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Spin squeezing and entanglement for an arbitrary spin
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A complete set of generalized spin-squeezing inequalities is derived for an ensemble of particles with
an arbitrary spin. Our conditions are formulated with the first and second moments of the collective
angular momentum coordinates. A method for mapping the spin-squeezing inequalities for spin- 1

2 particles to
entanglement conditions for spin-j particles is also presented. We apply our mapping to obtain a generalization of
the original spin-squeezing inequality to higher spins. We show that, for large particle numbers, a spin-squeezing
parameter for entanglement detection based on one of our inequalities is strictly stronger than the original
spin-squeezing parameter defined in Sørensen et al. [Nature (London) 409, 63 (2001)]. We present a coordinate
system independent form of our inequalities that contains, besides the correlation and covariance tensors of the
collective angular momentum operators, the nematic tensor appearing in the theory of spin nematics. Finally, we
discuss how to measure the quantities appearing in our inequalities in experiments.
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I. INTRODUCTION

One of the most rapidly developing areas in quantum
physics is creating larger and larger entangled quantum
systems with photons, trapped ions, and cold neutral atoms
[1–12]. Entangled states can be used for metrology in order to
obtain a sensitivity higher than the shot-noise limit [13–15]
and can also be used as a resource for certain quantum
information processing tasks [16–19]. Moreover, experiments
realizing macroscopic quantum effects might give answers to
fundamental questions in quantum physics [20,21].

Spin squeezing is one of the most successful approaches
for creating large-scale quantum entanglement [13,22–37]. It is
used in systems of very many particles in which only collective
quantities can be measured. For an ensemble of N particles
with a spin j, the most relevant collective quantities are the
collective spin operators defined as

Jl :=
N∑

n=1

j
(n)
l , (1)

for l = x,y,z, where j
(n)
l are the components of the angular

momentum operator for the nth spin.
Spin-squeezed states are typically almost fully polarized

states for which the angular momentum variance is small in a
direction orthogonal to the mean spin [22]. They can be used
to achieve a high accuracy in certain very general metrological
tasks [14,15]. On the other hand, in spin- 1

2 systems spin
squeezing is closely connected to multipartite entanglement.
A ubiquitous criterion for detecting the entanglement of
spin-squeezed states is [13]

ξ 2
s := N

(�Jx)2

〈Jy〉2 + 〈Jz〉2
� 1. (2)
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Any fully separable state of N qubits, that is, a state that can
be written as [38]

� =
∑

k

pk�
(1)
k ⊗ �

(2)
k ⊗ ...�

(N)
k ,

∑
k

pk = 1, pk > 0,

(3)

satisfies Eq. (2). Any state violating Eq. (2) is not fully
separable and is therefore entangled.

Apart from the original inequality Eq. (2), several other
generalized spin-squeezing entanglement conditions have
been presented [39–54] and even the complete set of such
criteria for multiqubit systems has been found in Ref. [55].
While most of the conditions are for a fixed particle number,
conditions for the case of nonzero particle number variance
have also been derived [56,57].

So far most of the attention has been focused on ensembles
of spin 1

2 . The literature on systems of particles with j > 1
2 has

been limited to a small number of conditions, specialized to
certain sets of quantum states or particles with a low spin
[48–54]. The reason is that known methods for detecting
entanglement for spin- 1

2 particles by spin squeezing cannot
straightforwardly be generalized to higher spins. For example,
for j > 1

2 , Eq. (2) can also be violated without entanglement
between the spin-j particles, as we will discuss later [33].

In spite of the difficulties in deriving entanglement con-
ditions for particles with a higher spin, they are very much
needed in quantum experiments nowadays. As most of such
experiments are done with atoms with j > 1

2 , such conditions
can make the complexity of experiments much smaller: The
artificially created spin- 1

2 subsystems must be manipulated
by lasers, while the physical spin-j particles can directly be
manipulated by magnetic fields. Moreover higher spin systems
could make it possible to perform quantum information
processing tasks different from the ones possible with spin- 1

2
particles or to create different kinds of entangled states
[58–64].

In this paper, we will start from the complete set pre-
sented for spin- 1

2 particles in Ref. [55]. All spin-squeezing
entanglement criteria of this set are based on the first and
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VITAGLIANO, APELLANIZ, EGUSQUIZA, AND TÓTH PHYSICAL REVIEW A 89, 032307 (2014)

second moments of collective angular momentum coordinates.
It has been possible to obtain a full set of tight inequalities by
analytical means only due to certain advantageous properties
of the spin- 1

2 case. For the case of particles with j > 1
2 , the

inequalities presented in the literature are either based on
numerical optimization [48] or are analytical but not tight [51].
The reason for this is that for j > 1

2 , the second moments of the
collective observables are not only connected to the two-body
correlations, as in the spin- 1

2 case, but also to the local second
moments.

In order to solve this problem, we define modified second
moments and the corresponding variances as follows:

〈
J̃ 2

l

〉
:= 〈

J 2
l

〉 −
〈∑

n

(
j

(n)
l

)2

〉
=

∑
n�=m

〈
j

(n)
l j

(m)
l

〉
,

(4)
(�̃Jl)

2 := 〈
J̃ 2

l

〉 − 〈
Jl

〉2
,

where l = x,y,z. The modified quantities do not contain
anymore the local second moments. We will show that by
using the first moments and the modified second moments
of the collective operators, it is possible to write down tight
entanglement conditions analytically also for the j > 1

2 case
[65]. We will also discuss that the local second moments are
related to single-particle spin squeezing (see Sec. VI A).

The main results of our paper are as follows.
(i) We will find the complete set of conditions for the j > 1

2
case, which we will call optimal spin-squeezing inequalities
for spin-j particles. They are a complete set since, for large N,

they detect all entangled states that can be detected knowing
only the first moments and the modified second moments. For
instance, they can be used to verify the entanglement of singlet
states, symmetric Dicke states, and planar squeezed states [52].

(ii) We also present a generalization of the original spin-
squeezing parameter ξ 2

s defined in Eq. (2) that can be used for
entanglement detection even for particles with j > 1

2 ,

ξ 2
s,j := N

(�̃Jx)2 + Nj 2

〈Jy〉2 + 〈Jz〉2
. (5)

If ξ 2
s,j < 1 then the state is entangled. For spin- 1

2 particles, the
definitions of Eqs. (2) and (5) are the same.

(iii) Finally, we will show that, in the large particle number
limit, the entanglement condition based on the following
entanglement parameter,

ξ 2
os := (N − 1)

(�̃Jx)2 + Nj 2〈
J̃ 2

y

〉 + 〈
J̃ 2

z

〉 , (6)

is strictly stronger than the condition based on ξ 2
s,j . Note that

ξ 2
os is defined only for 〈J̃ 2

y 〉 + 〈J̃ 2
z 〉 > 0. In this way ξ 2

os will
always be non-negative. In Eq. (6), the subscript “os” refers
to the optimal spin-squeezing inequalities since we obtain
ξ 2

os, essentially, by dividing the left-hand side of one of the
inequalities by the right-hand side. For clarity, we give Eq. (6)
explicitly for the j = 1

2 case,

ξ 2
os = (N − 1)

(�Jx)2〈
J 2

y

〉 + 〈
J 2

z

〉 − N
2

. (7)

FIG. 1. (Color online) Different types of spin-squeezed states.
(a) Almost fully polarized spin-squeezed states detected by ξ 2

s,j , given
in Eq. (5) and also by the new parameter ξ 2

os, defined in Eq. (6).
(b) States close to symmetric Dicke states with 〈Jz〉 = 0 with a
small variance for one of the angular momentum components and
large variances in the two orthogonal directions. Such states can
be detected by ξ 2

os but are not detected by ξ 2
s,j . (c) States close to

many-body singlets with a small variance for all the three angular
momentum components. Such states are detected by the criterion
(9b). (d) Planar squeezed states with a small variance for two of the
angular momentum components and a large variance in the orthogonal
direction. Such states are detected by the criterion (9d).

If ξ 2
os < 1 then the state is entangled. The parameter (5) is

appropriate only for spin-squeezed states with a large total
spin depicted in Fig. 1(a), while the parameter (6) detects also
states that have zero total spin, as shown in Fig. 1(b). Moreover,
we will also show that for large particle numbers, if ξ 2

s,j < 1
then we also have

ξ 2
os < ξ 2

s,j . (8)

Thus, ξ 2
os is a better indicator of entanglement than ξ 2

s,j .

