Macroscopic singlet states for gradient magnetometry (Supplementary Material)

Iñigo Urizar-Lanz, ${ }^{1}$ Philipp Hyllus, ${ }^{1}$ Iñigo Luis Egusquiza, ${ }^{1}$ Morgan W. Mitchell, ${ }^{2,3}$ and Géza Tóth ${ }^{1,4,5}$
${ }^{1}$ Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain
${ }^{2}$ ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain ${ }^{3}$ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain ${ }^{4}$ IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
${ }^{5}$ Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49, Hungary
In the supplement, we present additional calculations for obtaining the accuracy of the gradient measurement.

I. ADDITIONAL CALCULATIONS FOR OBTAINING $\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}(\Theta)$ FROM OBSERVATION 3

The general expression of $\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}(\Theta)$ for N particles being at the positions z_{k}^{c}, collected in a vector \vec{z}_{N}^{c}, has been obtained in Eq. (59). Here and in the following we will label with \vec{z}_{N}^{c} a vector with N elements $z_{1}^{\mathrm{c}}, \ldots, z_{N}^{\mathrm{c}}$. In order to being able to compute this for large N, we need to simplify

$$
\begin{equation*}
I_{4}:=I_{\mathrm{cccc}}+I_{\mathrm{ssss}}+2 I_{\mathrm{ccss}} \tag{S1}
\end{equation*}
$$

where

$$
\begin{align*}
I_{\mathrm{cccc}} & :=\sum_{\neq(k, l, m, n)} c_{k} c_{l} c_{m} c_{n} \\
I_{\mathrm{SSss}} & :=\sum_{\neq(k, l, m, n)} s_{k} s_{l} s_{m} s_{n} \\
I_{\mathrm{ccss}} & :=\sum_{\neq(k, l, m, n)} c_{k} c_{l} s_{m} s_{n} \tag{S2}
\end{align*}
$$

where $c_{k}=\cos \left(\frac{z_{k}^{\mathrm{c}}}{L} \Theta\right)$ and $s_{k}=\sin \left(\frac{z_{k}^{\mathrm{c}}}{L} \Theta\right)$. We will show two ways of doing this. Firstly, as stated in Eq. (60), one can rewrite it as

$$
\begin{align*}
I_{4}= & X_{1,0}^{4}+X_{0,1}^{4}+2 X_{1,0}^{2} X_{0,1}^{2} \\
& -\left(6 X_{2,0} X_{1,0}^{2}+6 X_{0,2} X_{0,1}^{2}+2 X_{2,0} X_{0,1}^{2}+2 X_{0,2} X_{1,0}^{2}+8 X_{1,1} X_{1,0} X_{0,1}\right) \\
& +8 X_{3,0} X_{1,0}+3 X_{2,0}^{2}+8 X_{0,3} X_{0,1}+3 X_{0,2}^{2}+8 X_{2,1} X_{0,1}+2 X_{2,0} X_{0,2}+8 X_{1,2} X_{1,0}+4 X_{1,1}^{2} \\
& -\left(6 X_{4,0}+6 X_{0,4}+12 X_{2,2}\right) \tag{S3}
\end{align*}
$$

where

$$
\begin{equation*}
X_{m, n}:=\sum_{k=1}^{N} c_{k}^{m} s_{k}^{n} \tag{S4}
\end{equation*}
$$

The proof is presented in Section I A below. Secondly, as stated in Eq. (62), one may also rewrite it more compactly as

$$
\begin{equation*}
I_{4}=N\left\{2(N-3)-4 N(N-2)\left|\hat{f}_{1}(\alpha)\right|^{2}+N^{3}\left|\hat{f}_{1}(\alpha)\right|^{4}+N\left|\hat{f}_{1}(2 \alpha)\right|^{2}-2 N^{2} \operatorname{Re}\left[\hat{f}_{1}^{2}(\alpha) \hat{f}_{1}(2 \alpha)^{*}\right]\right\} \tag{S5}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{f}_{1}(\alpha)=\frac{1}{N} \sum_{k} e^{i \alpha z_{k}^{c}} \quad \text { and } \quad \alpha=\frac{\Theta}{L} \tag{S6}
\end{equation*}
$$

The proof is presented in Section IB below.

