberg scaling
can be reached with entangled states. However, the shot-noise
scaling can be surpassed only if the particle positions are
correlated, which is the case, for instance, if the particles attract
each other.

Next, we present the main characteristics of our setup.
For simplicity, as well as following recent experiments (e.g.,
Ref. [18]), we consider an ensemble of spin-j particles placed
in a one-dimensional arrangement. The atoms are then situated
along the x axis with y = z = 0. We assume that we have
particles that behave classically with respect to their spatial
state. That is, they cannot be in a superposition of being at two
different places. On the other hand, they have internal degrees
of freedom, their spin, which is quantum. This is a very good
description to many of the cold gas experiments.

Based on these considerations, we assume that the state is
factorizable into a spatial part and a spin part as

0= Q(X) ® Q(S)’ (1)

where the internal state is decomposed in its eigenbasis as

0™ =" palAal. )
s

For the spatial part defined in the continuous Hilbert space,
we assume that it can be modeled by an incoherent mixture of

pointlike particles as

o = / PO e, 3)

{x]x)

where x = (x1,x3, ...,Xxy) is a vector which collects all the
particle positions, P(x) is the spatial probability distribution
function of the atoms, and dx denotes dx;dx; ...dxy. Note
that the spatial part (3) is diagonal in the position eigen-
basis, which simplifies considerably our calculations (see
Appendix B for more details). During the evolution of the state,
correlations might arise between the internal and the spatial
parts and the product form (1) might not be valid to describe
the evolution of the system.

First, we consider spin chains and two particle ensembles at
different places. The gradient measurement with two ensem-
bles is essentially based on the idea that the gradient is just the
difference between two measurements at different locations.
With these systems, it is possible to reach the Heisenberg
scaling.

We also examine in detail the case of a single atomic en-
semble. Since in such systems the atoms cannot be individually
addressed, we assume that the quantum state is permutationally
invariant (PI). We show that for states insensitive to the
homogeneous magnetic field, one can reduce the problem to a
one-parameter estimation scenario. Single-ensemble measure-
ments have certain advantages because the spatial resolution
can be higher and the experimental requirements are smaller
since only a single ensemble must be prepared.

For completeness, we mention the case of Bose-Einstein
condensates (BEC). The spatial state in this case is pure

0% = (WX W)Y, )

where |WV) is the spatial state of a single particle. Hence, the
spatial state is delocalized and it is not an incoherent mixture
of various eigenstates of x. While we do not consider such
systems in detail, our formalism could be used to model them.

We now outline the model we use to describe the interaction
of the particles with the magnetic field. The field at the atoms
is given as

B(x,0,0) = By + xB, + O(x?), (5)

where we neglect the terms of order two or higher, and where
O(&) is the usual Landau notation to describe the asymptotic
behavior of a quantity, in this case for small £. We consider
the magnetic field pointing in the z direction, hence, By =
By(0,0,1) and B, = B(0,0,1). For this configuration, due to
the Maxwell equations, with no currents or changing electric
fields, we have

divB =0, curl B = (0,0,0). (6)

This implies lex’y’z 0B;/9l =0anddB;/d0m — 0B, /3l =0
for ! # m. Thus, the spatial derivatives of the field components
are not independent of each other. In this paper, however, we
consider an elongated trap. In the case of such a quasi-one-
dimensional atomic ensemble, only the derivative along the
axis of the trap has an influence on the quantum dynamics of
the atoms or a double-well experiment.

We determine the precision bounds for the estimation of
the magnetic field gradient B;. We calculate how the precision
scales with the number of particles. We compare systems
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with an increasing particle number, but of the same size.
As discussed later, if we follow a different route, we can
obtain results that can incorrectly be interpreted as reaching
the Heisenberg limit, or even a super-Heisenberg scaling.
The angular momentum of an individual atom is coupled to
the magnetic field, yielding the following interaction term:

K — ]/B;n) ® jz(n)’ @)

where the operator B!’ = By, + B £ acts on the spatial part
of the Hilbert space and £ is the position operator of a single
particle. Moreover, jz(”) is a single-particle spin operator, acting
on the spin part of the Hilbert space. Finally, y = gup where
g is the gyromagnetic factor and pp corresponds to the Born
magneton, and we set 7 = 1 for simplicity. We use the “"”
notation to distinguish the operator x from the coordinate x.
Later, we will omit it for simplicity. The Hamiltonian of the
entire system is just the sum of all two-particle interactions of
the type Eq. (7) and can be written as

N
H=y) B"®j". ®)
n=1
Equation (8) generates the time evolution of the atomic
ensemble.

One could include also the kinetic energy in the Hamilto-
nian. Such an extra term causes that the gradient field pushes
atoms in state |0) into one direction, while atoms in state |1)
into the other direction. In our work, we do not take into account
this effect. Moreover, we do not include in the model the initial
thermal dynamics of the particles. Both of these effects are
negligible in a usual setup, as shown in Appendix A.

We calculate lower bounds on the precision of estimating B
based on a measurement on the state after it passed through the
unitary dynamics U = exp(—i Ht), where ¢ is the time spent
by the system under the influence of the magnetic field. The
unitary operator can be rewritten as

U = e_i(bOHO‘H’lHI)’ 9)

where the b; = y B;t. The generator describing the effect of
the homogeneous field is given as

N
Hy=Y_j" =1, (10)

n=1

while the generator describing the effect of the gradient is
N
Hi=) x"j. an
n=1

We omit ® and the superscripts (x) and (s) for simplicity, and
use them only if it is necessary to avoid confusions.

The operators Hy and H; commute with each other. How-
ever, it is not necessarily true that the operators we have to
measure to estimate by or by can be simultaneously measured.
The reason for that is that both operators to be measured act on
the same atomic ensemble. If the measurement operators do not
commute with each other, then the precision bound obtained
from the theory of QFI cannot necessarily be reached. For the
particular cases studied in this paper, we prove that a simulta-
neous measurement to estimate both the homogeneous and the

gradient parameter can be carried out (see Appendix E). On
the other hand, in schemes in which the gradient is calculated
based on measurements on two separate atomic ensembles or
different atoms in a chain, the measuring operators can always
commute with each other [14,15,46].

The paper is organized as follows. In Sec. II, general
precision bounds for the estimation of the gradient of the
magnetic field are presented. In Sec. III, we compute precision
bounds for relevant spatial configurations appearing in cold
atom physics such as spin chains and two ensembles spatially
separated from each other. In Sec. IV, we consider a single
atomic ensemble in a PI state and we calculate the precision
bounds for various quantum states, such as the singlet spin
state or the totally polarized state. In Sec. V, we consider
Bose-Einstein condensates.

II. PRECISION BOUNDS
FOR ESTIMATING THE GRADIENT

In this section, we show how the QFI helps us to obtain
the bound on the precision of the gradient estimation. First,
we discuss gradient magnetometry using quantum states that
are insensitive to homogeneous fields. In this case, we need
to estimate only the gradient and do not have to know the
homogeneous field. Hence, this case corresponds to a single-
parameter estimation problem.

Then, we discuss the case of quantum states sensitive
to homogeneous fields. Even in this case, we are interested
only in the gradient, and we do not aim at estimating the
homogeneous field. In spite of this, gradient estimation with
such states is a two-parameter estimation task. We introduce
the basics of multiparameter quantum metrology, and we adapt
that formalism to our problem. We also show that the precision
bound obtained does not change under spatial translation,
which will be used later to simplify our calculations. In
Appendix E, we show that even the precision bounds for states
sensitive to the homogeneous field, appearing in this paper, are
saturable.

Next, we summarize important properties of the QFI used
throughout this paper (for reviews, see Refs. [2,4,53,57-62]).
Let us consider a quantum state with the eigendecomposition

0= pilk)kl. (12)

k

For two arbitrary operators A and B, and a state ¢ [Eq. (12)],
the QFI is defined as [4,49-51,53]

(P — pi)?

Fole.ABl:=2) = — ==

k. k'

A Bk, (13)

where Ay = (k|A|k') and By = (k|B|k’). If the two oper-
ators are the same then, from Eq. (13), the usual form of the
QFI is obtained:

(P — pe)?
Folo.Al = Folo. A Al =23 P PET 4,

(14)
e Petpr

We list some useful properties of the QFI:
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(i) Based on Eq. (13), Fglo,A,B] is linear in the second
and third arguments

fQ[Q,ZAi,ZBj} ZZ-FQ[Q’Ath]- (15)

i J ij

This will make it possible to calculate the QFI for collective

quantities based on the QFI for single-particle observables.
(i) The QFI remains invariant if we exchange the second

and the third arguments

Folo,A,B] = Fqlo, B, Al (16)

Equation (16) will help to simplify our calculations.
(iii) The following alternative form,

Folo.A.BI = 4(AB) -8 PP p By ()

i Pt pr

is also useful since the correlation appears explicitly.
(iv) For pure states, Eq. (13) simplifies to

Foll¥),A,Bl = 4((AB)y — (A)y (B)y). (18)

Using Eq. (18) for A = B, we obtain that for pure states the
QFI equals four times the variance, i.e., Fo[|¥),A] = 4(AA)>.

(v) The QFIis convex on the space of the density matrices,
ie.,

Folpor + (1 — p)o2, Al < pFoler, Al + (1 — p)Fglez, Al
(19)

Hence, when maximizing the QFI, we need to carry out an
optimization over pure states only.

In the following, we show the general form of the expres-
sions giving the precision bounds for states insensitive to the
homogeneous field, as well as for states sensitive to it. We also
show that both bounds are invariant under the spatial translation
of the system which makes the computing for particular cases
much easier.

A. Precision bound for states insensitive to homogeneous fields:
Single-parameter dependence

We will now consider quantum states that are insensitive to
the homogeneous field. For such states,

[o,Hy] =0 (20)

holds. Hence, the unitary time evolution given in Eq. (9) is
simplified to

U =e i, 1)

and the evolved state is a function of a single unknown
parameter b;.