The paper is organized as follows. In Ref. [66], we
have already presented a generalization of the complete set
of spin-squeezing inequalities valid for systems of spin-j
particles with j > 1

2 . In this paper, we extend the results
of Ref. [66] in several directions. In Sec. II, we present the
optimal spin-squeezing inequalities for spin-j particles and
discuss some of their fundamental properties. In Sec. III,
we study states that violate the inequalities maximally. In
Sec. IV, we show a method for mapping existing entanglement
conditions for spin- 1

2 particles to analogous conditions for
spin-j particles with j > 1

2 . Using the mapping, we derive
the spin-squeezing parameter ξ 2

s,j . In Sec. V, we present the
spin-squeezing parameter ξ 2

os and examine its properties. In
Sec. VI, we consider various issues concerning the efficient
application of our spin-squeezing inequalities.
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II. COMPLETE SET OF SPIN-SQUEEZING INEQUALITIES
FOR SPIN- j PARTICLES.

In this section, we present our spin-squeezing inequalities
for particles with an arbitrary spin j and we also examine
the connection of these inequalities to the entanglement of the
reduced two-particle state, and to the criterion based on the
positivity of the partial transpose.

A. The optimal spin-squeezing inequalities for qudits

Observation 1. The following generalized spin-squeezing
inequalities are valid for separable states given by Eq. (3) for
an ensemble of spin-j particles even with j > 1

2 ,〈
J 2

x

〉 + 〈
J 2

y

〉 + 〈
J 2

z

〉
� Nj (Nj + 1), (9a)

(�Jx)2 + (�Jy)2 + (�Jz)
2 � Nj, (9b)〈

J̃ 2
l

〉 + 〈
J̃ 2

m

〉 − N (N − 1)j 2 � (N − 1)(�̃Jk)2, (9c)

(N − 1)[(�̃Jk)2 + (�̃Jl)
2] �

〈
J̃ 2

m

〉 − N (N − 1)j 2. (9d)

Here k,l,m may take all the possible permutations of x,y,z.

If a quantum state violates one of the inequalities (9), then it
is entangled.

Proof. We will prove that for separable states the following
inequality holds:

(N − 1)
∑
l∈I

(�̃Jl)
2 −

∑
l /∈I

〈
J̃ 2

l

〉
� −N (N − 1)j 2, (10)

where I is a subset of indices including the two extremal
cases I = ∅ and I = {x,y,z}. We consider first pure product
states of the form |�〉 = ⊗n|φn〉. For such states, the modified
variances and the modified second moments can be obtained as

(�J̃l)
2
� = −

∑
n

〈
j

(n)
l

〉2
,

(11)〈
J̃ 2

l

〉
�

= 〈Jl〉2 −
∑

n

〈
j

(n)
l

〉2 =
∑
n�=m

〈
j

(n)
l

〉〈
j

(m)
l

〉
.

Substituting Eq. (11) into the left-hand side of Eq. (10), we
obtain

−
∑

n

(N − 1)
∑
l∈I

〈
j

(n)
l

〉2 −
∑
l /∈I

(
〈Jl〉2 −

∑
n

〈
j

(n)
l

〉2)

� −
∑

n

(N − 1)
∑

l=x,y,z

〈
j

(n)
l

〉2 � −N (N − 1)j 2. (12)

The two inequalities in Eq. (12) follow from the inequality
[55],

〈Jl〉2 � N
∑

n

〈
j

(n)
l

〉2
, (13)

and from the well-known bound for an angular momentum
component 〈jl〉 � j. Hence we proved that Eq. (10) is valid
for pure product states. Due to the left-hand side of Eq. (10)
being concave in the state, it is also valid for separable states.

From Eq. (10) we can obtain all inequalities of Eqs. (9a)–
(9d), knowing that〈

J 2
x

〉 + 〈
J 2

y

〉 + 〈
J 2

z

〉 = 〈
J̃ 2

x

〉 + 〈
J̃ 2

y

〉 + 〈
J̃ 2

z

〉 + Nj (j + 1),
(14)

which is a consequence of the identity [67],

j 2
x + j 2

y + j 2
z = j (j + 1)1. (15)

Hence, we proved that Eq. (9) is valid for separable states. �
In order to evaluate Eq. (9), six operator expectation values

are needed. These are the vector of the expectation values of
the three collective angular momentum components,

�J := (〈Jx〉,〈Jy〉,〈Jy〉), (16)

and the vector of the modified second moments,

�̃K := (〈
J̃ 2

x

〉
,
〈
J̃ 2

y

〉
,
〈
J̃ 2

y

〉)
. (17)

For the spin- 1
2 case, the modified second moments can be

obtained from the true second moments since 〈J̃ 2
x 〉 = 〈J 2

x 〉 −
N
4 . For spin-j particles with j > 1

2 , the elements of �̃K typically
cannot be measured directly. Instead, we measure the true
second moments,

�K := (〈
J 2

x

〉
,
〈
J 2

y

〉
,
〈
J 2

y

〉)
, (18)

and the sum of the squares of the local second moments,

�M :=
(〈∑

n

(
j (n)
x

)2

〉
,

〈∑
n

(
j (n)
y

)2

〉
,

〈∑
n

(
j (n)
z

)2

〉)
. (19)

Then, �̃K can be obtained as the difference between the true
second moments and the sum of local second moments as

�̃K = �K − �M. (20)

In Sec. VI C, we discuss how to measure �̃K based on the
measurement of �K and �M.

For any value of the mean spin �J , Eq. (9) defines a
polytope in the (〈J̃ 2

x 〉,〈J̃ 2
y 〉,〈J̃ 2

z 〉) space. The polytope is

depicted in Figs. 2(a) and 2(b) for different values for �J .

It is completely characterized by its extremal points. Direct
calculation shows that the coordinates of the extreme points in
the (〈J̃ 2

x 〉,〈J̃ 2
y 〉,〈J̃ 2

z 〉) space are

Ax := [N (N − 1)j 2 − κ(〈Jy〉2 + 〈Jz〉2),κ〈Jy〉2,κ〈Jz〉2],
(21)

Bx :=
[
〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2

N
− Nj 2,κ〈Jy〉2,κ〈Jz〉2

]
,

where κ := N−1
N

. The points Ay/z and By/z can be obtained in
an analogous way. Note that the coordinates of the points Al

and Bl depend nonlinearly on 〈Jl〉.
Let us see briefly the connection between the inequalities

and the facets of the polytope. The inequality with three second
moments, Eq. (9a), corresponds to the facet Ax − Ay − Az

in Fig. 2(a). The inequality with three variances, Eq. (9b),
corresponds to the facet Bx − By − Bz. The inequality with
one variance, Eq. (9c), corresponds to the facets Bx − Ay −
Az,By − Az − Ax, and Bz − Ax − Ay. The inequality with
two variances, Eq. (9d), corresponds to the facets Bx − By −
Az,By − Bz − Ax , and Bz − Bx − Ay.

B. Completeness of Eq. (9)

In this section, we will show that, in the large N limit, all
points inside the polytope correspond to separable states. This
implies that the criteria of Observation 1 are complete, that
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FIG. 2. (Color online) (a) The polytope of separable states cor-
responding to Eq. (9) for N = 10 spin-j particles and for �J = 0.

The completely mixed state defined in Eq. (39) corresponds to the
origin of the coordinate axis, i.e., the point (0,0,0) and it is inside
the polytope. (b) The same polytope for �J = (0,0,8)j. Note that this
polytope is a subset of the polytope in (a). For the coordinates of the
points Al and Bl see Eq. (21).

is, if the inequalities are not violated then it is not possible
to prove the presence of entanglement based only on the first
and the modified second moments. In other words, it is not
possible to find criteria detecting more entangled states based
on these moments. To prove this, first we can observe that
if some quantum states satisfy Eq. (9) then their mixture
also satisfies it. Thus, it is enough to investigate the states
corresponding to the extremal points of the polytope. We will
give a straightforward generalization of the proof for the spin- 1

2
case presented in Ref. [55].

Observation 2. (i) For any value of �J there are separable
states corresponding to Ak for k ∈ {x,y,z}.

(ii) Let us define J := Nj,

cx :=
√

1 − 〈Jy〉2 + 〈Jz〉2

J 2
, (22)

and p := 1
2 [1 + 〈Jx 〉

Jcx
]. If Np is an integer then there exists also

a separable state corresponding to Bx. Similar statements hold
for By and Bz. Note that this condition is always fulfilled, if
�J = 0 and N is even.

(iii) There are always separable states corresponding to
points B ′

k such that their distance from Bk is smaller than j 2.

In the limit N → ∞ for a fixed normalized angular momentum
�J

N
, the points Bk and the B ′

k cannot be distinguished by
measurement; for that a precision j 2 or better would be needed
when measuring 〈J̃ 2

x 〉, which is unrealistic. Hence in the
macroscopic limit the characterization is complete.

Proof. A separable state corresponding to Ax is

ρAx
:= p(|ψ+〉〈ψ+|)⊗N + (1 − p)(|ψ−〉〈ψ−|)⊗N. (23)

Here |ψ+/−〉 are the single-particle states with
(〈jx〉,〈jy〉,〈jz〉) = j (±cx,

〈Jy 〉
J

,
〈Jz〉
J

).
If M := Np is an integer, we can also define the state

corresponding to the point Bx as∣∣φBx

〉
:= |ψ+〉⊗M ⊗ |ψ−〉⊗(N−M). (24)

Since there is a separable state for each extreme point of the
polytope, for any internal point a corresponding separable state
can be obtained by mixing the states corresponding to the
extreme points.