A. Proof of Eq. (S3)

Let us concentrate on the last term in Eq. (S1). We can write using a shorthand notation

$$
\begin{align*}
I_{\mathrm{ccss}} & =\left(\sum_{k, l, m, n}\right. \\
& -\sum_{\neq(k=l, m, n)}-\sum_{\neq(k, l, m=n)}-\sum_{\neq(k=m, l, n)}-\sum_{\neq(k=n, m, n)}-\sum_{\neq(k, l=m, n)}-\sum_{\neq(k, l=n, m)} \\
& -\sum_{\neq(k=l, m=n)}-\sum_{\neq(k=m, l=n)}-\sum_{\neq(k=n, m=n)}-\sum_{\neq(k=l=n, m)}-\sum_{\neq(k=m=n, l)}-\sum_{\neq(l=m=n, k)} \\
& \left.-\sum_{\neq l=m, n)}-\sum_{k=l=m=n}\right) c_{k} c_{l} s_{m} s_{n} .
\end{align*}
$$

Here $\neq(k=m, l=n)$ means that the summation is such that $k=m, l=n$ and $k \neq l$. Eq. (S7) can be rewritten after simple considerations as

$$
\begin{align*}
I_{\mathrm{ccss}}= & \sum_{k, l, m, n} c_{k} c_{l} s_{m} s_{n}-\sum_{\neq(k, l, m)}\left(c_{k}^{2} s_{l} s_{m}+c_{k} c_{l} s_{m}^{2}+4 c_{k} s_{k} c_{l} s_{m}\right) \\
& -\sum_{\neq(k, l)}\left(c_{k}^{2} s_{l}^{2}+2 c_{k} s_{k} c_{l} s_{l}+2 c_{k}^{2} s_{k} c_{l}+2 c_{k} c_{l} s_{l}^{2}\right)-\sum_{k} c_{k}^{2} s_{k}^{2} \tag{S8}
\end{align*}
$$

Each term in Eq. (S8) corresponds to a line in Eq. (S7). Then, we can rewrite the terms in Eq. (S8) still containing the conditions "not equal" with terms without such conditions as follows

$$
\begin{align*}
\sum_{\neq(k, l, m)} c_{k}^{2} s_{l} s_{m}= & \left(\sum_{k, l, m}-\sum_{\neq(k=l, m)}-\sum_{\neq(k, l=m)}-\sum_{\neq(k=m, l)}-\sum_{k=m=n}\right) c_{k}^{2} s_{l} s_{m} \\
= & \sum_{k, l, m} c_{k}^{2} s_{l} s_{m} \\
& -2\left(\sum_{k, l} c_{k}^{2} s_{k} s_{l}-\sum_{k} c_{k}^{2} s_{k}^{2}\right)-\left(\sum_{k, l} c_{k}^{2} s_{l}^{2}-\sum_{k} c_{k}^{2} s_{k}^{2}\right) \\
& -\sum_{k} c_{k}^{2} s_{k}^{2} \\
= & \sum_{k, l, m} c_{k}^{2} s_{l} s_{m}-\sum_{k, l}\left(2 c_{k}^{2} s_{k} s_{l}+c_{k}^{2} s_{l}^{2}\right)+2 \sum_{k} c_{k}^{2} s_{k}^{2} \tag{S9}
\end{align*}
$$

where we used that we have

$$
\begin{equation*}
\sum_{\neq(k, l)} a_{k} b_{l}=\sum_{k, l} a_{k} b_{l}-\sum_{k} a_{k} b_{k} \tag{S10}
\end{equation*}
$$

for any real numbers a_{k} and b_{k}. Analogously, one finds that

$$
\begin{equation*}
\sum_{\neq(k, l, m)} c_{k} c_{l} s_{m}^{2}=\sum_{k, l, m} c_{k} c_{l} s_{m}^{2}-\sum_{k, l}\left(2 c_{k} c_{l} s_{l}^{2}+c_{k}^{2} s_{l}^{2}\right)+2 \sum_{k} c_{k}^{2} s_{k}^{2} \tag{S11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\neq(k, l, m)} c_{k} s_{k} c_{l} s_{m}=\sum_{k, l, m} c_{k} s_{k} c_{l} s_{m}-\sum_{k, l}\left(c_{k}^{2} s_{k} s_{l}+c_{k} s_{k} c_{l} s_{l}+c_{k} c_{l} s_{l}^{2}\right)+2 \sum_{k} c_{k}^{2} s_{k}^{2} . \tag{S12}
\end{equation*}
$$