When estimating a single parameter, the Cramér-Rao bound
gives the best achievable precision as [4]

(Ab)) % max = Folo, Hil. (22)

It is always possible to find a measurement that saturates the
precision bound (22), which is indicated using the notation

“| _»
max — -

Observation 1. For states insensitive to the homogeneous
fields, the maximal precision of the estimation of the gradient
parameter b; is given as

N
(Abl)_2|max = Z/xnme(x)dx fQ[Q(S)’jZ(n)7jZ(m)], (23)

n,m

where the integral represents the correlation between the
particle positions x, and x,. Moreover, Eq. (23) is transla-
tionally invariant, i.e., it remains the same after an arbitrary
displacement d of the form of

U; = exp(—idPy), 24)

where d is the distance displaced and P, is the sum of all
single-body momentum operators p in the x direction.

Proof. We have to evaluate the right-hand side of Eq. (22).
The state is a tensor product of the spatial and internal parts, and
the spatial part is an incoherent mixture of position eigenstates,
as in Egs. (1) and (3). Hence, the eigenstates are |x,A), where
|x) and |\) are defined in the spatial and internal Hilbert
spaces, respectively. Then, the matrix elements of H;, which
is diagonal in the spatial subspace, are obtained as

N
(HD)x oy = 8 = )AL Y x0j ). (25)

n=1

Calculating Eq. (14) for A = H}, Eq. (22) leads to Eq. (23) (see
Appendix C for details).

In the last part of the proof, we show that the precision
(23) remains the same for any displacement of the system.
We use the Heisenberg picture in which the operators must be
transformed instead of the states. After the displacement, the
operator H; describing the effect of the gradient is obtained as

H,\(d) = H; — dH,. (26)

Hence, the unitary evolution operator of the displaced system
is obtained as

Ud) = e ilboHotbi Hi(d)] _ ,~il(bo—bid)Ho+bi Hi] 27)

Using the commutation relation (20), we can see that Eq. (27)
is equal to the time evolution given in Eq. (21). ]

B. Precision bound for states sensitive to homogeneous fields:
Two-parameter dependence

We now show how to obtain the precision bounds for states
sensitive to the homogeneous field. The homogeneous field
rotates all the spins in the same way, while the field gradient
rotates the spins differently depending on the position of the
particles. Hence, in order to estimate b;, we have to consider
the effect of a second unknown parameter by. Note, however,
that we are not interested to estimate b, precisely, we just need
it to estimate b;.

In this case, the metrological performance of the quantum
state is given by the 2 x 2 Cramér-Rao matrix inequality [4]

C>F,. (28)

where the covariance matrix is defined as C;; = (b;b;) —
(bi)(bj). The matrix elements of the quantum Fisher
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information matrix Fq are
Fij = Folo, Hi, H;]. (29)

Unlike in the case of single-parameter estimation, Eq. (28) can
be saturated only if the measurements for estimating the two
parameters are compatible with each other [4,51,63]. Hence,
we use “<” instead of ““| 4« for the bounds for quantum states
sensitive to the homogeneous fields.

Using the well-known formula for the inverse of 2 x 2
matrices, Eq. (28) yields

ForFio

(Ab) 2 < Fii — Foy

(30)

for the precision of b;.

Observation 2. For states sensitive to the homogeneous
field, the expression to compute the precision bound for the
gradient parameter takes the following form:

N
(Ab)? <Y / X Xm P(x)dx Folo®, j, ]
n,m

(2 [ x Px)dx Fo[o®, i, J:])*
Folo®,J:] '

€29

Moreover, the bound (31), similarly to Eq. (23), is invariant
under spatial translations of the system.

Proof. To obtain the bound (31), we need to consider the
matrix elements of QFI one by one. First of all, we compute
F11 which has the same form as Eq. (23):

N
Fo= Y [ pwsfo. 0. 6

n,m

Next, we have that Hy, similarly to Eq. (25), is diagonal in the
spatial |x) basis, and its matrix elements in the |x,A) basis of
the state are written as

N
(Ho)x iy = 8(x — y)(A1 Y jIv). (33)

n=1
With this we obtain Fq[o, Hy, Hy] as
Foo = Folo®,J;1. (34)

Note that Eq. (34) is not a function of the whole state but only
of the internal Q(S) state. Finally, we compute Fy; and Fip.
Since Fy; = Fio, we have to compute only one of them. Using
Eqgs. (33) and (25), Fqlo, Ho, H] is obtained as

N
For = Z/xnP(x)dx.FQ[Q(S),jZ("),JZ]. (35)
n=1

With these results, Eq. (31) follows (see Appendix C).

Let us now determine the bound on the precision for
estimating the gradient on the translated system. We have to
compute first the QFI matrix elements. We use the linearity of
the last two arguments of Fq[o, A, B] givenin Eq. (15), the fact
that Hy remains unchanged in the Heisenberg picture. We also
use the formula (26) for the shifted H; operator. The diagonal
element of the QFI matrix corresponding to the measurement

of the homogeneous field is
Foo(d) = Fglo,Ho(d)] = Foo, (36)

hence, it does not change due to the translation. For the diagonal
element corresponding to the gradient measurement we obtain

Fu(d) = Fiy — 2dFor + d* Foo. (37)
Finally, for the off-diagonal element, we get
Foi(d) = For — dFoo. (38)

After determining all the elements of the QFI matrix, the bound
for a displaced system can be obtained as

[Foi(d)]?
Foo(d)
= Fi1 —2dFo + dzfoo
}—gl —2dFo1 Foo + dz}—go

(Ab)? < Fiu(d) —

(39

Foo
The bound in Eq. (30) can be obtained from the right-hand side
of Eq. (39) with straightforward algebra. |

III. SPIN CHAIN AND TWO SEPARATED ENSEMBLES
FOR MAGNETOMETRY

After presenting our tools in Sec. II, we start with simple
examples to show how our method works. We calculate
precision bounds for gradient metrology for spin chain and
for two-particle ensembles separated by a distance.

Before considering the setups mentioned above, we intro-
duce various quantities describing the distribution of the par-
ticles based on the probability distribution function appearing
in Eq. (3). The mean particle position is

N
= / %P(x)dx. (40)

The standard deviation of the particle positions, describing the
size of the system, is computed as

N 2
ot = / L=t poyax — 1. (41)
N
Finally, the covariance averaged over all particle pairs is
> i Xnm
= [ =2 p(x)dx — . 42
1= | S Pwdx —u (42)

The covariance is a large positive value if the particles tend to
be close to each other, while it is negative if they tend to avoid
each other.

After presenting the fundamental quantities above, let us
study concrete metrological setups. The first spatial state we
consider is given by N particles placed equidistantly from each
other in a one-dimensional spin chain, as shown in Fig. 2.
Such a system has been studied also in the context of a single-
parameter estimation in the presence of collective phase noise
[44]. The probability density function describing such a system
is

N
P(x) = [ [ Gy — na), (43)

n=1
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a) Initial state

A

(b) Final state

z l—g

FIG. 2. A one-dimensional chain of six spin-j atoms (blue disks)
confined in a potential (gray area). (a) The ensemble is initially totally
polarized along the y direction. The magnetic field B, points outward
from the figure. The spin chain is along the x direction. (b) If the

magnetic field has a nonzero gradient, then it affects the spins of the
individual atoms differently depending on the position of the atoms.

where a is the distance between the particles in the chain. For
this system, the average position of the nth particle is

f 30 P(x¥)dx = na, (44)
whereas the two-point average (42) is
/xnme(x)dx = nma®. (45)
The standard deviation defined in Eq. (41) is obtained as
N? -1
O'Czh =da® T (46)

Next, we will obtain precision bounds for particles placed
in a spin chain.

Observation 3. Letus consider achain of N spin-j particles
placed along the x direction separated by a constant distance,
and a magnetic field pointing in the z direction. Then, for the
spin-state totally polarized in the y direction,

[Yp) = 1)V, (47
the precision bound is given by
(A1) 2 |max = 205N (48)

Here, o, denotes the standard deviation of the average position
of the particles for the chain (ch).

Proof. We use the precisions bound for states sensitive to
the homogeneous field given in Eq. (31). We obtain

N
(Ab) Pl = Y nma” Fo[|)HEN,j™, j™]
(X anFo[I9~ i, 2])°
fQ[|j>§N’JZ?JZ]
SN2 —1
12

Note that the bound can be saturated (see Appendix E). Here,
for the last equality we used the definitions of the average
quantites given in Egs. (44) and (45) and we also used Eq. (18)
giving the QFI for pure states. We can see that the standard

=2a

Nj. (49)

deviation given in Eq. (46) coincides with a factor we have in
Eq. (49), with which we conclude the proof. |

Note that the bound (49) seems to scale with the third power
of the particle number N, and hence seems to overcome the
ultimate Heisenberg limit. The reason is that the length of the
chain increases as we introduce more particles into the system.
We should compare the metrological usefulness of systems
with different particle numbers, but of the same size. In our
case, we use throughout the paper the standard deviation of
the averaged particle positions as a measure of the spatial size
of the system, and normalize the results with it. One can miss
this important point since when only the homogeneous field is
measured such a normalization is not needed. !

After the spin chain, we consider estimating the gradient
with two ensembles of spin-j atoms spatially separated from
each other. Such systems have been realized in cold gases
(e.g., Ref. [64]), and can be used for differential interferometry
[15,39,44]. We will determine the internal state with the
maximal QFL.