If M is not an integer, we can approximate Bx by taking
m := M − ε as the largest integer smaller than M, defining
the state,

ρ ′ := (1 − ε)(|ψ+〉〈ψ+|)⊗m ⊗ (|ψ−〉〈ψ−|)⊗(N−m)

+ ε(|ψ+〉〈ψ+|)⊗(m+1) ⊗ (|ψ−〉〈ψ−|)⊗(N−m−1). (25)

It has the same coordinates as Bx, except for the value of 〈J̃ 2
x 〉,

where the difference is 4j 2c2
xε(1 − ε) � j 2. �

The extremal states that correspond to the vertices of the
polytope defined by the optimal spin-squeezing inequalities
are, in a certain sense, generalizations of the coherent spin
states defined as [39,68]

|�CSS〉 = |�〉⊗N, (26)

where |�〉 is a state with maximal 〈jx〉2 + 〈jy〉2 + 〈jz〉2. All
states of the form (26) saturate all the inequalities, as can be
seen by direct substitution into Eq. (9). Further extremal states
can be obtained as tensor products or mixtures of coherent spin
states. Note that they exist for all the possible values of the
mean spin �J , while spin-coherent states Eq. (26) were fully
polarized.

C. Relation of Eq. (9) to two-particle entanglement

Since the optimal spin-squeezing inequalities (9) contain
only first moments and modified second moments of the
angular momentum components, they can be reformulated
with the average two-body correlations. For that, we define
the average two-particle density matrix as

ρav2 := 1

N (N − 1)

∑
m�=n

ρmn, (27)

where ρmn is the two-particle reduced density matrix for the
mth and nth particles.
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Next, we formulate our entanglement conditions with the
density matrix ρav2.

Observation 3. The optimal spin-squeezing inequalities
Eq. (9) for arbitrary spin can be given in terms of the average
two-body density matrix as

N
∑
l∈I

(〈jl ⊗ jl〉av2 − 〈jl ⊗ 1〉2
av2

)
� � − j 2, (28)

where we have defined the expression � as the sum of all the
two-particle correlations of the local spin operators,

� :=
∑

l=x,y,z

〈jl ⊗ jl〉av2. (29)

The right-hand side of Eq. (28) is nonpositive. For the j = 1
2

case, the right-hand side of Eq. (28) is zero for all symmetric
states, while for j > 1

2 it is zero only for some symmetric
states.

Proof. Equation (10) can be transformed into

N
∑
l∈I

(�̃Jl)
2 +

∑
l∈I

〈Jl〉2 �
∑

l

〈
J̃ 2

l

〉 − N (N − 1)j 2. (30)

Next, let us see how Eq. (30) behaves for symmetric states.
We know from angular momentum theory that Eq. (9a) of the
optimal spin-squeezing inequalities is saturated only when the
state is symmetric. For the j = 1

2 case, all symmetric states
saturate Eq. (9a), while for j > 1

2 only some of the symmetric
states saturate it. Based on these and Eq. (14), we know that,
for spin- 1

2 particles in a symmetric state the right-hand side of
Eq. (30) is zero. On the other hand, for spin-j particles with
j > 1

2 in a symmetric state, the right-hand side can also be
negative.

Let us now turn to the reformulation of Eq. (30) in terms
of the two-body reduced density matrix. The modified second
moments and variances can be expressed with the average
two-particle density matrix as〈

J̃ 2
l

〉 =
∑
m�=n

〈
j

(n)
l j

(m)
l

〉 = N (N − 1)〈jl ⊗ jl〉av2,

(31)
(�̃Jl)

2 = −N2〈jl ⊗ 1〉2
av2 + N (N − 1)〈jl ⊗ jl〉av2.

Substituting Eq. (31) into Eq. (30), we obtain Eq. (28). As in
the case of Eq. (30), the right-hand side of Eq. (28) is zero for
symmetric states of spin- 1

2 particles. �
Note that, as in the spin- 1

2 case, there are states detected
as entangled that have a separable two-particle density matrix
[55]. Such states are, for example, permutationally invariant
states for which the reduced single-particle density matrix is
completely mixed. For large N, due to permutational invari-
ance, the two-particle density matrices are very close to the
completely mixed matrix as well and hence they are separable.
Still, some of such states can be detected as entangled by the
optimal spin-squeezing inequalities. Examples of such states
are the permutationally invariant singlet states discussed later
in Sec. III B.

D. Relation of Eq. (9) to the criterion based on the positivity
of the partial transpose

Our inequalities are entanglement conditions. Thus, it is
important to compare them to the most useful entanglement

condition known so far, the condition based on the positivity
of the partial transpose (PPT) [69].

In Ref. [55], it has been shown for the spin- 1
2 case that

the optimal spin-squeezing inequalities can detect the thermal
states of some spin models that have a positive partial transpose
for all bi-partitions of the system. Such states are extreme
forms of bound entangled states: they are nondistillable even
if the qubits of the two partitions are allowed to unite with
each other. We found that for the j > 1

2 case, the inequality
(9b) also detects such bound entangled states in the thermal
states of spin models. An example of such a state for j = 1
and N = 3 is

�BES ∝ e− J2
x +J2

y +J2
z

T . (32)

The state (32) is detected by our criterion below the tempera-
ture bound Ts ≈ 3.66 while it is detected by the PPT criterion
below the bound TPPT ≈ 3.57.

Finally, we will consider the special case of symmetric
states. In this case, the PPT condition applied to the reduced
two-body density matrix detects all states detected by the spin-
squeezing inequalities.

Observation 4. The PPT criterion for the average two-
particle density matrix defined in Eq. (27) detects all symmetric
entangled states that the optimal spin-squeezing inequalities
detect for j > 1

2 . The two conditions are equivalent for
symmetric states of particles with j = 1

2 .

Proof. We will connect the violation of Eq. (28) to the
violation of the PPT criterion by the reduced two-particle
density matrix �av2. If a quantum state is symmetric, its reduced
state �av2 is also symmetric. For such states, the PPT condition
is equivalent to [70]

〈A ⊗ A〉av2 − 〈A ⊗ 1〉2
av2 � 0, (33)

holding for all Hermitian operators A. Based on Observation
3, it can be seen by straightforward comparison of Eqs. (28)
and (33) that, for j = 1

2 , Eq. (28) holds for all possible choices
of I and for all possible choices of coordinate axes, i.e., all
possible jl, if and only if Eq. (33) holds for all Hermitian
operators A. For j > 1

2 there is no equivalence between the
two statements. Only from the latter follows the former. �

III. STATES THAT VIOLATE THE OPTIMAL
SPIN-SQUEEZING INEQUALITIES FOR SPIN j

In this section we will study, what kind of states violate
maximally our spin-squeezing inequalities. We will also
examine, how much noise can be mixed with these states such
that they are still detected as entangled by our inequalities.

A. The inequality with three second moments, Eq. (9a)

The first two equations of Eq. (9) are invariant under the
exchange of coordinate axes x,y, and z. As a consequence of
basic angular momentum theory, Eq. (9a), the inequality with
three second moments is valid for all quantum states, thus it
cannot be violated. As discussed in the proof of Observation
3, for the j = 1

2 case, all symmetric states saturate Eq. (9a),
while for j > 1

2 only some of the symmetric states saturate
it. In both cases, states of the form (26) are a subset of the
saturating states.
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VITAGLIANO, APELLANIZ, EGUSQUIZA, AND TÓTH PHYSICAL REVIEW A 89, 032307 (2014)

TABLE I. Expectation values of collective quantities appearing in the optimal spin-squeezing inequalities (9) for various quantum states.
�J , �K, and �M are defined in Eqs. (16), (18), and (19), respectively.

Singlet state discussed in Sec. III B �Js = (0,0,0)
�Ks = (0,0,0)
�Ms = (

j (j+1)
3 N,

j (j+1)
3 N,

j (j+1)
3 N

)
Completely mixed state defined in Eq. (39) �Jcm = (0,0,0)

�Kcm = (
j (j+1)

3 N,
j (j+1)

3 N,
j (j+1)

3 N
)

�Mcm = (
j (j+1)

3 N,
j (j+1)

3 N,
j (j+1)

3 N
)

Symmetric Dicke state, |DN,j 〉, discussed in Sec. III C �JD = (0,0,0)
�KD = (

Nj (Nj+1)
2 ,

Nj (Nj+1)
2 ,0

)
�MD = (

Nj (j+1)
2 − N(N−1)j2

4jN−2 ,
Nj (j+1)

2 − N(N−1)j2

4jN−2 ,
N(N−1)j2

2jN−1

)

B. The inequality with three variances, Eq. (9b)

The states maximally violating Eq. (9b) are the many-body
singlet states. The characteristic values of the collective
operators for many-body singlets are shown in Table I. States
violating Eq. (9b) have a small variance for all the components
of the angular momentum as shown in Fig. 1(c).