Substituting Eqs. (S9), (S11), and (S12) into Eq. (S8), and using again Eq. (S10) for the remaining terms of two non-equal indices, we arrive at

$$
\begin{align*}
I_{\mathrm{ccss}}= & \sum_{k, l, m, n} c_{k} c_{l} s_{m} s_{n} \\
& -\sum_{k, l, m} c_{k}^{2} s_{l} s_{m}+\sum_{k, l}\left(2 c_{k}^{2} s_{k} s_{l}+c_{k}^{2} s_{l}^{2}\right)-2 \sum_{k} c_{k}^{2} s_{k}^{2} \\
& -\sum_{k, l, m} c_{k} c_{l} s_{m}^{2}+\sum_{k, l}\left(2 c_{k} c_{l} s_{l}^{2}+c_{k}^{2} s_{l}^{2}\right)-2 \sum_{k} c_{k}^{2} s_{k}^{2} \\
& -4 \sum_{k, l, m} c_{k} s_{k} c_{l} s_{m}+4 \sum_{k, l}\left(c_{k}^{2} s_{k} s_{l}+c_{k} s_{k} c_{l} s_{l}+c_{k} c_{l} s_{l}^{2}\right)-8 \sum_{k} c_{k}^{2} s_{k}^{2} \\
& -\sum_{k, l}\left(c_{k}^{2} s_{l}^{2}+2 c_{k} s_{k} c_{l} s_{l}+2 c_{k}^{2} s_{k} s_{l}+2 c_{k} c_{l} s_{l}^{2}\right)+7 \sum_{k} c_{k}^{2} s_{k}^{2} \\
& -\sum_{k} c_{k}^{2} s_{k}^{2} . \tag{S13}
\end{align*}
$$

In Eq. (S13), the first four lines correspond to the first line in Eq. (S8), and the remaining two lines to the second line. This can be simplified by combining terms that appear more than once as

$$
\begin{align*}
I_{\mathrm{ccss}}= & \sum_{k, l, m, n} c_{k} c_{l} s_{m} s_{n} \\
& -\sum_{k, l, m}\left(c_{k}^{2} s_{l} s_{m}+c_{k} c_{l} s_{m}^{2}+4 c_{k} s_{k} c_{l} s_{m}\right) \\
& +\sum_{k, l}\left(c_{k}^{2} s_{k} s_{l}(2+4-2)+c_{k}^{2} s_{l}^{2}(1+1-1)+c_{k} c_{l} s_{l}^{2}(2+4-2)+c_{k} s_{k} c_{l} s_{l}(4-2)\right) \\
& +\sum_{k} c_{k}^{2} s_{k}^{2}(-2-2-8+7-1) \tag{S14}
\end{align*}
$$

which finally yields

$$
\begin{align*}
I_{\mathrm{ccss}}= & \sum_{k, l, m, n} c_{k} c_{l} s_{m} s_{n}-\sum_{k, l, m}\left(c_{k}^{2} s_{l} s_{m}+c_{k} c_{l} s_{m}^{2}+4 c_{k} s_{k} c_{l} s_{m}\right) \\
& +\sum_{k, l}\left(4 c_{k}^{2} s_{k} s_{l}+c_{k}^{2} s_{l}^{2}+4 c_{k} c_{l} s_{l}^{2}+2 c_{k} s_{k} c_{l} s_{l}\right)-6 \sum_{k} c_{k}^{2} s_{k}^{2} \tag{S15}
\end{align*}
$$