Let us assume that half of the particles are at one position
and the rest at another one, both places at a distance a from the
origin. The probability density function of the spatial part is

N/2 N

Px)=[]sa+a) [] oC—a. (50)
n=1

n=N/2+1

Such a distribution of particles could be realized in a double-
well trap, where the width of the wells is negligible compared
to the distance between the wells. To distinguish the two wells
we use the labels “L” and “R” for the left-hand side and right-
hand side wells, respectively. Based on these, we obtain the
single-point averages as

—a ifnelL,
/x,,P(x)dx A ? e (5D
+a ifn eR.

The two-point correlation functions are

2 -
/xnme(x)dx = {+a if (n,m) € (L,L) or (R,R),

) (52)
—a? if (n,m) € (LR) or (L,R).

For the average particle position we obtain p = 0, while the
standard deviation for the spatial state in the double well (dw)
is

o2, = a’. (53)

Next, we calculate the achievable precision of the gradient
estimation.

Observation 4. For the case of two ensemble of N spin-j
particles, the state that maximizes the QFI is

TR D o R D e e BT D VR D

V)= 7

(54)

'This comment is relevant for the setup of Ref. [46], where the
precision of the gradient estimation seems to reach the Heisenberg
scaling. In reality, the shot-noise scaling has not been overcome. The
question of normalization is also important for the setup in Ref. [47].

053603-6



PRECISION BOUNDS FOR GRADIENT MAGNETOMETRY ...

PHYSICAL REVIEW A 97, 053603 (2018)

The best achievable precision is given as
(A1) |mnax = 403, N? 2. (55)

Equation (55) agrees with the results obtained in Ref. [39].

Proof. The state given in Eq. (54) is insensitive to the
homogeneous field, hence, we have to use the formula (23)
to bound the precision. We obtain

(Abl)72|max = Z az‘FQ['w)’jz(n)?jz(m)]

(n.m)=
(LL),(RR)

+ Y —aFo[l).j™. i) (56)

For the state (54), the equation above, (56), yields
(Ab) Plmn = Y @j+ Y —a*(=j)

(n,m)= (n,m)=
(L.L),(RR) (L.R).(R.L)

= 44*N?j?, (57)

where we have used the definition of the QFI for pure states
given in Eq. (18). A factor in Eq. (57) can be identified with
the standard deviation (46) from which the proof follows. H

It is interesting to simplify the QFI for product states states
)P @ |v)®, where |)® and |)® are pure states of N /2
particles each. This approach is also discussed in Ref. [39].
Such states can reach the Heisenberg limit, while they are easier
to realize experimentally than states in which the particles in
the wells are entangled with each other.

Before obtaining the precision for the case above, we
present a method to simplify our calculations. The system is at
the origin of the coordinate system such that for mean particle
position given in Eq. (40),

= / 2n 0 povd = 0 (58)
N

holds. Thus, the second term in the expression for the bound
for states sensitive to the homogeneous field (31) is zero
since all Fo[o®™, j™,J.] are equal considering product states
of two equal permutationally invariant states |y) @ [)®.
Hence, the bounds for states insensitive and sensitive to the
homogeneous field, Eqs. (23) and (31), respectively, are the
same in this case.

We now compute Fq[p,H,] for the case when the state is
sensitive to the homogeneous field, hence, we use the bound
on the precision given in Eq. (31). Using the the probability
density distribution function given in Eq. (50), and following
steps leading to Eq. (57), we obtain

Foll)Ply)® H ] = 2a° Fo[|y)P, L], (59)

where we used that Fo[|y)®™, 78] = Fo[|y)®, J®]. Note
that our results concerning using product states for magnetom-
etry can be interpreted as follows. In this case, essentially the
homogeneous field is estimated in each of the two wells, and
then the gradient is computed from the measurement results.
The bounds for these type of states are also saturable (see
Appendix E).

We will now present precision bounds for various well-
known quantum states in the two wells. We consider the

TABLE 1. Precision for differential magnetometry for various
product states of the type |¥)® ® |¥)® in the two ensembles.
Note that there are Np = Ngp = N/2 particles in each ensemble.
In the second column, we show the QFI for the estimation of the
homogeneous field appearing in the literature, for states with Np
particles. The third column shows the result for the bounds obtained
with Eq. (59).

HZ’) ]:Q[h//)a‘]z] (Abl)72|max

| jyem 2NLj 2a’Nj
[Wsep) 4Ny j? 4a’Nj?
|GHZ) N} a*N?/2

D )x NL(NL +2)/2 a’N(N +4)/4

Greenberger-Horne-Zeilinger (GHZ) state [65—70]

[00...00) + |11...11)
NG ,

where |0) and |1) are the eigenstates of jzf") with eigenvalues

—% and +%, respectively. We also consider unpolarized Dicke
states [71-78]

N\ 12
IDy) = <N/2> Xk:Pk(m);@N/z R |1)§@N/2)’ (61)

where / = x,y,z and the summation is over all P; permuta-
tions. Such states are the symmetric superposition of product
states with an equal number of |0);’s and |1)’s. Based on these,
in Table I we summarized the precision bounds for states of
the type |¥) ® |¢)® for the double-well case.

|GHZ) =

(60)

IV. MAGNETOMETRY WITH A SINGLE
ATOMIC ENSEMBLE

In this section, we discuss magnetometry with a single
atomic ensemble. We consider a one-dimensional ensemble
of spin-j atoms placed in a trap which is elongated in the x
direction. The setup is depicted in Fig. 3. In the second part
of the section, we calculate precision bounds for the gradient
estimation with some important multiparticle quantum states,
for instance, Dicke states, singlet states, and GHZ states.

A. Precision bound for an atomic ensemble

In an atomic ensemble of many atoms, typically the atoms
cannot be individually addressed. We will take this into account
by considering states for which both the internal state o and
the probability distribution function P(x), appearing in Eq. (3),

A TS S R W
o CESRIPIIR TN
e b bbb

FIG. 3. An ensemble of spin-j atoms in a cigar-shaped trap
elongated in the x direction. The magnetic field, represented by green
arrows, points in the z direction and it is linear in x. Its strength is
proportional to the density of the field lines.
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FIG. 4. Possible particle distributions for a chain of atoms ona 1D
lattice, assuming that Eq. (62) holds for the probability distribution
function. We consider three cases, determined by the value of the
covariance 7. (Top) The atoms bunch together due to high correlation
in the positions. As explained in the text, this leads to the possibility
of estimating well the magnetic field at each point, and hence possibly
obtaining a very good estimate of the gradient parameter. (Middle)
Due to the small covariance the particles fill up the sites more
uniformly. (Bottom) The negative correlation makes the particles be
far from each other, filling the trap uniformly.

are PI. The permutational invariance of P(x) implies that
1
P() =+ ; Pl P(x)] (62)

holds, where the summation is over all possible permutations
‘P of the variables x,. Hence, we do not need to sum over all
possible n’s in Egs. (40) and (41), and neither to sum over all n’s
and m’s in Eq. (42). All the terms in each sum are equal to each
other due to the permutationally invariance of the probability
distribution function (62).

An interesting property of the covariance (42) is that it can
only take values bounded by the variance in the following way:

_o? ,
7 Sn<o’, (63)

where both the lower and the upper bounds are proportional
to the variance o2. See Fig. 4 for examples on how different
correlations are obtained in an atomic 1D lattice.
Next, we present precision bounds for PI states.
Observation 5. The maximal precision achievable by a
single atomic ensemble insensitive to homogeneous fields is

N
(Ab) P lnax = (6> =) ) Fole®,i™].  (64)

n=1

The precision given in Eq. (64) can be reached by an op-
timal measurement. Nevertheless, it is worth to note that
the precision cannot surpass the shot-noise scaling because
Falo®, ji] cannot be larger than j2. Moreover, n cannot be
smaller than —o2/(N — 1) due to Eq. (63), which makes its
contribution negligible for large N.

Proof. From the definition of the QFI for states insensitive
to the homogeneous field [Eq. (23)], we obtain the bound for

a single ensemble as

N
(A0 s = Y- [ 30t PG Folg. 7.1

n,m

N N
=Y Fole ]+ Y nFole.i i)

n=1 n#m

(65)

Then, we have to use the fact that for states insensitive to the
homogeneous fields Fqlo,J;] = 0 holds, which implies

N
Folo.J.1=Y_ Folo.j™.j™m] = 0. (66)

Based on this, for such states the sum of QFI terms involving
two operators can be expressed with the sum of QFI terms
involving a single operator as

N N
> Foleit "] == Foleq”]. (6D
n#m n=1

Substituting Eq. (67) into Eq. (65), Observation 5 follows. H

Observation 6. For states sensitive to homogeneous fields,
the precision of estimating the gradient is bounded from above
as

N
(Ab) P lmax = (07 = 1) Y Fo[0W.j™] + nFole®. )],

n=1

(68)

which may surpass the shot-noise scaling whenever 7 is a
positive constant.

Proof. We start from Eq. (31) and take into account that in
this case the bound is saturable (see Appendix E). As explained
in Sec. II B, if we move the system, the precision bounds do
not change. We then move our system to the origin of the
coordinate system yielding u© = 0, and making the second term
appearing in Eq. (31) zero. Thus, we only compute the first term
in Eq. (31) and obtain

N N
(Ab) P lmax = Y 0 Folo.i™] + D nFole. i, i™]-

n=1 n#m

(69)

Then, we add 77 Y-, Fole, ] to the last term and subtract
it from the first term to make the expression more similar to
Eq. (64). ]

Note that the second term on the right-hand side of Eq. (68)
is new in the sense that it did not appear in the bound for states
insensitive to homogeneous fields given in Eq. (64). Even if the
first term cannot overcome the shot-noise limit, in the second
term the covariance is multiplied by the QFI for estimating
the homogeneous field and therefore this concrete term, for
extremely correlated particle positions, allows to achieve the
Heisenberg scaling.
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B. Precision limit for various spin states

In this section, we present the precision limits for various
classes of important quantum states such as the totally polar-
ized state, the state having the best precision among separable
states, the singlet state, the Dicke state (61), or the GHZ state
(60). We calculate the precision bounds presented before, (64)
and (68), for these systems.