Let us see now some examples of many-body singlets states.
For j = 1

2 , a pure singlet state can be constructed, for example,
as a tensor product of two-particle singlets of the form,

|�−〉 = 1√
2

(∣∣∣∣ + 1

2
,−1

2

〉
z

−
∣∣∣∣−1

2
,+1

2

〉
z

)
. (34)

Any permutation of such a state is a singlet as well. The mixture
of all such permutations is a permutationally invariant singlet
defined as

ρs,PI = 1

N !

N!∑
k=1


k(|�−〉〈�−| ⊗ · · · ⊗ |�−〉〈�−|)
†
k, (35)

where 
k are all the possible permutations of the qubits. It can
be shown that for even N, Eq. (35) equals the T = 0 thermal
ground state of the Hamiltonian [58,59],

Hs = J 2
x + J 2

y + J 2
z . (36)

For even N and j = 1
2 , the state ρs,PI is the only permutation-

ally invariant singlet state. For j = 1
2 , all singlets are outside

of the symmetric subspace.
In the case of spin-1 particles, the following two-particle

symmetric state,

|φs1〉 = 1√
3

(|1,−1〉 − |0,0〉 + |−1,1〉), (37)

is also a singlet. It is very important from the point of view of
experimental realizations with Bose-Einstein condensates that
for j > 1

2 there are singlet states in the symmetric subspace.
Next, we mix the spin-j singlet state with white noise and

examine up to how much noise it is still violating Eq. (9b).
The noisy singlet state is the following,

�s,noisy(pn) = (1 − pn)�s + pn�cm, (38)

where �s is a singlet state maximally violating Eq. (9b), and pn

is the amount of noise and we defined the completely mixed
state as

ρcm = 1

dN
1, (39)

where the dimension of the qudit is d = 2j + 1. The vectors
of the collective quantities ( �Jcm, �Kcm, �Mcm) are shown in
Table I for the completely mixed state. Based on these, simple
calculations show that the state (38) is detected as entangled
by Eq. (9b) if

pn <
1

j + 1
= 2

d + 1
. (40)

Hence, the white-noise tolerance decreases with d.
Finally note that for any j the modified second moments of

the collective angular momentum components are zero for the
completely mixed state, i.e.,

�̃Kcm = (0,0,0). (41)

Thus, the completely mixed state belongs to a point at
the origin of the coordinate system of the modified second
moments for �J = 0. In contrast, in the space of true second
moments the singlet state is at the origin, since for the singlet
we have 〈J 2

l 〉 = 〈Jl〉 = 0 for l = x,y,z.

Equation (9b) has been proposed to detect entanglement
in optical lattices of cold atoms [49]. A related inequality
was presented for entanglement detection in condensed matter
systems by susceptibility measurements [50]. Experimentally,
it has been used for entanglement detection in photonic
systems [12] and in fermionic cold atoms [11]. An ensemble
of d-state fermions naturally fills up the energy levels of a
harmonic oscillator such that all levels have d fermions in a
multipartite SU(d) singlet state. Such a state is also a singlet,
maximally violating the optimal spin-squeezing inequality
with three variances, Eq. (9b). Singlets can also be obtained
through spin squeezing in cold atomic ensembles [58,59].
Finally, the ground state of the system Hamiltonian for certain
spinor Bose-Einstein condensates is a singlet state [62].

C. The inequality with only one variance, Eq. (9c)

Next, we will consider the optimal spin-squeezing inequal-
ity with one variance, Eq. (9c). This entanglement criterion is
very useful to detect the almost fully polarized spin-squeezed
states shown in Fig. 1(a). It can also be used to detect
symmetric Dicke states with a maximal 〈J 2

x + J 2
y + J 2

z 〉 and
〈Jz〉 = 0. States close to such symmetric Dicke states have a
small variance for one component of the angular momentum
while they have a large variance in two orthogonal directions
as shown in Fig. 1(b).
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Dicke states |λ,λz,α〉 are quantum states obeying the
eigenequations,(

J 2
x + J 2

y + J 2
z

)|λ,λz,α〉 = λ(λ + 1)|λ,λz,α〉,
(42)

Jz|λ,λz,α〉 = λz|λ,λz,α〉,
where α is a label used to distinguish the different eigenstates
corresponding to the same eigenvalues λ and λz. In particular,
we will show that Eq. (9c) is very useful to detect entanglement
close to the symmetric Dicke state,

|DN,j 〉 := |Nj,0〉, (43)

where N must be even for half integer j ’s. In this case, the
α label is not needed, as the two eigenvalues determine the
state uniquely. The state state (43) for j = 1

2 has already been
known to have intriguing entanglement properties [43] and it
is optimal for certain very general quantum metrological tasks
[15].

We will now show that the state (43) maximally violates
Eq. (9c) for j = 1

2 and is close to violating it maximally for
j > 1

2 . In order to show this, we rewrite Eq. (9c) for (k,l,m) =
(z,x,y) as〈

J 2
x + J 2

y + J 2
z

〉 − N (�Jz)
2 − 〈Jz〉2 + N

∑
n

〈(
j (n)
z

)2〉
� Nj (Nj + 1). (44)

The state (43) maximally violates Eq. (9c) for j = 1
2 since it

maximizes all terms with a positive coefficient and minimizes
all terms with a negative one on the left-hand side of Eq. (44).
This statement is almost true also for the case j > 1

2 , except
for the term with the local second moments which has a value,

∑
n

〈(
j (n)
z

)2〉 = N (N − 1)j 2

2jN − 1
. (45)

The proof of Eq. (45) is given in the appendix. Based on these,
our symmetric Dicke state is detected as entangled for any j.

In a practical situation, it is also important to know how
much additional noise is tolerated such that the noisy state is
still detected as entangled. Next, we look at the noise tolerance
of the inequality (44) for our case. We mix the symmetric Dicke
state (43) with white noise as

�D,noisy(pn) = (1 − pn)|DN,j 〉〈DN,j | + pn�cm. (46)

The expectation values and the relevant moments of the
collective angular momentum components for the Dicke state
(43) are given in Table I. Based on these, a noisy Dicke state
is detected as entangled if

pnoise <
N

N (2j + 1) − 1
. (47)

For large N, the bound on the noise is 1
2j+1 .

Entangled states close to Dicke states have been observed
in photonic experiments with a condition similar to the optimal
spin-squeezing inequality with one variance, Eq. (9c) [2–4].
Symmetric Dicke states can be created dynamically in Bose-
Einstein condensate [61,62]. Cold-trapped ions also seem to
be ideal to create symmetric Dicke states, thus the use of our
inequalities is expected even in these systems [6,42,71].

D. The inequality with two variances, Eq. (9d)

As the last case let us consider the optimal spin-squeezing
inequality (9d). Typical states strongly violating Eq. (9d) have
a small variance for two components of the angular momentum
while having a large variance in the orthogonal direction [see
Fig. 1(d)]. As we will see, for certain values for j, singlet
states [Fig. 1(c)] also violate Eq. (9d).

Now it is hard to compute the maximally violating state,
because an independent optimization for the different terms
does not seem to lead to a state maximizing the whole
expression even for j = 1

2 . Thus, we will consider examples
of important states violating the inequality and compare it to
other similar conditions.

Let us consider the multiparticle spin singlet states. Based
on �Js, �Ks, and �Ms given in Table I, we find that the optimal
spin-squeezing inequality (9d) is violated whenever

j <
2N − 3

N
. (48)

Thus, for N � 7, the singlet state is violating this inequality
for j = 1

2 ,1, and 3
2 .

An alternative of the entanglement condition with two
variances (9d), the planar squeezing entanglement condition
[52,72], is of the form,

(�Jx)2 + (�Jy)2 � NCj , (49)

where the constant Cj is 1
4 for j = 1

2 and 7
16 for j = 1,

respectively. For larger j, the constant Cj is determined
numerically. For even N, the criterion (49) is maximally
violated by the many-particle singlet state for any j.

Let us compare the entanglement condition (9d) to the
planar squeezing entanglement condition (49). Using Eq. (15),
Eq. (9d) can be rewritten for (k,l,m) = (x,y,z) as

(�Jx)2 + (�Jy)2 � Nj + 1

N − 1

〈
J 2

z

〉 − N

N − 1
Mz. (50)

For j = 1
2 and for large N, it can be seen that the right-hand

side of Eq. (50) equals N
4 + 1

N−1 〈J 2
z 〉. A comparison with

Eq. (49) shows that our condition (50) is strictly stronger in
this case. For j > 1

2 , Eq. (50) is not strictly stronger any more,
but still is more effective in detecting quantum states with a
large 〈J 2

z 〉.
This seems to be the advantage of our inequality compared

to Eq. (49): It has information not only about the variances in
the x and y directions, but also about the second moment in
the third direction.