The formula for $I_{\text {cccc }}$ can be obtained from the formula for $I_{\text {ccss }}$ [Eq. (S15)], by replacing s_{k} by c_{k} and combining terms that appear more than once as

$$
\begin{align*}
I_{\mathrm{cccc}} & =\sum_{k, l, m, n} c_{k} c_{l} c_{m} c_{n}-\sum_{k, l, m} c_{k}^{2} c_{l} c_{m}(1+1+4)+\sum_{k, l} c_{k}^{3} c_{l}(4+4)+\sum_{k, l} c_{k}^{2} c_{l}^{2}(1+2)-6 \sum_{k} c_{k}^{4} \\
& =\sum_{k, l, m, n} c_{k} c_{l} c_{m} c_{n}-6 \sum c_{k}^{2} c_{l} c_{m}+\sum_{k, l}\left(8 c_{k}^{3} c_{l}+3 c_{k}^{2} c_{l}^{2}\right)-6 \sum_{k} c_{k}^{4} . \tag{S16}
\end{align*}
$$

Similarly, the formula for $I_{\text {ssss }}$ is obtained as

$$
\begin{equation*}
I_{\mathrm{ssss}}=\sum_{k, l, m, n} s_{k} s_{l} s_{m} s_{n}-6 \sum_{k, l, m} s_{k}^{2} s_{l} s_{m}+\sum_{k, l}\left(8 s_{k}^{3} s_{l}+3 s_{k}^{2} s_{m}^{2}\right)-6 \sum_{k} s_{k}^{4} \tag{S17}
\end{equation*}
$$

Combining the results of the Eqs. (S15), (S16), and (S17), we obtain

$$
\begin{align*}
I_{4}= & I_{\mathrm{cccc}}+I_{\mathrm{ssss}}+2 I_{\mathrm{ccss}} \\
= & \sum_{k, l, m, n} c_{k} c_{l} c_{m} c_{n}+s_{k} s_{l} s_{m} s_{n}+2 c_{k} c_{l} s_{m} s_{n} \\
& -\sum_{k, l, m}\left(6 c_{k}^{2} c_{l} c_{m}+6 s_{k}^{2} s_{l} s_{m}+2 c_{k}^{2} s_{l} s_{m}+2 c_{k} c_{l} s_{m}^{2}+8 c_{k} s_{k} c_{l} s_{m}\right) \\
& +\sum_{k, l}\left(8 c_{k}^{3} c_{l}+3 c_{k}^{2} c_{l}^{2}+8 s_{k}^{3} s_{l}+3 s_{k}^{2} s_{m}^{2}+8 c_{k}^{2} s_{k} s_{l}+2 c_{k}^{2} s_{l}^{2}+8 c_{k} c_{l} s_{l}^{2}+4 c_{k} s_{k} c_{l} s_{l}\right) \\
& -6 \sum_{k}\left(c_{k}^{4}+s_{k}^{4}+2 c_{k}^{2} s_{k}^{2}\right) \tag{S18}
\end{align*}
$$

This is equivalent to Eq. (S3).

B. Proof of Eq. (S5)

Using the continuous distribution formalism one can write I_{4} from Eq. (S1) as

$$
\begin{equation*}
I_{4}=\frac{N!}{(N-4)!} \int \mathrm{d} \vec{z}_{4} f_{4}^{\vec{z}_{N}}{ }^{\mathrm{c}}\left(\vec{z}_{4}\right)\left(c_{1} c_{2} c_{3} c_{4}+s_{1} s_{2} s_{3} s_{4}+2 c_{1} c_{2} s_{3} s_{4}\right) \tag{S19}
\end{equation*}
$$

where $f_{4}^{\vec{z}_{N}}{ }^{\mathrm{c}}\left(\vec{z}_{4}\right)$ is the reduced 4-body correlation function for the chain, cf. Eq. (72) of the main text. It is computed as $f_{4}^{\vec{z}_{N}{ }^{\mathrm{c}}}\left(\vec{z}_{4}\right)=\int \mathrm{d} z_{5} \cdots \mathrm{~d} z_{N} f_{N}^{\vec{z}_{N} \mathrm{c}}\left(\vec{z}_{N}\right)$ from the permutationally invariant N-variate probability density of N particles with the z-coordinates \vec{z}_{N}^{c}, which is given by