1. Singlet states

A pure singlet state is a simultaneous eigenstate of the
collective J, and J? operators, with an eigenvalue zero for both
operators. We will now consider PI singlet states. Surprisingly,
the precision bound is the same for any such state. PI singlet
states are very relevant for experiments since they have been
experimentally created in cold gases [79,80] while they also
appear in condensed matter physics [81].

Letus now see the most important properties of singlet states
of an N-particle system. There are several singlets pairwise
orthogonal to each other. The number of such singlets, Dy,
depends on the particle spin j and the number of particles N.
It is the most natural to write the singlet state in the angular
momentum basis. The basis states are |J,M,,D), which are
the eigenstates of J? + J2 + JZ with an eigenvalue J, and of
J, with an eigenvalue M. The label D is used to distinguish
different eigenstates corresponding to the same eigenvalue of
J and J,. Then, a singlet state can be written as

Dy
Qi‘?ﬂglet = Z rpl0,0,D)0,0, D], (70)
D=1

where ), pp=L.
Let us see some relevant single-particle expectation values
for the singlet. Due to the rotational invariance of the singlet

© e obtain that

e singlet®
.M\ 2\ __ .\ 2\ __ .(n))2
(7)) = (")) ={0)) (71)
holds. We also know that for the sum of the second moments
of the single-particle angular momentum components

LN 2 N2 ) .
() + G+ G )=iG+D (72)
holds. Hence, the expectation value of the second moment of

the single-particle angular momentum component is obtained
as

()= 252
: 3

After discussing the main properties of the singlet states,
we can now obtain a precision bound for gradient metrology
with such states.

Observation 7. For PI spin states living in the singlet
subspace, i.e., states composed of vectors that have zero
eigenvalues for J, and J? and all their possible statistical
mixtures, the precision of the magnetic gradient parameter is
bounded from above as

(73)

4jG + 1D
—5

Proof. First compute the QFI for the one-particle operator
im, Folo®, j]. For that we need that when j acts on a

(Ab) el max = (@7 — )N (74)

singlet state, produces a state outside of the singlet subspace.
Hence,

(0,0,D][0,0,D') =0 (75)

for any pair of pure singlet states. Then, we use the formula (17)
to compute the QFI. The second term of Eq. (17) is obtained
as

PpPp
b Pt P>

8 1(0,0,D1j10,0,D)|> =0,  (76)

due to Eq. (75). It follows that the single-particle QFI for any
singlet equals four times the second moment of the angular
momentum component

fQ [Qg?r)lglet’jz(n)] =4t [Qgr)lglet(jz(n))z]' (77)

Note that Eq. (77) is true even though Qi?iglet is a mixed state.

Inserting the expectation value of the second moment of the
angular momentum component given in Eq. (73) into Eq. (77),
we obtain ]-'Q[Qgis;glct, j] for any n. Then, we have all the
ingredients to evaluate the maximal precision given in Eq. (64),
and with that we prove the Observation. |

As mentioned earlier, singlet states are insensitive to homo-
geneous magnetic fields, hence determining the gradient leads
to a single-parameter estimation problem. This implies that
there is an optimal operator that saturates the precision bound
given by Eq. (74). However, it is usually very hard to find this
optimal measurement, although a formal procedure for this
exists [4]. In Ref. [45], a particular setup for determining the
magnetic gradient with PI singlet states was suggested by the
measurement of the J2 collective operator. For this scenario
the precision is given by

}ab1<1x2>|2 _
(a22)°

In Appendix D, we show that this measurement provides an
optimal precision for gradient metrology for all PI singlets.

(Ab) 2 = (78)

2. Totally polarized state

The totally polarized state can easily be prepared experi-
mentally. It has already been used for gradient magnetometry
with a single atomic ensemble [18,19]. For the gradient
measurement as for the measurement of the homogeneous
field, the polarization must be perpendicular to the field we
want to measure.

We chose as before the totally polarized state along y axis,
given in Eq. (47). The relevant variances for the state (47) are

(AL, = Nj/2,
S\ 2 .
(A7), = /2

for all n. Based on Eq. (18), for pure states the QFI is just
four times the variance. Hence, from Eq. (79b), we obtain
Folo.j™1=2j and Fglo.J.] = 2Nj. Then, the bound on
the sensitivity can be obtained from the formula for PI states
sensitive to homogeneous fields (68) as

(79a)
(79b)

(Ab)y max = 26°NJj. (80)
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We can see clearly that the precision scales as O(N) for
large N.

Let us now see which measurement could be used to
estimate the field gradient with a totally polarized state. The
homogeneous field rotates all spins by the same angle, while
the gradient rotates the spin at different positions by different
angles. Due to that, the homogeneous field rotates the collective
spin, but does not change its absolute value. On the other hand,
the field gradient decreases the absolute value of the spin since
it has been prepared to be maximal, which has been used in
Ref. [48] for gradient magnetometry (see Fig. 2). Hence, we
can measure the spin length to estimate the field gradient.

3. Best separable state

We now turn our attention to the precision bound for all
separable spin states. It is useful to obtain this value so we have
a direct comparison on what the best classically achievable
precision is. It turns out that for j > 1, itis possible to achieve
a precision higher than with the fully polarized state (47).

Let us consider general separable states, which are not
necessarily PI. We do not know if the optimal separable
state is sensitive or insensitive to the homogeneous field. The
corresponding precision bounds for the gradient estimation are
given in Egs. (23) and (31), respectively. Since the probability
density function (62) is PI, we have

/x,,P(x)dx =u (81)

for all n. As explained in Sec. II B, by moving the ensemble,
the precision bounds do not change. If we move the system to
the origin of the coordinate system achieving u = 0, we can
make our calculations simpler since the second term appearing
in Eq. (31) is zero. Thus, we only compute the first term in
Eq. (31). Hence, the two bounds (23) and (31) are the same in
this case and we arrive at

(Ab])sef, max Z/xnme(x)dfo[Q(i)’Jz(n) (m)] (82)

where we already assume that the bound can be saturated (see
Appendix E).

We now look for the separable state that maximizes the
right-hand side of Eq. (82), which has to be a pure product
state due to the convexity of the quantum Fisher informa-
tion. Hence, we look for the pure product state maximizing

Fole®, jiM, j™]. Based on Eq. (18), for product states we

find that
0 if n # m,
Falo® 7(n)’ fm) 83
ole®. i) = 4(Aj™M)? itn = m. ®9
For all n, a state that maximizes Eq. (83) is
=D +1+ 0\
[Ysep) = (— ) (84)
11” P ﬁ

for which the single-particle variances are maximal, i.e,
(AjM)* = j%. While we carried out an optimization over
general, non-necessarily PI separable states, the optimal state
is PI. Plugging the state (84) into the bound given in Eq. (82)

leads to the precision bound for separable states as

(Ab)2|  =40>Nj?, (85)

Sep Imax
where we have used the definition of the variance of the particle
positions (41) for a permutational invariant state.

Note that the bound for the best separable state given in
Eq. (85) is above the bound obtained for the singlet state (74),
whereas the bound for the totally polarized state in Eq. (80)
is below. Nevertheless, when the singlet state is used, the
homogeneous magnetic field has no effect on the state. In
contrast, the state (84) is sensitive to the homogeneous field.

4. Unpolarized Dicke states |Dy) and |Dy),

Next, we compute precision bounds for entangled states. In
this section, we consider unpolarized Dicke states, which play
an important role in quantum optics and quantum information
science. The Dicke state |Dy); [Eq. (61)], with a maximal
(J24J} 4 J2) and (J;) = 0 forany [ € x,y,z is particularly
interesting due to its entanglement properties and its metrolog-
ical usefulness [71,72]. This state has been created in photonic
experiments [73—-75] and in cold atoms [76,77], while a Dicke
state with (J;) > O has been created with cold trapped ions
[78].

The Dicke state |[Dy) is an eigenstate of J, so it is
insensitive to a homogeneous magnetic field pointing into the
z direction. Thus, the precision bound can be saturated by
some measurement. The Dicke state |[Dy ), is sensitive to the
homogeneous field. Moreover, it is very useful for estimating
the homogeneous field as it has been shown in Ref. [76]. Here,
we consider large particle numbers, to make the results simpler.

Let us now see the most important properties of Dicke
states. For the expectation values of the single-particle angular
momentum components

(") =0 (86)

hold for [ = x,y,z for all n. The second moments of the
collective angular momentum components are given as

(1) =(17) = Z(%-}- 1>, (72)=0. (87)

Let us now see two-body correlations. Since the Dicke state is
PI, we have

G0 = 0) (G0 =167 @)

for all m # n and [ = x,y,z. Hence, the collective second
moments are connected to the single-particle and two-particle
operator expectation values as

(7) = M) + NV

for /=ux,y,z. Considering the symmetry under rota-
tions around z axis, we also have ((j{")*)=((j{")%),
(];1)])&2)) (]y)]y(z)) Based on these and using Eq. (72) for
j= 2, we arrive at [45]

(™)) =1 (90)

1)< -(1) (2)) (89)

forl = x,y,z.
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After discussing the main properties of the Dicke states, we
can now obtain a precision bound for gradient metrology with
such states.

Observation 8. For large N, the precision bound for the
Dicke state |Dy) is

(Ab)R*| = (a* —n)N. 1)

max

For the Dicke state |Dy )., the precision is bounded as

_ N(N +2)
(A e = @ =N + 11—, (92)
which allows in principle a Heisenberg limited behavior due
to the second term on the right-hand side.