IV. SPIN- 1
2 ENTANGLEMENT CRITERIA TRANSFORMED

TO HIGHER SPINS

In this section, we present a method to map spin- 1
2

entanglement criteria to criteria for higher spins. We use it
to transform the original spin-squeezing parameter Eq. (2) to a
spin-squeezing parameter for higher spins. We show that two
of the optimal spin-squeezing inequalities are strictly stronger
than the transformed original spin-squeezing criterion. We also
convert some other spin- 1

2 entanglement criteria to criteria for
higher spins.
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A. The original spin-squeezing parameter for higher spins

Next, we present a mapping that can transform every
spin-squeezing inequality for an ensemble of spin- 1

2 particles
written in terms of the first and the modified second moments
of the collective spin operators to an entanglement condition
for spin-j particles, also given in terms of the first and the
modified second moments.

Observation 5. Let us consider an entanglement condition
(i.e., a necessary condition for separability) for spin- 1

2 particles
of the form,

f
({〈Jl〉},

{〈
J̃ 2

l

〉})
� const., (51)

where f is a six-dimensional function. Then, the inequality
obtained from Eq. (51) by the substitution,

〈Jl〉 −→ 1

2j
〈Jl〉,

〈
J̃ 2

l

〉 −→ 1

4j 2

〈
J̃ 2

l

〉
, (52)

is an entanglement condition for spin-j particles. Any quantum
state that violates it is entangled.

Proof. Let us consider a product state of N spin-j particles,

ρj =
⊗

n

ρ
(n)
j , (53)

and define the quantities r
(n)
l = 1

j
〈j (n)

l 〉. Then the first and
modified second moments of the collective spin can be
rewritten in terms of those quantities as

〈Jl〉
2j

= 1

2

∑
n

r
(n)
l ,

〈
J̃ 2

l

〉
4j 2

= 1

4

∑
n�=m

r
(n)
l r

(m)
l . (54)

For the length of the single-particle Bloch vectors we have the
constraints,

0 �
∑

l

(
r

(n)
l

)2 � 1. (55)

Both the lower and the upper bound are sharp, and these are the
only constraints for physical states for every j [73]. Thus, the
set of allowed values for { 1

2j
〈Jl〉}l=x,y,z and { 1

4j 2 〈J̃ 2
l 〉}l=x,y,z

for product states of the form Eq. (53) are independent from j.

This is also true for separable states since separable states are
mixtures of product states. Let us now consider the range of

f

({
1

2j
〈Jl〉

}
,

{
1

4j 2

〈
J̃ 2

l

〉})
(56)

for separable states. We have seen that the set of allowed values
for the arguments of the function in Eq. (56) for separable
states is independent of j. Thus, the range of Eq. (56) for
separable states is also independent of j. Hence the statement
of Observation 5 follows [74]. �

Note that the complete set of optimal spin-squeezing
inequalities (9) for j > 1

2 can be obtained from the com-
plete set for the spin- 1

2 case presented in Ref. [55] using
Observation 5.

Next, we will transform the spin-squeezing parameter ξs,j

to higher spins.
Observation 6. Based on Observation 5, the original spin-

squeezing parameter defined in Eq. (2) for spin- 1
2 particles

is transformed into the spin-squeezing parameter Eq. (5) for
spin-j particles.

Proof. Let us first write down the entanglement condition
for spin- 1

2 particles based on the spin-squeezing parameter (2)
in terms of the modified variance as

ξ 2
s ≡ N

(�̃Jx)2 + N
4

〈Jy〉2 + 〈Jz〉2
� 1. (57)

Then, we use Observation 5 to obtain

ξ 2
s,j ≡ N

(�̃Jx)2 + Nj 2

〈Jy〉2 + 〈Jz〉2
� 1. (58)

�
It is instructive to rewrite Eq. (58) as

ξ 2
s,j ≡ N

(�Jx)2

〈Jy〉2 + 〈Jz〉2
+ N

∑
n

[
j 2 − 〈(

j (n)
x

)2〉]
〈Jy〉2 + 〈Jz〉2

� 1. (59)

Equation (59) can be further reformulated such that the second
term depends only on the average single-particle density
matrix, ρav1, as

ξ 2
s,j = N

(�Jx)2

〈Jy〉2 + 〈Jz〉2
+ j 2 − 〈

j 2
x

〉
av1

〈jy〉2
av1 + 〈jz〉2

av1

, (60)

where

ρav1 := 1

N

∑
n

ρn ≡ Tr2(ρav2), (61)

and ρn is the single-particle reduced density matrix for the
nth particle. Thus, in Eq. (60) we wrote down the new spin-
squeezing parameter ξ 2

s,j as the sum of the original parameter
ξ 2

s given in Eq. (2) and a second term that depends only on
single-particle observables and is related to single-particle spin
squeezing. For j = 1

2 , this second term in Eq. (60) is zero. For
j > 1

2 , it is nonnegative. Hence, for j > 1
2 there are states that

violate Eq. (2), but do not violate ξ 2
s,j � 1. This is shown in a

simple example with qutrits.
Example 1. Let us consider a multiparticle state of the form,

|�(α)〉 = (
√

α|1〉 + √
1 − α|0〉)⊗N, (62)

for j = 1. For α > 0.5 and for any N � 1, the original spin-
squeezing inequality (2) is violated by the state (62). On the
other hand, no separable state can violate ξ 2

s,j � 1, thus, it is the
correct formulation of the original spin-squeezing inequality
for j > 1

2 .

There is another interpretation on how to use the original
spin-squeezing inequality (2) for the j > 1

2 case. Equation (2)
is inherently for ensembles of spin- 1

2 particles. When used for
higher spins, N should be the number of spin- 1

2 constituents
rather than the number of spin-j particles. Then, Eq. (2) detects
entanglement between the spin- 1

2 constituents of the particles,
and cannot distinguish between entanglement among the spin-
j particles and entanglement within the spin-j particles [33].

Observation 7. The optimal spin-squeezing inequality with
three variances, Eq. (9b), and the one with one variance,
Eq. (9c), for (k,l,m) = (x,y,z) are strictly stronger than the
spin-squeezing inequality ξ 2

s,j � 1 [ξs,j is defined in Eq. (5)],
since they detect strictly more states.
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Proof. To see this, let us rewrite Eq. (9c) for the particular
choice of coordinate axes as

(N − 1)[(�̃Jx)2 + Nj 2] �
〈
J̃ 2

y

〉 + 〈
J̃ 2

z

〉
. (63)

Then, from Eqs. (9b) and (14) follows〈
J̃ 2

y

〉 + 〈
J̃ 2

z

〉
� −Nj 2 + 〈Jy〉2 + 〈Jz〉2 − (�̃Jx)2. (64)

Clearly, the left-hand side of Eq. (63) is not smaller than the
right-hand side of Eq. (64). Hence, the condition ξ 2

s,j � 1 can
be obtained.

So far we have shown that all quantum states detected by the
criterion ξ 2

s,j � 1 are also detected by Eq. (9b) or by Eq. (9c)
for (k,l,m) = (x,y,z). We have now to present a quantum state
that is detected by Eq. (9b) or by Eq. (9c) but not detected by
the condition ξ 2

s,j � 1. Such states are the many-body singlet
states or the symmetric Dicke states (43). �

Finally, note that the original spin-squeezing parameter ξ 2
s

can also be generalized to higher spins without introducing the
modified quantities, however, in this case the bounds must be
obtained numerically [48].

B. Other spin- 1
2 criteria transformed to higher spins

In this section, we transform two generalized spin-
squeezing criteria for spin- 1

2 particles found in the literature to
criteria for higher spins.

First, let us consider the criterion of Refs. [41,42], which
is valid for multiqubit systems. It can be rewritten in terms of
the expectation values and the modified second moments as√(〈

J̃ 2
l

〉 + 〈
J̃ 2

k

〉)2 + (N − 1)2〈Jn〉2 − 〈
J̃ 2

n

〉
� N (N − 1)

4
.

(65)

Equation (65) is violated for some choice of the coordinate
axes if the average reduced two-particle state is entangled
[75].

Observation 8. Using Observation 5, Eq. (65) can be
transformed to a system of spin-j particles as√(〈

J̃ 2
l

〉 + 〈
J̃ 2

k

〉)2 + 4(N − 1)2j 2〈Jn〉2 − 〈
J̃ 2

n

〉
� N (N − 1)j 2.

(66)

As a second example, let us consider now the entanglement
condition based on the planar squeezing inequality [52] for
j = 1

2 [i.e., Eq. (49) with Cj = 1
4 ].