$$
\begin{equation*}
f_{N}^{\vec{z}_{N}^{\mathrm{c}}}\left(\vec{z}_{N}\right)=\frac{1}{N!} \sum_{\pi \in S_{N}} \prod_{k=1}^{N} \delta\left(z_{k}-z_{\pi(k)}^{\mathrm{c}}\right)=\frac{1}{N!} \sum_{\neq\left(k_{1}, k_{2}, \ldots, k_{N}\right)} \prod_{j=1}^{N} \delta\left(z_{j}-z_{k_{j}}^{\mathrm{c}}\right) . \tag{S20}
\end{equation*}
$$

Here, S_{N} is the permutation group of N particles and the first sum runs over all permutations π from that group. In the second sum the k_{j} indices ranges from 1 to N with the restriction that the indices be different, and z_{k}^{c} are the locations of the particles on the chain.

For any permutationally invariant probability density f_{N} one can show that

$$
\begin{equation*}
\int \mathrm{d} \vec{z}_{4} f_{4}\left(c_{1} c_{2} c_{3} c_{4}+s_{1} s_{2} s_{3} s_{4}+2 c_{1} c_{2} s_{3} s_{4}\right)=\int \mathrm{d} \vec{z}_{4} f_{4} \cos \left[\frac{z_{1}-z_{2}+z_{3}-z_{4}}{L} \Theta\right]=\int \mathrm{d} \vec{z}_{4} f_{4} e^{\frac{i z_{1}-z_{2}+z_{3}-z_{4}}{L} \Theta} \tag{S21}
\end{equation*}
$$

holds. The second equality holds because the sine expression occuring in the exponent is an odd function under the exchange of $z_{1}+z_{3}$ and $z_{2}+z_{4}$. In this way, we can express I_{4} with the help of characteristic functions. In particular, the multivariate characteristic of the multivariate probability density $f_{N}\left(\vec{z}_{N}\right)$ is

$$
\begin{equation*}
\hat{f}_{N}\left(\vec{\alpha}_{N}\right)=\left\langle e^{i \sum_{k=1}^{N} \alpha_{k} z_{k}}\right\rangle=\int \mathrm{d} \vec{z}_{N} f_{N}\left(\vec{z}_{N}\right) e^{i \sum_{k=1}^{N} \alpha_{k} z_{k}} \tag{S22}
\end{equation*}
$$

As can be easily checked, $\hat{f}_{N}\left(\vec{\alpha}_{N}\right)$ has the following properties: (i) \hat{f}_{N} is permutationally invariant if f_{N} is, (ii) $\hat{f}_{N}\left(\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N-1}, 0\right]\right)=\hat{f}_{N-1}\left(\vec{\alpha}_{N-1}\right)$, (iii) $\hat{f}_{N}\left(\overrightarrow{0}_{N}\right)=1$, where $\overrightarrow{0}_{N}$ is a vector where all entries are equal to 0 , and (iv) $f_{N}\left(-\vec{\alpha}_{N}\right)=f_{N}\left(\vec{\alpha}_{N}\right)^{*}$. Property (ii) follows from the fact that $\int \mathrm{d} z_{N} f_{N}\left(\vec{z}_{N}\right)=f_{N-1}\left(\vec{z}_{N-1}\right)$ and property (iii) follows from the normalization of $f_{N}\left(\vec{z}_{N}\right)$.