Proof. Let us prove first Eq. (91). Since |Dy) is a pure
state, the QFIs appearing in Eq. (64) are simply four times the
corresponding variances of jzf”). Based on the relations (86) and
(90) giving the first and second moments of j,(")
we obtain

, respectively,

Fo[IDa),i™] = 4(Aj™) = 1. 93)

From Eq. (93) and the bound for states insensitive to the
homogeneous field (64), the precision bound for the Dicke
state |Dy ) follows.

We prove now the bound for the |Dy), states given in
Eq. (92). The second moments ((jzf”))z) for |Dy), can be
obtained from the second moments computed above for |Dy)
by relabeling the coordinate axes. Since |Dy), is a pure state,
the QFI again equals four times the corresponding variance.
Hence, we obtain

Fo[Dw)x, i) =1,
FolDy)x,J:1 = N(N +2)/2, %94)

and using the bound for states sensitive to homogeneous
fields given in Eq. (68) we have all we need to prove
Observation 8. ]

5. GHZ state

The GHZ states are defined for qubits in Eq. (60). Such
states are very sensitive to the homogeneous field. GHZ
states are highly entangled and play an important role in
quantum information theory [65]. They have been created
experimentally in photonic systems [66—68] and trapped ions
[69,70].

Let us see first the relevant expectation values for GHZ
states. Direct calculation shows that

(ji")y=0, (J2)=0. (95)
Moreover, for the second moments
o2y ] N?
(y)=5 t2)="¢ 96)

hold.

Let us now calculate the precision bound. We recall that for
pure states the QFI is given as Eq. (18). Using the bound for
states sensitive to homogeneous fields given in Eq. (68), we
obtain

(Ab)ghz| = (0> = )N + N> 97)

max

TABLE II. Precision bounds for differential
magnetometry for various quantum states defined
in the main text.

States (A1) ™| max

Osinglet (02 - 77)N4](] + 1)/3
1)y 20°Nj

[Wsep) 452Nj?

[Dy) (c* =N

IDn)x (6> = NN + nN(N+2)/2
|GHZ) (62 =N + nN?

From (97) follows that we can reach the Heisenberg limit with
such states, but only in cases where 7 is positive, i.e., when the
particles are spatially correlated.

6. Summary of results

Finally, we summarize the precision bounds obtained for
various quantum states in Table II. In Fig. 5, we show the
mean values and variances of the collective angular momentum
components for these states. Note that for these PI states the
optimal estimators for the homogeneous field and the gradient
field are compatible (see Appendix E). It means that the two
parameters can be estimated at once even for the states sensitive
to the homogeneous fields.

V. GRADIENT MAGNETOMETRY WITH A
BOSE-EINSTEIN CONDENSATE

In this section we study the case when our external state is
a Bose-Einstein condensate instead of an incoherent mixture
of pointlike particles. We can write the spatial state of a BEC
[Eq. (9] as

ol = [0)0], (98)

where we define the state |0) as the pure product state
representing the BEC.

(a) ?<Jz> (b) ? (©) f
|
‘ |

/AJ\\

<Jz> h - <J7J

(d) ff () /r

<

FIG. 5. Angular momentum components and their variances
for various spin states for few particles are shown. (a) Singlet
state, (b) Dicke state, (c) state totally polarized in the y direction,
(d) Dicke state in the x direction, and (e) the GHZ state. (Red vector)
Angular momentum components ({J.),(J,),{J;)). (Green ellipse)
Variances of the angular momentum components. The radius of the
sphere is the maximal angular momentum r = Njj.
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Since all particles are in the same spatial state, several
important quantities describing the ensemble can easily be
computed. For such a quantum state, for the average particle
position defined in Eq. (40) we obtain

= (01x10) 99)
for all n. For the variance given in Eq. (41),

o = (0|(x"™)*|0) — u? (100)

holds for all n. Finally, there is no correlation between particle
positions, i.e., (x™x™) = (xM)(x") if n % m. Hence, the
covariance (42) is zero:

=0, (101)

Finally, as explained in Sec. IIB, the precision bounds do
not change if we translate the system. We move the atomic

ensemble to the origin of the coordinate system such that
u=0. (102)

This will make our calculations much simpler.
Based on Eq. (22), for states insensitive to the homogeneous

field we obtain
(A |max = Fii- (103)

Based on Eq. (30), for states sensitive to the homogeneous field
we obtain

(Ab)* < Fii. (104)
Here, we used that
Fio = Fio = 4u(A ) (105)

is zero due to Eq. (102). The bounds needed in Egs. (103) and
(104) are equal to each other and can be obtained as follows. We
will compute a bound on Fj; on pure states. Straightforward
algebra leads to

Fii = 4AH)? =4do’tr |:Z (jz(”))zg(s):|.

n

(106)

One can see that the optimal spin state for gradient estimation
is the state totally polarized in the z direction

|\p)0pl,BEC = |j>®Nv

which is separable. Hence, the precision is bounded for spin-j
particles as

(107)

(Ab)) 2| max = 402N (108)

This is quite surprising since under the dynamics coupling to
the z component of the spin and hence it rotates around the z
axis. One would naively expect that the optimal state is the state
totally polarized in the y direction (47) studied in Sec. IVB 2
for the case of cold atomic ensembles. Due to the convexity of
the quantum Fisher information, the bounds are also valid for
the case of a mixed spin state.

Based on Eq. (108), we see that the Heisenberg scaling
cannot be reached in this case. Interestingly, this is true for
any spatial wave function. For instance, if a single BEC is in a
double-well potential, it still cannot have a scaling better than
the shot-noise scaling in gradient estimation. In contrast, in

Sec. III we have seen that a Heisenberg scaling is possible in
a double well, if two independent BECs are in the two wells.

VI. CONCLUSIONS

In this work, we investigated the precision limits of mea-
suring the gradient of a magnetic field with atomic ensembles
arranged in different geometries and initialized in different
states. We were particularly interested as to how the best
achievable precision scales with the number of particles. For
spin chains and the two-ensemble case, the precision of the
estimation of the gradient can reach the Heisenberg limit. For
a single ensemble with localized particles, the shot-noise limit
can be surpassed and even the Heisenberg limit can be achieved
if there is a strong correlation between the particle positions.
We also studied the case of a single Bose-Einstein condensate,
and found that the shot-noise limit can not be surpassed in this
case. However, even if the Heisenberg limit is not reached,
single-ensemble methods can have a huge practical advantage
compared to methods based on two or more atomic ensembles
since using a single ensemble makes the experiment simpler
and can also result in a better spatial resolution.
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APPENDIX A: EFFECTS OF THE MOVEMENT
OF THE ATOMS ON THE PRECISION

In this paper, we compute the precision bounds neglecting
the displacement of the particles generated by the gradient field
and the thermal dynamics of the particles. We now first analyze
the displacement induced by the gradient of the magnetic field,
and next we analyze which are the blurring effects caused by
the thermal dynamics.

First of all, let us assume that we have for the internal
subspace a completely mixed N-particle state o® placed in a
single point in space (see Fig. 1). From the famous experiment
of Gerlach and Stern [82], we know that the final state is
split in two. Moreover, the more distance between the two
final subensembles, the larger the gradient of the field. Hence,
surprisingly, taking into account the movement of the particles
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induced by the gradient reduces the error in the estimation, so
neglecting it, our bounds on the precision are still valid.

Nevertheless, the gradient induces a force which depends
on the spin state of the atoms. The force is constant, thus
the position will change quadratically in time. On the other
hand, the spin state changes linearly. Hence, for small enough
evolution times the displacement of the particles can be
neglected.

Moreover, in a typical experiment for sensing the gradient
of the magnetic field, sensitivities of the order of 1 pT/u m can
be reached, for a gradient of the magnetic field of 100 nT/u m
[48,80,83]. Hence, the classical acceleration due to the gradient
of the magnetic field is a &~ gpugBi/m, where m and g are
the mass and the gyromagnetic g factor of a 8’ Rb atom, respec-
tively, m &~ 87 u and gy ~ 0.5. This results in an acceleration
of the order of 3 x 1072 m/s?. After 0.5 ms of evolution [48],
the atom travels a distance of the order of 10 nm, which is
irrelevant compared with the size of these systems.

Next, let us consider the thermalization of the state which
introduces random displacements of the particles potentially
blurring the signal. A typical cigar-shape ensemble of 8’Rb
atoms used for gradiometry is a couple of millimeters long
and temperatures around 20 ©K [80,83]. We use the formula
that connects the mean-root-average velocity of the particles
and the temperature v = /3kg7 /m. Note that not all the
particles move towards the same direction but randomly in
any direction. Hence, we compute the average of the modulus
of the projection of the velocity parallel to the direction of the
cloud as W = v/2. We conclude that the atoms are displaced
by around 19 pm along the axis to the cloud, which again is
irrelevant for clouds of the size of millimeters [48,83].

Moreover, the displacement due to the gradient and thermal
dynamics can be clearly neglected in the cases of the spin
chain, the two ensembles, and the BEC, which are discussed
in Secs. III and V. Hence, the precision bounds computed in
this paper can be used as a tool to characterize different states.

Concerning the sensitivity of our magnetometer, we can say
the following. Assuming N = 8.5 x 10° atoms, trap length
o = 3 mm, and for the completely polarized state discussed in
Sec. IVB2, we obtain AB; ~ 3 pT/mm, which is similar to
the state of the art of other cold gas magnetometers [48]. The
precision can be considerably improved if we use entangled
states and we have correlation between the particle positions.
There are other setups that work at much lower length scales,
however, it is difficult to compare them to our system since
they would not work at mm length scales [48].