Observation 9. Using Observation 5, the planar squeezing
criterion can be transformed to particles with j > 1

2 as

(�̃Jx)2 + (�̃Jy)2 � −Nj 2. (67)

It is instructive to compare Eq. (67) to the planar spin-
squeezing inequality Eq. (49). Note again that Eq. (67) is
analytical for any j, while Eq. (49) is based on numerics.

V. A STRONGER ALTERNATIVE OF THE ORIGINAL
SPIN-SQUEEZING PARAMETER

In this section, we show that the spin-squeezing parameter
ξ 2

os given in Eq. (6), based on the optimal spin-squeezing
inequality (9c), is stronger than ξ 2

s,j [Eq. (5)]. In particular,
it not only detects almost completely polarized spin-squeezed

quantum states, but also quantum states for which 〈Jl〉 = 0 for
l = x,y,z, e.g., Dicke states.

How can one obtain a spin-squeezing parameter based on
an entanglement condition given as an inequality? We will use
the most straightforward way and divide the right-hand side of
the inequality by the left-hand side, after some rearrangement
of the terms. After completing our calculations, we became
aware that the parameter (7) has appeared in Ref. [45]. It
was obtained in the way described above from one of the
optimal spin-squeezing inequalities for the spin- 1

2 case [i.e.,
Eq. (9c) with j = 1

2 ] given in Ref. [55]. It was used to study
the entanglement dynamics in the modified Lipkin-Meshkov-
Glick model and its time evolution was found to be similar to
the time evolution of ξ 2

s . Reference [45] also describes a phase
space method for the efficient calculation of the spin-squeezing
parameters for large systems [76].

Next, we show explicitly the relation between the spin-
squeezing parameter Eq. (6) and the corresponding optimal
spin-squeezing inequality (9c). Then, we prove important
properties of the parameter.

Observation 10. A spin-squeezing parameter ξ 2
os based

on the optimal spin-squeezing inequality with one variance,
Eq. (9c), can be defined as given in Eq. (6). Equation (9c) for
(k,l,m) = (x,y,z) is violated if and only if ξ 2

os < 1.

Proof. Equation (9c) can be rewritten as〈
J̃ 2

l

〉 + 〈
J̃ 2

m

〉
� (N − 1)[(�̃Jk)2 + Nj 2]. (68)

The spin-squeezing parameter Eq. (6) can be obtained after
dividing the right-hand side of Eq. (68) by its left-hand side.
Such a derivation is valid only if the left-hand side of Eq. (68) is
positive. Straightforward calculations show that if the left-hand
side of Eq. (68) is nonpositive then Eq. (9c) cannot be violated
for (k,l,m) = (x,y,z). �

We will now show that ξ 2
os is comparable to the original

spin-squeezing parameter ξ 2
s .

Observation 11. For large N and ξ 2
s,j < 1, the spin-

squeezing parameter ξ 2
os is smaller than ξ 2

s,j , i.e., Eq. (8) holds.
Thus all states detected by ξ 2

s,j are also detected by ξ 2
os and the

squeezing parameter ξ 2
os is even more sensitive.

Proof. The basic idea of the proof is that for large N the
parameter ξ 2

os defined in Eq. (6) can be obtained from ξ 2
s,j given

in Eq. (5) by replacing 〈Jl〉2 with 〈J̃ 2
l 〉 for l = y,z. Knowing

that 〈
J̃ 2

l

〉 ≈ 〈
J 2

l

〉
� 〈Jl〉2 (69)

proves the claim.
We will now present a formal derivation. Straightforward

algebra leads from Eq. (5) to

ξ 2
s,j = N

[(�̃Jx)2 + Nj 2] − j (j + 1)ξ 2
s,j

〈Jy〉2 + 〈Jz〉2 − Nj (j + 1)
. (70)

Let us consider first the case when the denominator of Eq. (70)
is positive. Then, we need the relation between the expectation
values and the second moments,〈

J 2
l

〉
� 〈Jl〉2, (71)

032307-9



VITAGLIANO, APELLANIZ, EGUSQUIZA, AND TÓTH PHYSICAL REVIEW A 89, 032307 (2014)

and the relation between the modified second moments and
the true second moments,〈

J̃ 2
y

〉 + 〈
J̃ 2

z

〉
�

〈
J 2

y

〉 + 〈
J 2

z

〉 − Nj (j + 1). (72)

Equation (72) can be easily derived from Eq. (14). Based
on Eqs. (71) and (72), we obtain an inequality for the usual
spin-squeezing parameter,

ξ 2
s,j � (N − 1)

[(�̃Jx)2 + Nj 2] − j (j + 1)ξ 2
s,j〈

J̃ 2
y

〉 + 〈
J̃ 2

z

〉 . (73)

Let us compare Eq. (73) with the fraction in Eq. (6). One
can see that the only difference is the j (j + 1)ξ 2

s,j term in the
numerator of Eq. (73). If ξ 2

s,j < 1 then for large N the first term
in the numerator in Eq. (73) is much larger than the second
one,

[(�̃Jx)2 + Nj 2] � j (j + 1)ξ 2
s,j . (74)

This can be seen noting that (�̃Jx)2 + Nj 2 � (�Jx)2 holds
and for large particle numbers the variance of an angular
momentum component is, in practice, much larger than ∼ 1.

Thus, for large particle numbers the right-hand side of Eq. (73)
equals ξ 2

os.

Finally, note that if the denominator of Eq. (70) is
nonpositive then the condition ξ 2

s,j < 1 can be satisfied
only if (�̃Jx)2 + Nj 2 � j (j + 1) which would be possible
if (�̃Jx)2 ∼ 1 and hence is not realistic for large particle
numbers. �

Observation 11 is valid only for large particle numbers.
For small particle numbers, there are quantum states that are
detected by the original spin-squeezing parameter generalized
for arbitrary spin, Eq. (5), but not detected by the spin-
squeezing parameter ξ 2

os defined in Eq. (6). For instance, such
a state is a ground state of the five-qubit Hamiltonian,

H5 = J 2
x + 1

4J 2
z + 3

4Jz. (75)

The Hamiltonian (75) has a four-dimensional subspace of
ground states. Any state in this subspace has ξ 2

s = 0.97 while
ξ 2

os = 1.29. Due to Observation 7, these states must violate
the optimal spin-squeezing inequality with three variances,
Eq. (9b), which can be verified by direct calculation.

It is instructive to see how the spin-squeezing parameter ξ 2
os

behaves for an ensemble of particles almost fully polarized in
the z direction. For a fully polarized ensemble, the first and
second moments of the angular momentum components are〈

J 2
x

〉 = 〈
J 2

y

〉 = 1
2Nj,

〈
J 2

z

〉 = N2j 2,
(76)

〈Jx〉 = 〈Jy〉 = 0, 〈Jz〉 = Nj.

Based on these, we obtain the following formulas, which are
approximately valid for almost fully polarized ensembles,

ξ 2
os ≈ (�̃Jx)2 + Nj 2

Nj 2 + 1
(N−1)

[〈
J 2

y

〉 + ∑
n

〈(
j

(n)
x

)2〉 − Nj ]
, (77a)

ξ 2
s,j ≈ (�̃Jx)2 + Nj 2

Nj 2
. (77b)

In Eq. (77), we substituted the value for completely
polarized states for 〈Jz〉 and 〈J 2

z 〉. We also used Eq. (15) to

eliminate jy and jz from Eq. (77a). The second term in the
denominator of Eq. (77a) is negligible compared to the first
term which is ∝N. Hence, the two spin-squeezing parameters
are approximately equal:

ξ 2
os ≈ ξ 2

s,j . (78)

Thus, the spin-squeezing parameter ξ 2
os detects the fully

polarized entangled states detected by ξ 2
s,j .

In practical situations, the almost completely polarized state
is mixed with noise. Next, we will discuss noisy spin-squeezed
states.

Observation 12. The spin-squeezing parameter ξ 2
os is much

more efficient than ξ 2
s,j in detecting almost completely polar-

ized spin-squeezed states mixed with white noise.
Proof. Let us consider a state � that is almost completely

polarized in the z direction and spin squeezed in the x direction.
After mixing � with white noise, we obtain

�noisy(pn) = (1 − pn)� + pnρcm, (79)

where pn is the ratio of noise and ρcm is defined in Eq. (39).
Then, using that we have 〈Jx〉 = 0, straightforward calcula-
tions show that the original spin-squeezing parameter increases
more,

ξ 2
s,j,noisy = 1

(1 − pn)
ξ 2

s,j + pn

(1 − pn)2

N2j 2

(〈Jy〉2 + 〈Jz〉2)
, (80)

than our alternative spin-squeezing parameter,

ξ 2
os,noisy = ξ 2

os + pn

1 − pn

N (N − 1)j 2(〈
J̃ 2

y

〉 + 〈
J̃ 2

z

〉) . (81)

Since Eq. (78) and 〈Jy〉2 + 〈Jz〉2 ≈ 〈J̃ 2
y 〉 + 〈J̃ 2

z 〉 hold for
almost fully polarized spin-squeezed states and for large
particle numbers, we obtain

ξ 2
os,noisy ≈ ξ 2

s,j,noisy(1 − pn). (82)

This proves our claim. �
Besides almost completely polarized states, our spin-

squeezing parameter ξ 2
os can also detect the entanglement of

unpolarized states. This is due to the fact that it is defined in
Eq. (6) based on the spin-squeezing inequality (9c), which can
be used to detect the symmetric Dicke state |DN,j 〉, given in
Eq. (43). Such states have 〈Jl〉 = 0 for l = x,y,z, and thus
they are not detected by ξ 2

s,j [77]. We will now analyze how
it is possible that Eq. (6) can be used to detect both usual
spin-squeezed states with a large polarization | �J | and states
with �J = 0.