Comparing the Equations (56), (S21), and (S22), we observe that

$$
\begin{equation*}
I_{4}=\frac{N!}{(N-4)!} \hat{f}_{4}^{\vec{z}_{N}^{c}}(\alpha,-\alpha, \alpha,-\alpha), \quad \text { where } \alpha=\frac{\Theta}{L} \tag{S23}
\end{equation*}
$$

and where $\hat{f}_{4}^{\vec{z}_{N}}$ has to be computed from the probability density of Eq. (S20). In general, the lower elements $f_{M}^{\vec{z}_{N}{ }^{\mathrm{c}}}\left(\vec{z}_{M}\right)$ $(M \leq N)$ are given by

$$
\begin{equation*}
f_{M}^{\vec{z}_{N}^{\mathrm{c}}}\left(\vec{z}_{M}\right)=\frac{(N-M)!}{N!} \sum_{\neq\left(k_{1}, k_{2}, \ldots, k_{M}\right)} \prod_{j=1}^{M} \delta\left(z_{j}-z_{k_{j}}^{\mathrm{c}}\right) \tag{S24}
\end{equation*}
$$

Let us compute the characteristic function of $f_{M}^{\vec{z}_{N}}$, dropping from now on the upper index \vec{z}_{N}^{c} in order to simplify the notation. We obtain the following recurrence relation

$$
\begin{align*}
\hat{f}_{M}\left(\vec{\alpha}_{M}\right) & =\frac{(N-M)!}{N!} \sum_{\neq\left(k_{1}, k_{2}, \ldots, k_{M}\right)} e^{i \sum_{j=1}^{M} \alpha_{j} z_{k_{j}}^{0}} \\
& =\frac{(N-M)!}{N!}\left\{\sum_{\neq\left(k_{1}, k_{2}, \ldots, k_{M-1}\right), k_{M}} e^{i \sum_{j=1}^{M} \alpha_{j} z_{k_{j}}^{0}}-\sum_{\neq\left(k_{1}, k_{2}, \ldots, k_{M-1}\right)} \sum_{l=1}^{M-1} e^{i \sum_{j=1}^{M-1} \alpha_{j} z_{k_{j}}^{0}} e^{i \alpha_{M} z_{k_{l}}^{0}}\right\} \\
& =\frac{(N-M)!}{N!}\left\{N\left\langle e^{i \alpha_{M} z_{1}}\right\rangle \frac{N!}{(N-M+1)!}\left\langle e^{i \sum_{j=1}^{M-1} \alpha_{j} z_{j}^{0}}\right\rangle-\frac{N!}{(N-M+1)!} \sum_{l=1}^{M-1}\left\langle e^{i \sum_{j=1}^{M-1} \alpha_{j} z_{j}^{0}} e^{i \alpha_{M} z_{l}^{0}}\right\rangle\right\} \\
& =\frac{1}{N-M+1}\left\{N \hat{f}_{1}\left(\alpha_{M}\right) \hat{f}_{M-1}\left(\vec{\alpha}_{M-1}\right)-\sum_{l=1}^{M-1} \hat{f}_{M-1}\left(\vec{\alpha}_{M-1}+\alpha_{M} \hat{e}_{l}\right)\right\}, \tag{S25}
\end{align*}
$$

where \hat{e}_{l} is a vector of length $M-1$ that has only one nonvanishing element (that is equal to 1) at the position l. It can be used to compute I_{4} via Eq. (S23), leading to

$$
\begin{equation*}
\hat{f}_{4}(\alpha,-\alpha, \alpha,-\alpha)=\frac{1}{N-3}\left\{N \hat{f}_{1}^{*}(\alpha) \hat{f}_{3}(\alpha,-\alpha, \alpha)-2 \hat{f}_{2}(\alpha,-\alpha)+\hat{f}_{3}(\alpha,-2 \alpha, \alpha)\right\} \tag{S26}
\end{equation*}
$$

We can apply the recurrence relation again for $M=3$ in order to reduce the complexity of this expression. We obtain

$$
\begin{aligned}
\hat{f}_{3}\left(\vec{\alpha}_{3}\right)= & \frac{1}{(N-1)(N-2)}\left\{N^{2} \hat{f}_{1}\left(\alpha_{1}\right) \hat{f}_{1}\left(\alpha_{2}\right) \hat{f}_{1}\left(\alpha_{3}\right)+2 \hat{f}_{1}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\right. \\
& \left.N\left[\hat{f}_{1}\left(\alpha_{1}\right) \hat{f}_{1}\left(\alpha_{2}+\alpha_{3}\right)+\hat{f}_{1}\left(\alpha_{2}\right) \hat{f}_{1}\left(\alpha_{1}+\alpha_{3}\right)+\hat{f}_{1}\left(\alpha_{3}\right) \hat{f}_{1}\left(\alpha_{1}+\alpha_{2}\right)\right]\right\},
\end{aligned}
$$