APPENDIX B: SPATIAL STATE OF THERMALLY
DISTRIBUTED POINTLIKE PARTICLES

We discuss the spatial state represented by Eq. (3). For that,
let us introduce the position operator as

X = /x|x)(x|dx, (B1)

where x is a vector of the particle positions, and |x) denotes
a spatial state in which the pointlike particles are at given
positions with the usual normalization

(x|y) =d8(x — y), (B2)

as expected. Based on Eq. (B1), we see that
X|x) = x|x). (B3)

Thus, |x) is an eigenstate of the operator X. In order to obtain
a quantum state that represents N pointlike particles placed in
the locations determined by the x vector, we have to normalize
it as

lx)

lox) = (B4)

(x[x)”

From Eq. (B4) and using that there is a probability distribution
function P(x), and defining P(x) as the probability to find
particles at a given position x, we arrive at Eq. (3).

APPENDIX C: CALCULATION OF THE QFI MATRIX
ELEMENTS FOR POINTLIKE PARTICLES

In this Appendix, we show how to compute the QFI
Folo, H;, H;]if the spatial part of the state is written as Eq. (3).
Let us write first the density matrix in its eigenbasis as

P
- / (x(|3 x)(x]dx ® Z LSS
/Z P(x)p,\

where P(x)p,/(x|x) are the eigenvalues. Based on Eq. (13),
the QFI matrix elements are written as

1 [P — Py)p,
Folo, Hi Hjl =2 / > [P(x)p, — P(y)p)]
v

x,A|dx, (C1)

(x|x) Px)pr+ P(y)py
X (Hi)x,k;y,v(Hj)y,v;x,kdx dy. (C2)

Note that (x|x) =
variables, x and y.

We now use the fact that the generators Hy and H; are
diagonal in the spatial basis [see Eqs. (33) and (25)]. Hence,
the matrix elements can be rewritten as

(Hi)x,A;y,v = 6(x - y)(Hi)A,v (CS)

for i=0,1, where H; is a shorthand for Zn ljz(n)

and Zn 1 X, j, respectively. Using (x|y)=8(x — y) and
Eq. (C3), we write Eq. (C2) as

)
JH Hj] = =2 P(x
X (Hi)k,v(/Hj)v,kdxv (C4

which using the definition (13) for Fo[o®, j™, j™] simplifies
to Egs. (23), (32), (34), and (35) depending on the case.

(y|y) and that the integral is over 2N

APPENDIX D: OPTIMAL MEASUREMENTS
FOR SINGLET STATES

In this Appendix, we prove that the precision limits for
gradient metrology can be saturated for singlet states if we
measure J2.

Observation 9. Let the initial spin state of an atomic en-
semble be an arbitrary PI singlet state er)nglet- Consider the

experimental setup when b; is obtained by measuring J?2.
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The precision of estimating b, which is given by the error
propagation formula, is optimal in the short-time limit, i.e.,

2
|96, (72 0)]
2
" 50) - (2]
where J¥(t) = U'(t)J*U(¢), the time-evolution unitary opera-

tor is of the form U (1) = e~"*'1 and H, is defined in Eq. (11).
Proof. Since for any pure singlet

= Folo™, Hil, (D1)

J¥10,0,D) =0 (D2)
holds [Eq. (70)], we have that (sz(O)) = (J;‘(O)) = 0. For the
numerator, we have

}l_r:(]] |8b1(JX2(f)>|2 = }1_{1(1) tr [Bbl [eib‘Hl er_ib‘H‘]Q(s)] }2

= | [iHJ2®] —w[iH oW 2]} = 0.
(D3)
We see that both the numerator and denominator of the
right-hand side of Eq. (D1) go to zero as t+ — 0, thus the

I’Hospital rule can be used applying the derivative dp,, in both
the denominator and the numerator, which yields

2(82 J2(0)) 0y, J2 (¢
lim(Ab;)~2 = lim (95, 72Ol 1) .
=0 10 (3, JHD)) — 2(J2(0))(0p, J2(1))
However, here the numerator and the denominator are again

zero att = 0, so we employ the I’Hospital rule once again and
obtain

(D4)

lim(Ab;)~2
t—0

~ 2(87 J2(0)) + 2(33 J2(0))(p, J2(1))
0 (52 740)) — 20y, J2(0)) — (J20)(0F J2(0)

~ 50 (02 T0))

2005, 720 _ 2. [ )Y
([
AHJ2H,)

(HyJPHy) (b3)
where we simplified the expectation values that are 0 and we
used the Heisenberg equation of motion twice for the second
derivatives and simplified the result, using Eq. (D2) and the
definition of the commutator, to rewrite the equation.

Next, we will compute the numerator and the denominator
in Eq. (D5). First of all using the angular momentum com-
mutation relation [ i, j"] = i8, . j{"), we compute [H, J,]
obtaining

N N
[Hy. J =Y x5 ] =i x™j® = iH,. (D6)

n=1 n=1

From the formula [A,B*] = Y>"*_ B*~'[A,B]B**, and us-
ing Eq. (D6), we arrive at

k
[H ) =i Je7 Hy e (D7)

a=1

and, similarly,

k
[Hiy JE]) = =iy 1o Hy gt (D8)

a=1

Now, using the commutator relations (D7) and (DS), and
Eq. (D2), we are able to substitute H,J* by [H;,J*] for
which only remains the first term in the summation, @ = 1,
and repeating the procedure for H; ,J¥~!, we obtain

(HiJEH) = i(H ,JS 7 HY) = (H T2 Hy). (D9)

Hence, we have that (H; J*H,) = (H?) for any even k. Finally,
from Eq. (D5), we arrive at lim,_, o(Ab, )2 = 4(H12) which for
the case of the singlets is equal to 4(AH;)? since (H;) = 0.
Hence, the proof follows. |

APPENDIX E: PROOF THAT THE PRECISION
BOUNDS CAN BE SATURATED

When working with a state that is sensitive to the homo-
geneous field, in order to optimally estimate the gradient,
one must measure simultaneously the gradient and the homo-
geneous field. In other words, the optimal measurement for
the homogeneous field and for the gradient parameter should
commute with each other. In this section, we will show that in
all cases we considered the two measurements commute with
each other. As a consequence, our bounds on the precision
obtained based on the formalism given in Sec. IIB can be
saturated.

In order to proceed, it is necessary to define the symmetric
logarithmic derivative (SLD) L(p,A) which has the property
that

L(o,A)p J2r pL(0,A) — i[0.A] El)

and for a density matrix with an eigendecomposition of the
form (2) is given as

LA =2y PP giamiwl. €
Ay A Pv

Then, quantum metrology tells us that the condition for being
able to construct compatible measurements to estimate by and
b] is [4]

[L(e.Ho).L(0.H1)] = 0. (E3)

The two SLDs can be obtained as

L(o,Hp) = 1% ® L0, J.), (E4a)

N
Lo.H) =) f dx x,|x)x| ® L(e®,j), (E4b)

n=1

after reordering the subspaces. For all cases when the internal
state is permutationally invariant, we arrive at the following
expressions for the SLDs:

L(0.Hy) = 1% ® L0, J.),
L(o.Hy) = p™ ® L(0", J,),

(E5a)
(ESb)
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where the SLD for the spin state is given as

L"), J,) =2i Z %(/\Ilzlv)lkxw (E6)

A,v

and the average position operator is defined as

a® = % Z f dx x, x|, E7)

One can see by inspection that the operators given in Egs. (ESa)
and (E5b) commute with each other. Hence, all our bounds for
PI states in Sec. IV can be saturated, and all PI states discussed
in other sections as well.

Finally, we have to discuss the states appearing in Table I.
They are product states of two PI states of N /2 particles each.

Thus, in terms of “L” and “R,” we have the following expression
for L(o, Hy):

Le.H) = o™ @ 1% @ L(1y)®, JM) @ (v )y h®
+15Y @ a® @ (I XvD™ @ L(1v)™, /"),
(E8)

where /1" is the average position operator for the “L” ensem-
ble, similarly for A®), and J" is the z projection of the total
angular momentum of the “L” subsystem, as JZ(R) is for “R.”
Clearly, the operator L(p, H;) commutes with L(o, Hp), which
is given in Eq. (E5a).

With this, we conclude this appendix which let us demon-
strate that all bounds in this paper can be saturated.

[1] M. Glaser and M. Kochsiek, Handbook of Metrology (Wiley,
Hoboken, NJ, 2010).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science 306,
1330 (2004).

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[4] M. G. A. Paris, Quantum estimation for quantum technology,
Int. J. Quantum Inf. 7, 125 (2009).

[5] C. Gross, Spin squeezing, entanglement and quantum metrology
with bose—einstein condensates, J. Phys. B: At., Mol. Opt. Phys.
45, 103001 (2012).

[6] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47,5138 (1993).

[7] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,
Squeezed atomic states and projection noise in spectroscopy,
Phys. Rev. A 50, 67 (1994).

[8] A.Sgrensen, L.-M. Duan, J. . Cirac, and P. Zoller, Many-particle
entanglement with bose—einstein condensates, Nature (London)
409, 63 (2001).

[9] J.Ma, X. Wang, C. P. Sun, and F. Nori, Quantum spin squeezing,
Phys. Rep. 509, 89 (2011).

[10] A. Kuzmich, N. P. Bigelow, and L. Mandel, Atomic quantum
non-demolition measurements and squeezing, Europhys. Lett.
42,481 (1998).

[11] A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N.
Kjaergaard, and E. S. Polzik, Entanglement-assisted atomic
clock beyond the projection noise limit, New J. Phys. 12, 065032
(2010).

[12] J. Borregaard and A. S. Serensen, Near-Heisenberg-Limited
Atomic Clocks in the Presence of Decoherence, Phys. Rev. Lett.
111, 090801 (2013).

[13] E. M. Kessler, P. Kémar, M. Bishof, L. Jiang, A. S. Sgrensen, J.
Ye, and M. D. Lukin, Heisenberg-Limited Atom Clocks Based
on Entangled Qubits, Phys. Rev. Lett. 112, 190403 (2014).