For that, let us rewrite Eq. (6) such that the denominator
contains both variances of the spin components and their
expectation values,

ξ 2
os = (N − 1)

(�̃Jx)2 + Nj 2

(�̃Jy)2 + (�̃Jz)2 + 〈Jy〉2 + 〈Jz〉2
. (83)

Thus, the states detected by ξ 2
os < 1 have to have a small

variance of a spin component in some direction. Then, in
the orthogonal directions either they have to have a large spin
component or a large variance of one of those spin components.
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FIG. 3. (Color online) Different types of spin-squeezed states
violating the criterion based on the spin-squeezing parameter ξ 2

os

[Eq. (6)] having �J = 0. (a) Mixture of two almost completely
polarized spin-squeezed states pointing into opposite directions.
(b) Mixture of several almost completely polarized spin-squeezed
states. The original spin-squeezing inequality based on the spin-
squeezing parameter and its generalization for arbitrary spin j, ξ 2

s,j

[Eq. (5)] cannot detect these states since for these states the mean
spin is zero.

Let us see now an application of the ideas above.
Observation 13. Consider a set of quantum states �k such

that (i) �k are all detected as entangled by the spin-squeezing
parameter ξ 2

os and (ii)

(�̃Jx)2
�k

= (�̃Jx)2
�, (84)

for all k. Then, their mixture,

� =
∑

k

pk�k, (85)

for pk > 0 and
∑

k pk = 1 is always detected as entangled by
ξ 2

os. This is not the case for the spin-squeezing parameter ξ 2
s,j

defined in Eq. (5). For an illustration, see Fig. 3.
Proof. The observation can be proved by straightforward

substitution of Eqs. (84) and (85) into Eq. (6). �
Following Observation 13, let us consider a spin-squeezed

state �ss of many particles that is almost completely polarized
in the z direction and spin squeezed along the x direction. Such
a state is detected by the spin-squeezing parameter ξ 2

os defined
in Eq. (5) and also by the parameter ξ 2

s,j . Due to Observation
13, the following state is also detected by ξ 2

os,

�ss,rot = 1

2π

∫ 2π

0
dφe−iJxφ�sse

+iJxφ. (86)

The quantum state (86) has 〈Jl〉 = 0 for l = x,y,z, a large
value for (�̃Jy)2 + (�̃Jz)2 and a small value for (�̃Jx)2. From

the point of view of collective observables, the state (86) is
similar to the symmetric Dicke state given in Eq. (43). Such a
state is clearly not detected as entangled by the parameter ξ 2

s,j .

The state �ss,rot is depicted in Fig. 3(b).
Finally, note that spin-squeezing parameters can be defined

based on the optimal spin-squeezing inequality with three
variances Eq. (9b) as [58]

ξ 2
singlet =

∑
l(�Jl)2

Nj
. (87)

For a pure state, the quantity Nξ 2
singlet gives an upper bound

on the number of particles not entangled with other particles
[58,78]. ξ 2

singlet can also be interpreted through connections to
robustness measures [47].

It is also possible to define a spin-squeezing parameter
based on the inequality with two variances Eq. (9d) as

ξ 2
planar squeezing = (N − 1)

(�̃Jx)2 + (�̃Jy)2 + Nj 2〈
J̃ 2

z

〉 . (88)

If the parameter (88) is smaller than 1, and the denominator is
positive then the state is entangled. Equation (88) can be used
to characterize planar squeezing.

VI. FURTHER CONSIDERATIONS

Next, we will discuss several issues connected mostly to
practical aspects of using the spin-squeezing inequalities for
entanglement detection.

A. The nematic tensor and single-particle spin squeezing

In this section we discuss that single-particle spin squeezing
becomes possible for particles with j > 1

2 , and it is charac-
terised by the local second moments.

As mentioned in the introduction, for spin- 1
2 particles the

local second moments 〈∑n(j (n)
l )2〉 are constants. For j > 1

2 ,

the local second moments are not constants any more. In order
to characterize the collective local second moments in any
direction, we introduce the following matrix:

Qkl := 1

N

∑
n

(
1

2

〈
j

(n)
k j

(n)
l + j

(n)
l j

(n)
k

〉 − Q0δkl

)
, (89)

where for convenience we define

Q0 := j (j + 1)

3
. (90)

The traceless Q matrix is the rank-2 quadrupole or nematic
tensor [62,79–84]. It depends only on the average single-
particle density matrix thus it can be rewritten as

Qkl = (
1
2 〈jkjl + jljk〉av1 − Q0δkl

)
, (91)

where the average single-body density matrix �av1 is defined
in Eq. (61). The second moment of any angular momentum
component can be obtained as〈

j 2
�n
〉
av1 = �nT (Q + Q01)�n, (92)

where the unit vector �n describes the direction of the
component.
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The matrix Q, together with the average single-particle
spin,

〈 �j 〉 = 1

N
(〈Jx〉,〈Jy〉,〈Jz〉), (93)

contains all the information to calculate the single-particle
average spin-squeezing parameter,

ξ 2
s,j,av1 = 2j

(�j�n)2
av1

〈j�n⊥1〉2
av1 + 〈j�n⊥2〉2

av1

, (94)

where �n is some direction, and j�n⊥k are two directions
perpendicular to �n and to each other. If ξ 2

s,j,av1 < 1 then there

is entanglement between the 2j spin- 1
2 constituents within the

average single-particle state [85]. For j > 1
2 , it is possible to

obtain spin squeezing within the particles, which can lead to
improvement in metrological applications, but does not involve
interparticle entanglement [33,86].

In Eq. (4), we defined the modified second moments
and modified variances that do not contain the local second
moments. Thus, our inequalities for the spin-j particles can
be interpreted as entanglement conditions that separate the
entanglement between the spin- 1

2 constituents of the spin-j
particles and entanglement between the spin-j particles. Our
inequalities detect only spin squeezing due to interparticle
entanglement.

B. Coordinate system independent form of the
spin-squeezing inequalities

In this section, we show how to write down the optimal
spin-squeezing inequalities for a general j in a form that is
independent from the choice of the coordinate axes. Such a
form of our inequalities is very useful, as one does not have
to look for the optimal choice of the coordinate axes for the
spin-squeezing inequalities to detect a given quantum state as
entangled.

First, we define the quantities that are necessary to char-
acterize the second moments and covariances of collective
angular momentum components [87],

Ckl := 1
2 〈JkJl + JlJk〉,

(95)
γkl := Ckl − 〈Jk〉〈Jl〉.

The matrices C and γ have already been defined for the
optimal spin-squeezing inequalities for j = 1

2 [55,88]. For
the j > 1

2 case, we also need the nematic matrix Q given
in Eq. (89) to characterize the local second moments of the
angular momentum coordinates.

Based on these, we define the matrix that will play a central
role in our entanglement conditions,

X := (N − 1)γ + C − N2Q. (96)

The matrix X has also been introduced for spin- 1
2 particles in

Ref. [55]. For such systems Q = 0 · 1 and X = (N − 1)γ +
C, which agrees with the definition in Ref. [55].

We can now present our coordinate system independent
entanglement criteria.

Observation 14. The coordinate system independent form
of the optimal spin-squeezing inequalities for spin-j particles

is

Tr(C) � Nj (Nj + 1), (97a)

Tr(γ ) � Nj, (97b)

λmin(X) � Tr(C) − Nj (Nj + 1) + N2Q0, (97c)

λmax(X) � (N − 1)Tr(γ ) − N (N − 1)j + N2Q0, (97d)

where λmin(A) and λmax(A) are the smallest and largest
eigenvalues of the matrix A, respectively.

Proof. Equation (97a) can be obtained straightforwardly by
replacing the sum of the three second moments by Tr(C) on
the left-hand sides of Eq. (9a). Similarly, Eq. (97b) can be
obtained by replacing the sum of the three variances by Tr(γ )
on the left-hand side of Eq. (9b).