which for the two cases of interest in Eq. (S26) yields

$$
\begin{aligned}
\hat{f}_{3}(\alpha,-\alpha, \alpha) & =\frac{1}{(N-1)(N-2)}\left\{N^{2}\left|\hat{f}_{1}(\alpha)\right|^{2} \hat{f}_{1}(\alpha)-N \hat{f}_{1}(2 \alpha) \hat{f}_{1}^{*}(\alpha)-2(N-1) \hat{f}_{1}(\alpha)\right\}, \\
\hat{f}_{3}(\alpha,-2 \alpha, \alpha) & =\frac{1}{(N-1)(N-2)}\left\{N^{2} \hat{f}_{1}^{2}(\alpha) \hat{f}_{1}^{*}(2 \alpha)-2 N\left|\hat{f}_{1}(\alpha)\right|^{2}-N\left|\hat{f}_{1}(2 \alpha)\right|^{2}+2\right\} .
\end{aligned}
$$

Similarly, we obtain for $M=2$ that

$$
\begin{equation*}
\hat{f}_{2}\left(\alpha_{1}, \alpha_{2}\right)=\frac{1}{N-1}\left\{N \hat{f}_{1}\left(\alpha_{1}\right) \hat{f}_{1}\left(\alpha_{2}\right)-\hat{f}_{1}\left(\alpha_{1}+\alpha_{2}\right)\right\} \tag{S27}
\end{equation*}
$$

For the special case of interest $\alpha_{1}=-\alpha_{2}$ occuring in Eq. (S26) this reduces to

$$
\begin{equation*}
\hat{f}_{2}(\alpha,-\alpha)=\frac{1}{N-1}\left\{N\left|\hat{f}_{1}(\alpha)\right|^{2}-1\right\} . \tag{S28}
\end{equation*}
$$

Finally

$$
\begin{aligned}
\hat{f}_{4}(\alpha,-\alpha, \alpha,-\alpha)=\frac{1}{(N-1)(N-2)(N-3)}\{ & 2(N-3)-4 N(N-2)\left|\hat{f}_{1}(\alpha)\right|^{2}+N^{3}\left|\hat{f}_{1}(\alpha)\right|^{4}+N\left|\hat{f}_{1}(2 \alpha)\right|^{2} \\
& \left.-2 N^{2} \operatorname{Re}\left[\hat{f}_{1}^{2}(\alpha) \hat{f}_{1}(2 \alpha)^{*}\right]\right\}
\end{aligned}
$$

which due to the identity (S23) is equivalent to Eq. (S5) for $\hat{f}_{1}(\alpha)=\frac{1}{N} \sum_{k} e^{i \alpha z_{k}^{c}}$ [computed with the Eqs. (S22) and (S24)] with $\alpha=\frac{\Theta}{L}$.

II. ADDITIONAL CALCULATIONS FOR OBTAINING $\left.(\Delta \Theta)_{\mathrm{s}}^{-2}\right|_{\Theta=0}$ FOR OBSERVATION 7

We will show that for $\Theta \rightarrow 0$, the inverse variance of the estimation of Θ is given by

$$
\begin{equation*}
\left.(\Delta \Theta)_{\mathrm{s}}^{-2}\right|_{\Theta=0}=\frac{N}{L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right], \tag{S29}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma^{2} & =\int \mathrm{d} z_{1} f_{1}\left(z_{1}\right)\left(z_{1}-\left\langle z_{1}\right\rangle\right)^{2} \\
\left\langle z_{1}\right\rangle & =\int \mathrm{d} z_{1} f_{1}\left(z_{1}\right) z_{1} \\
\operatorname{cov}\left(z_{1}, z_{2}\right) & =\int \mathrm{d} z_{1} \mathrm{~d} z_{2} f_{2}\left(z_{1}, z_{2}\right)\left(z_{1}-\left\langle z_{1}\right\rangle\right)\left(z_{2}-\left\langle z_{2}\right\rangle\right)=\left\langle z_{1} z_{2}\right\rangle-\left\langle z_{1}\right\rangle\left\langle z_{2}\right\rangle . \tag{S30}
\end{align*}
$$