[14] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M.
V. Balabas, and E. S. Polzik, Quantum Noise Limited and
Entanglement-Assisted Magnetometry, Phys. Rev. Lett. 104,
133601 (2010).

[15] K. Eckert, P. Hyllus, D. Bruf3, U. V. Poulsen, M. Lewenstein,
C. Jentsch, T. Miiller, E. M. Rasel, and W. Ertmer, Differen-

tial atom interferometry beyond the standard quantum limit,
Phys. Rev. A 73, 013814 (2006).

[16] S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P.
Kriiger, J. Schmiedmayer, and 1. Bar-Joseph, Sensing electric
and magnetic fields with Bose-Einstein condensates, Appl. Phys.
Lett. 88, 264103 (2006).

[17] F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevi¢, M.
Koschorreck, and M. W. Mitchell, Squeezed-Light Optical
Magnetometry, Phys. Rev. Lett. 105, 053601 (2010).

[18] M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell,
High resolution magnetic vector-field imaging with cold atomic
ensembles, Appl. Phys. Lett. 98, 074101 (2011).

[19] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E.
Sadler, and D. M. Stamper-Kurn, High-Resolution Magnetom-
etry with a Spinor Bose-Einstein Condensate, Phys. Rev. Lett.
98, 200801 (2007).

[20] M.-K. Zhou, Z.-K. Hu, X.-C. Duan, B.-L. Sun, J.-B. Zhao, and
J. Luo, Precisely mapping the magnetic field gradient in vacuum
with an atom interferometer, Phys. Rev. A 82, 061602 (2010).

[21] R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K.
Lam, Quantum metrology for gravitational wave astronomy,
Nat. Commun. 1, 121 (2010).

[22] The LIGO Scientific Collaboration et al., A gravitational wave
observatory operating beyond the quantum shot-noise limit,
Nat. Phys. 7, 962 (2011).

[23] R. Demkowicz-Dobrzanski, K. Banaszek, and R. Schnabel,
Fundamental quantum interferometry bound for the squeezed-
light-enhanced gravitational wave detector geo 600, Phys. Rev.
A 88, 041802 (2013).

[24] J. Kotodynski and R. Demkowicz-Dobrzanski, Phase estimation
without a priori knowledge in the presence of loss, Phys. Rev. A
82, 053804 (2010).

[25] P. J. D. Crowley, A. Datta, M. Barbieri, and I. A. Walmsley,
Tradeoff in simultaneous quantum-limited phase and loss esti-
mation in interferometry, Phys. Rev. A 89, 023845 (2014).

[26] A. Monras and F. Illuminati, Measurement of damping and
temperature: Precision bounds in Gaussian dissipative channels,
Phys. Rev. A 83, 012315 (2011).

[27] C. Vaneph, T. Tufarelli, and M. G. Genoni, Quantum estimation
of a two-phase spin rotation, Quantum Meas. Quantum Metrol.
1, 12 (2013).

053603-15


https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1103/PhysRevLett.111.090801
https://doi.org/10.1103/PhysRevLett.111.090801
https://doi.org/10.1103/PhysRevLett.111.090801
https://doi.org/10.1103/PhysRevLett.111.090801
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.104.133601
https://doi.org/10.1103/PhysRevLett.104.133601
https://doi.org/10.1103/PhysRevLett.104.133601
https://doi.org/10.1103/PhysRevLett.104.133601
https://doi.org/10.1103/PhysRevA.73.013814
https://doi.org/10.1103/PhysRevA.73.013814
https://doi.org/10.1103/PhysRevA.73.013814
https://doi.org/10.1103/PhysRevA.73.013814
https://doi.org/10.1063/1.2216932
https://doi.org/10.1063/1.2216932
https://doi.org/10.1063/1.2216932
https://doi.org/10.1063/1.2216932
https://doi.org/10.1103/PhysRevLett.105.053601
https://doi.org/10.1103/PhysRevLett.105.053601
https://doi.org/10.1103/PhysRevLett.105.053601
https://doi.org/10.1103/PhysRevLett.105.053601
https://doi.org/10.1063/1.3555459
https://doi.org/10.1063/1.3555459
https://doi.org/10.1063/1.3555459
https://doi.org/10.1063/1.3555459
https://doi.org/10.1103/PhysRevLett.98.200801
https://doi.org/10.1103/PhysRevLett.98.200801
https://doi.org/10.1103/PhysRevLett.98.200801
https://doi.org/10.1103/PhysRevLett.98.200801
https://doi.org/10.1103/PhysRevA.82.061602
https://doi.org/10.1103/PhysRevA.82.061602
https://doi.org/10.1103/PhysRevA.82.061602
https://doi.org/10.1103/PhysRevA.82.061602
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1103/PhysRevA.88.041802
https://doi.org/10.1103/PhysRevA.88.041802
https://doi.org/10.1103/PhysRevA.88.041802
https://doi.org/10.1103/PhysRevA.88.041802
https://doi.org/10.1103/PhysRevA.82.053804
https://doi.org/10.1103/PhysRevA.82.053804
https://doi.org/10.1103/PhysRevA.82.053804
https://doi.org/10.1103/PhysRevA.82.053804
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.2478/qmetro-2013-0003
https://doi.org/10.2478/qmetro-2013-0003
https://doi.org/10.2478/qmetro-2013-0003
https://doi.org/10.2478/qmetro-2013-0003

IAGOBA APELLANIZ et al.

PHYSICAL REVIEW A 97, 053603 (2018)

[28] S. I. Knysh and G. A. Durkin, Estimation of phase and
diffusion: combining quantum statistics and classical noise,
arXiv:1307.0470.

[29] K. Matsumoto, A new approach to the cramér-rao-type bound
of the pure-state model, J. Phys. A: Math. Gen. 35, 3111
(2002).

[30] T. Baumgratz and A. Datta, Quantum Enhanced Estimation
of a Multidimensional Field, Phys. Rev. Lett. 116, 030801
(2016).

[31] M. Szczykulska, T. Baumgratz, and A. Datta, Multi-parameter
quantum metrology, Adv. Phys. X 1, 621 (2016).

[32] U. Marzolino and D. Braun, Precision measurements of temper-
ature and chemical potential of quantum gases, Phys. Rev. A 88,
063609 (2013).

[33] U. Marzolino and D. Braun, Erratum: Precision measurements
of temperature and chemical potential of quantum gases [Phys.
Rev. A 88, 063609 (2013)] Phys. Rev. A 91, 039902(E) (2015).

[34] P. C. Humphreys, M. Barbieri, A. Datta, and I. A. Walmsley,
Quantum Enhanced Multiple Phase Estimation, Phys. Rev. Lett.
111, 070403 (2013).

[35] M. Skotiniotis, P. Sekatski, and W. Diir, Quantum metrology
for the ising hamiltonian with transverse magnetic field, New J.
Phys. 17, 073032 (2015).

[36] P. A.Knott, T.J. Proctor, A.J. Hayes, J. F. Ralph, P. Kok, and J. A.
Dunningham, Local versus global strategies in multiparameter
estimation, Phys. Rev. A 94, 062312 (2016).

[37] L. Pezze, M. A. Ciampini, N. Spagnolo, P. C. Humphreys, A.
Datta, I. A. Walmsley, M. Barbieri, F. Sciarrino, and A. Smerzi,
Optimal Measurements for Simultaneous Quantum Estimation
of Multiple Phases, Phys. Rev. Lett. 119, 130504 (2017).

[38] M. A. Ciampini, N. Spagnolo, C. Vitelli, L. Pezze, A. Smerzi,
and F. Sciarrino, Quantum-enhanced multiparameter estimation
in multiarm interferometers, Sci. Rep. 6, 28881 (2016).

[39] M. Landini, M. Fattori, L. Pezze, and A. Smerzi, Phase-noise
protection in quantum-enhanced differential interferometry,
New J. Phys. 16, 113074 (2014).

[40] J. K. Stockton, X. Wu, and M. A. Kasevich, Bayesian estimation
of differential interferometer phase, Phys. Rev. A 76, 033613
(2007).

[41] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, Long-Term
Stability of an Area-Reversible Atom-Interferometer Sagnac
Gyroscope, Phys. Rev. Lett. 97, 240801 (2006).

[42] M.J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M.
A. Kasevich, Measurement of the Earth’s Gravity Gradient with
an Atom Interferometer-Based Gravity Gradiometer, Phys. Rev.
Lett. 81, 971 (1998).

[43] J. B. Fixler, G. Foster, J. McGuirk, and M. Kasevich, Atom in-
terferometer measurement of the newtonian constant of gravity,
Science 315, 74 (2007).

[44] S. Altenburg, S. Wolk, G. Téth, and O. Giihne, Optimized
parameter estimation in the presence of collective phase noise,
Phys. Rev. A 94, 052306 (2016).

[45] 1. Urizar-Lanz, P. Hyllus, I. L. Egusquiza, M. W. Mitchell, and
G. Té6th, Macroscopic singlet states for gradient magnetometry,
Phys. Rev. A 88, 013626 (2013).

[46] Y.-L. Zhang, H. Wang, L. Jing, L.-Z. Mu, and H. Fan, Fit-
ting magnetic field gradient with Heisenberg-scaling accuracy,
Sci. Rep. 4, 7390 (2014).

[47] H. Ng and K. Kim, Quantum estimation of magnetic-field
gradient using w-state, Opt. Commun. 331, 353 (2014).

[48] N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano,
M. W. Mitchell, and R. J. Sewell, Real-time vector field tracking
with a cold-atom magnetometer, Appl. Phys. Lett. 102, 173504
(2013).

[49] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[50] A. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory (North-Holland, Amsterdam, 1982).

[51] C. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[52] D. Petz, Covariance and Fisher information in quantum mechan-
ics, J. Phys. A: Math. Gen. 35, 929 (2002).