In order to obtain Eq. (97c) from Eq. (9c), we need to add
〈J̃ 2

k 〉 to both sides of Eq. (9c):〈
J̃ 2

k

〉 + 〈
J̃ 2

l

〉 + 〈
J̃ 2

m

〉 − N (N − 1)j 2 � (N − 1)(�̃Jk)2 + 〈
J̃ 2

k

〉
.

(98)

Then, we need to write down explicitly a diagonal element
of the matrix defined in Eq. (96) with the modified second
moments and variances as

Xkk = (N − 1)(�̃Jk)2 + 〈
J̃ 2

k

〉 + N2Q0, (99)

where k ∈ {x,y,z}. Using Eqs. (14) and (99), the optimal spin-
squeezing inequality with a single variance, Eq. (98), can be
rewritten as

Xkk − N2Q0 � Tr(C) − Nj (Nj + 1). (100)

Xkk is the only quantity in Eq. (100) that depends on the choice
of coordinate axes. Equation (100) is violated for some choice
of the coordinate axes, if and only if Eq. (97c) is violated. A
similar derivation leads from Eqs. (9d) to (97d). �

C. Measuring the second moments of local operators

In this section, we will discuss the additional complexity
arising from the need to measure the modified second moments
of the collective angular momentum components, given in
Eq. (4), rather than the true second moments, for j > 1

2 . We
will show that for each inequality it is sufficient to measure at
most only one of the quantities Ml defined in Eq. (19).

Let us now take the four inequalities in Eq. (9) and examine
whether they need the measurement of the modified second
moments. Two of the inequalities, namely Eqs. (9a) and (9b),
are already written in terms of the true variances and second
moments. In Eq. (9c), all the three expectation values, Mk, Ml,

and Mm, appear. Based on Eq. (15), from Eq. (9c) we obtain

(N − 1)(�Jk)2 − NMk � −Nj (Nj + 1) + [〈
J 2

l

〉 + 〈
J 2

m

〉]
.

(101)

In an analogous way, we can transform Eq. (9d) to

(N − 1)[(�Jk)2 + (�Jl)
2] � N (N − 1)j + 〈

J 2
m

〉 − NMm.

(102)

Note that a similar equation has already been used in Eq. (50)
to describe planar squeezing. It can be seen explicitly that both
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for Eqs. (101) and (102) only the measurement of one of the
second moments of the local operators is needed.

Measuring the expectation value of the operator
∑

n(j (n)
l )2

can be realized in two different ways: (i) by rotating the spin
by a magnetic field, and then measuring the populations of the
jz eigenstates. Let us denote the eigenvalues of jz by χz. The
sum of the local second moments can be obtained with the
populations of the jz eigenstates, Nχz

, as

Mz =
∑

χz=−j,−j+1,...,j

Nχz
χ2

z . (103)

For spin-1 systems, Mz = N−1 + N+1 = N − N0.

(ii) In some cold atomic systems, such operators might also
be measured directly, as in such systems in the Hamiltonian
a (j (n)

l )2 term coupled to the pseudospin of the light appears
[30,89,90].

One might try to eliminate the need for measuring quantities
of the type 〈Mm〉 in Eq. (101) by looking for the minimum
of (�Jk)2 for a given [〈J 2

l 〉 + 〈J 2
m〉]. This problem is very

complex and possibly can only be solved numerically for
large spins. Analogously, a condition similar to Eq. (102),
but without the need for measuring 〈Mm〉 can be obtained by
looking for the minimum of [(�Jk)2 + (�Jl)2] for a given
〈J 2

m〉.

VII. SUMMARY

In summary, we have presented a complete set of general-
ized spin-squeezing inequalities for detecting entanglement in
an ensemble of spin-j particles with j > 1

2 based on knowing
only 〈Jl〉 and the modified second moments 〈J̃ 2

l 〉 for l =
x,y,z. We have called the inequalities optimal spin-squeezing
inequalities for spin-j particles. We have also presented
a mapping from spin-squeezing inequalities valid in qubit
systems to spin-squeezing inequalities valid in qudit systems.
We have shown how to transform the original spin-squeezing
parameter to an ensemble of particles with a spin larger than 1

2 .

We have shown that a new spin-squeezing parameter based on
the optimal spin-squeezing inequality with a single variance is,
for large particle numbers, strictly stronger than the original
spin-squeezing parameter and its version mapped to higher
spins. We have also examined the entanglement properties of
the states detected by our inequalities and computed the noise
tolerances of our inequalities for these states. We have also
discussed how to measure the modified second moments in
experiments.

In the future, it would be interesting to extend our research
to entanglement conditions based on collective observables
different from angular momentum operators, with collective
operators based on the SU(d) generators [66,91]. Moreover,
it would also be interesting to find entanglement conditions
with the true second moments, without the need for measuring
the modified second moments even if this involves numerical
calculations rather than analytical ones.
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APPENDIX: PROOF OF EQ. (45)

In this Appendix, we present a proof of the formula Eq. (45)
for symmetric Dicke states with a maximal 〈J 2

x + J 2
y + J 2

z 〉
and 〈Jz〉 = 0. For completeness, we will consider a more
general case, namely, states for which 〈Jz〉 �= 0 is also allowed.
For carrying out our calculations, we need to map states of N

spin-j particles to states of 2Nj spin- 1
2 particles.

Observation 15. Let us consider symmetric Dicke states of
N spin-j particles:

|Nj,λz〉j , (A1)

which fulfill the eigenequations,(
J 2

x + J 2
y + J 2

z

)|Nj,λz〉j = Nj (Nj + 1)|Nj,λz〉j ,
(A2)

Jz|Nj,λz〉j = λz|Nj,λz〉j ,
and the subscript j indicates that they are states of spin-j
particles. For such states,

∑
n

〈(
j (n)
z

)2〉 = N (N − 1)j 2

2jN − 1
+ 2j − 1

(2Nj − 1)
λ2

z. (A3)

Proof. First note for the quantum state (A1) 〈J 2
x + J 2

y + J 2
z 〉

is maximal. All such states are uniquely characterized by the
two eigenvalues in the eigenequations Eq. (A2). Thus, a third
parameter to distinguish states with degenerate eigenvalues is
not needed.

Analogously, a symmetric Dicke state of 2Nj spin- 1
2

particles satisfying also the property that 〈J 2
x + J 2

y + J 2
z 〉 is

maximal can be denoted as

|Nj,λz〉 1
2
, (A4)

where quantum state (A4) also fulfills the eigenequations
Eq. (A2).

The symmetric Dicke state of spin-j particles, Eq. (A1),
can be mapped to the Dicke state of spin- 1

2 particles, Eq. (A4),

|Nj,λz〉j → |Nj,λz〉 1
2
. (A5)

The moments of the collective angular momentum compo-
nents, 〈Jm

l 〉, are the same for the states |Nj,λz〉j and |Nj,λz〉 1
2
.

We can imagine that we represent the spin-j particle as 2j

spin- 1
2 particles in a symmetric state. For example, the spin-1

state |0〉 is mapped to a symmetric two-qubit state,

|1,0〉1 ≡|0〉 → |1,0〉 1
2

≡ 1√
2

(∣∣∣∣+1

2
,−1

2

〉
+

∣∣∣∣−1

2
,+1

2

〉)
.

(A6)
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Operators can be mapped in an analogous way. The
expectation value of the square of the single-particle operator
for spin-j particles can be expressed with operators acting on
the spin- 1

2 state as

〈(
j (n)
z

)2〉
j

=
〈(

2j∑
k=1

j (n,k)
z

)2〉
1
2

. (A7)

The left-hand side is an expectation value evaluated on
|Nj,λz〉j , while the right-hand side is an expectation value
evaluated on |Nj,λz〉 1

2
. The superscript (n,k) denotes the kth

spin- 1
2 constituent to the nth qudit.

In the following, we will refer only to the state with spin- 1
2

particles and hence will omit the 1
2 subscript. Due to symmetry

we can express the right-hand side of Eq. (A7) with single-

particle and two-particle expectation values as〈(
2j∑

k=1

j (n,k)
z

)2〉
= 2j

〈(
j (n,1)
z

)2〉 + 2j (2j − 1)
〈
j (n,1)
z j (n,2)

z

〉
.

(A8)
The single-particle second moment is〈(

j (n,1)
z

)2〉 = 1
4 . (A9)

Moreover, the two-body correlations can be calculated from
〈J 2

z 〉 = λ2
z as

〈
j (n,1)
z j (n,2)

z

〉 = − 1

4(2Nj − 1)
+ 1

2Nj (2Nj − 1)
λ2

z. (A10)

Substituting Eqs. (A9) and (A10) into Eq. (A8), Eq. (A3)
follows. �
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[6] H. Häffner, W. Hänsel, C. F. Roos et al., Nature (London) 438,
643 (2005).

[7] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R.
Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[8] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)
413, 400 (2001).

[9] K. Hammerer, A. Sørensen, and E. S. Polzik, Rev. Mod. Phys.
82, 1041 (2010).

[10] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and
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