[53] D. Petz, Quantum Information Theory and Quantum Statistics
(Springer, Berlin, 2008).

[54] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model, Phys. Rev. A
40, 4277 (1989).

[55] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[56] O. Giihne and G. Téth, Entanglement detection, Phys. Rep. 474,
1 (2009).

[57] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum
metrology, Nat. Photonics 5, 222 (2011).

[58] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski,
Chapter four-quantum limits in optical interferometry, Prog. Opt.
60, 345 (2015).

[59] L. Pezze and A. Smerzi, Quantum theory of phase estimation,
in Atom Interferometry (Proc. Int. School of Physics ’Enrico
Fermi’, Course 188, Varenna), edited by G. Tino and M.
Kasevich (IOS Press, Amsterdam, 2014), pp. 691-741.

[60] G. Téth and I. Apellaniz, Quantum metrology from a quantum
information science perspective, J. Phys. A: Math. Theor. 47,
424006 (2014).

[61] L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Non-classical states of atomic ensembles: fundamen-
tals and applications in quantum metrology, arXiv:1609.01609.

[62] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M.
W. Mitchell, and S. Pirandola, Quantum enhanced measurements
without entanglement, arXiv:1701.05152.

[63] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzanski, Compat-
ibility in multiparameter quantum metrology, Phys. Rev. A 94,
052108 (2016).

[64] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Experimental
long-lived entanglement of two macroscopic objects, Nature
(London) 413, 400 (2001).

[65] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond bell’s theorem, in Bell’s Theorem, Quantum Theory and
Conceptions of the Universe, edited by M. Kafatos (Springer,
Dordrecht, 1989), pp. 69-72.

[66] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter,
and A. Zeilinger, Experimental test of quantum nonlocal-
ity in three-photon Greenberger-Horne-Zeilinger entanglement,
Nature (London) 403, 515 (2000).

[67] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao,
C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, Obser-
vation of eight-photon entanglement, Nat. Photonics 6, 225
(2012).

[68] C.-Y. Lu, X.-Q. Zhou, O. Giihne, W.-B. Gao, J. Zhang, Z.-
S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, Experimental

053603-16


http://arxiv.org/abs/arXiv:1307.0470
https://doi.org/10.1088/0305-4470/35/13/307
https://doi.org/10.1088/0305-4470/35/13/307
https://doi.org/10.1088/0305-4470/35/13/307
https://doi.org/10.1088/0305-4470/35/13/307
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.91.039902
https://doi.org/10.1103/PhysRevA.91.039902
https://doi.org/10.1103/PhysRevA.91.039902
https://doi.org/10.1103/PhysRevA.91.039902
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1088/1367-2630/17/7/073032
https://doi.org/10.1088/1367-2630/17/7/073032
https://doi.org/10.1088/1367-2630/17/7/073032
https://doi.org/10.1088/1367-2630/17/7/073032
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1038/srep28881
https://doi.org/10.1038/srep28881
https://doi.org/10.1038/srep28881
https://doi.org/10.1038/srep28881
https://doi.org/10.1088/1367-2630/16/11/113074
https://doi.org/10.1088/1367-2630/16/11/113074
https://doi.org/10.1088/1367-2630/16/11/113074
https://doi.org/10.1088/1367-2630/16/11/113074
https://doi.org/10.1103/PhysRevA.76.033613
https://doi.org/10.1103/PhysRevA.76.033613
https://doi.org/10.1103/PhysRevA.76.033613
https://doi.org/10.1103/PhysRevA.76.033613
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1103/PhysRevLett.81.971
https://doi.org/10.1103/PhysRevLett.81.971
https://doi.org/10.1103/PhysRevLett.81.971
https://doi.org/10.1103/PhysRevLett.81.971
https://doi.org/10.1126/science.1135459
https://doi.org/10.1126/science.1135459
https://doi.org/10.1126/science.1135459
https://doi.org/10.1126/science.1135459
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevA.88.013626
https://doi.org/10.1103/PhysRevA.88.013626
https://doi.org/10.1103/PhysRevA.88.013626
https://doi.org/10.1103/PhysRevA.88.013626
https://doi.org/10.1038/srep07390
https://doi.org/10.1038/srep07390
https://doi.org/10.1038/srep07390
https://doi.org/10.1038/srep07390
https://doi.org/10.1016/j.optcom.2014.06.048
https://doi.org/10.1016/j.optcom.2014.06.048
https://doi.org/10.1016/j.optcom.2014.06.048
https://doi.org/10.1016/j.optcom.2014.06.048
https://doi.org/10.1063/1.4803684
https://doi.org/10.1063/1.4803684
https://doi.org/10.1063/1.4803684
https://doi.org/10.1063/1.4803684
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
http://arxiv.org/abs/arXiv:1609.01609
http://arxiv.org/abs/arXiv:1701.05152
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35000514
https://doi.org/10.1038/35000514
https://doi.org/10.1038/35000514
https://doi.org/10.1038/35000514
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354

PRECISION BOUNDS FOR GRADIENT MAGNETOMETRY ...

PHYSICAL REVIEW A 97, 053603 (2018)

entanglement of six photons in graph states, Nat. Phys. 3, 91
(2007).

[69] C. Sackett, D. Kielpinski, B. King, C. Langer, V. Meyer, C.
Myatt, M. Rowe, Q. Turchette, W. Itano, D. Wineland, and
C. Monroe, Experimental entanglement of four particles, Nature
(London) 404, 256 (2000).

[70] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W.
A. Coish, M. Harlander, W. Hinsel, M. Hennrich, and R. Blatt,
14-Qubit Entanglement: Creation and Coherence, Phys. Rev.
Lett. 106, 130506 (2011).

[71] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[72] G. Téth, Detection of multipartite entanglement in the vicinity
of symmetric Dicke states, J. Opt. Soc. Am. B 24, 275 (2007).

[73] N. Kiesel, C. Schmid, G. Té6th, E. Solano, and H. Weinfurter,
Experimental Observation of Four-Photon Entangled Dicke
State with High Fidelity, Phys. Rev. Lett. 98, 063604 (2007).

[74] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. T6th,
and H. Weinfurter, Experimental Entanglement of a Six-Photon
Symmetric Dicke State, Phys. Rev. Lett. 103, 020504 (2009).

[75] A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, and P.
Mataloni, Experimental Quantum Networking Protocols via
Four-Qubit Hyperentangled Dicke States, Phys. Rev. Lett. 109,
173604 (2012).

[76] B. Liicke, M. Scherer, J. Kruse, L. Pezze, F. Deuretzbacher, P.
Hyllus, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, and

C. Klempt, Twin matter waves for interferometry beyond the
classical limit, Science 334, 773 (2011).

[77] C. Hamley, C. Gerving, T. Hoang, E. Bookjans, and M.
Chapman, Spin-nematic squeezed vacuum in a quantum gas,
Nat. Phys. 8, 305 (2012).

[78] H. Héffner, W. Hinsel, C. F. Roos, J. Benhelm, D. Chek-al-kar,
M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O. Schmidt,
C. Becher, O. Giihne, W. Diir, and R. Blatt, Scalable multipar-
ticle entanglement of trapped ions, Nature (London) 438, 643
(2005).

[79] G. Té6th and M. W. Mitchell, Generation of macroscopic singlet
states in atomic ensembles, New J. Phys. 12, 053007 (2010).

[80] N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napoli-
tano, G. Té6th, R. J. Sewell, and M. W. Mitchell, Generation
of Macroscopic Singlet States in a Cold Atomic Ensemble,
Phys. Rev. Lett. 113, 093601 (2014).

[81] D.Jakab, G. Szirmai, and Z. Zimbordas, The bilinear-biquadratic
model on the complete graph, J. Phys. A: Math. Theor. 51,
105201 (2018).

[82] W. Gerlach and O. Stern, Der experimentelle nachweis
der richtungsquantelung im magnetfeld, Z. Phys. 9, 349
(1922).

[83] M. Koschorreck, M. Kubasik, M. Napolitano, S. R. de Echaniz,
H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell,
Polarization-based light-atom quantum interface with an all-
optical trap, Phys. Rev. A 79, 043815 (2009).

053603-17


https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1364/JOSAB.24.000275
https://doi.org/10.1364/JOSAB.24.000275
https://doi.org/10.1364/JOSAB.24.000275
https://doi.org/10.1364/JOSAB.24.000275
https://doi.org/10.1103/PhysRevLett.98.063604
https://doi.org/10.1103/PhysRevLett.98.063604
https://doi.org/10.1103/PhysRevLett.98.063604
https://doi.org/10.1103/PhysRevLett.98.063604
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.103.020504
https://doi.org/10.1103/PhysRevLett.109.173604
https://doi.org/10.1103/PhysRevLett.109.173604
https://doi.org/10.1103/PhysRevLett.109.173604
https://doi.org/10.1103/PhysRevLett.109.173604
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1126/science.1208798
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1088/1367-2630/12/5/053007
https://doi.org/10.1088/1367-2630/12/5/053007
https://doi.org/10.1088/1367-2630/12/5/053007
https://doi.org/10.1088/1367-2630/12/5/053007
https://doi.org/10.1103/PhysRevLett.113.093601
https://doi.org/10.1103/PhysRevLett.113.093601
https://doi.org/10.1103/PhysRevLett.113.093601
https://doi.org/10.1103/PhysRevLett.113.093601
https://doi.org/10.1088/1751-8121/aaa92b
https://doi.org/10.1088/1751-8121/aaa92b
https://doi.org/10.1088/1751-8121/aaa92b
https://doi.org/10.1088/1751-8121/aaa92b
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1103/PhysRevA.79.043815
https://doi.org/10.1103/PhysRevA.79.043815
https://doi.org/10.1103/PhysRevA.79.043815
https://doi.org/10.1103/PhysRevA.79.043815