Proof. We estimate the uncertainty from the error propagation formula

$$
\begin{equation*}
(\Delta \Theta)_{\mathrm{s}}^{2}=\frac{\left(\Delta J_{x}^{2}\right)_{\mathrm{s}}}{\left|\partial_{\Theta}\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}\right|^{2}}, \tag{S31}
\end{equation*}
$$

cf. Eq. (48) of the main text, for general continuous density profiles. The quantities which occur are $\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}(\Theta)$, $\partial_{\Theta}\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}(\Theta)$ and $\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}(\Theta)$. In order to get the desired limit, we need to expand them around $\Theta=0$. Let us start with $\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}(\Theta)$. For fixed particle positions \vec{z}_{N}, we obtain

$$
\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}^{z_{N}}(\Theta)=\frac{N \hbar^{2}}{4}\left[1-\frac{1}{N(N-1)} \sum_{n \neq m} \cos \left(\frac{z_{n}-z_{m}}{L} \Theta\right)\right],
$$

from the Eqs. $(37,38)$ and (43). Averaging this over a general permutationally independent density profile $f_{N}\left(\vec{z}_{N}\right)$, we obtain

$$
\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}^{f_{N}}(\Theta)=\frac{N \hbar^{2}}{4}\left[1-\int \mathrm{d} z_{1} \mathrm{~d} z_{2} f_{2}\left(z_{1}, z_{2}\right) \cos \left(\frac{z_{1}-z_{2}}{L} \Theta\right)\right] \equiv \frac{N \hbar^{2}}{4}\left(1-\tilde{I}_{2}\right)
$$

Expanding the cosine in the integral we arrive at

$$
\begin{align*}
\tilde{I}_{2} & \approx 1-\frac{1}{2 L^{2}} \int \mathrm{~d} z_{1} \mathrm{~d} z_{2} f_{2}\left(z_{1}, z_{2}\right)\left(z_{1}-z_{2}\right)^{2} \Theta^{2}+O\left(\Theta^{4}\right) \\
& =1-\frac{1}{L^{2}}\left(\int \mathrm{~d} z_{1} f_{1}\left(z_{1}\right) z_{1}^{2}-\int \mathrm{d} z_{1} \mathrm{~d} z_{2} f_{2}\left(z_{1}, z_{2}\right) z_{1} z_{2}\right) \Theta^{2}+O\left(\Theta^{4}\right) \\
& =1-\frac{1}{L^{2}}\left(\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right) \Theta^{2}+O\left(\Theta^{4}\right), \tag{S32}
\end{align*}
$$

where the last line is obtained by adding and subtracting a term $\left\langle z_{1}\right\rangle^{2}$. We also used that due to the permutational invariance $\left\langle z_{1}^{2}\right\rangle=\left\langle z_{2}^{2}\right\rangle$ and $\left\langle z_{1}\right\rangle=\left\langle z_{2}\right\rangle$ hold. This leads to

$$
\begin{equation*}
\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}^{f_{N}}(\Theta) \approx \frac{N \hbar^{2}}{4 L^{2}}\left(\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right) \Theta^{2}+O\left(\Theta^{4}\right) \tag{S33}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\Theta}\left\langle J_{x}^{2}\right\rangle_{\mathrm{s}}^{f_{N}}(\Theta) \approx \frac{N \hbar^{2}}{2 L^{2}}\left(\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right) \Theta+O\left(\Theta^{3}\right) \tag{S34}
\end{equation*}
$$

Let us now consider the expansion of the term $\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}(\Theta)$. Again for fixed positions \vec{z}_{N}, we have [cf. Eq. (67)]

$$
\frac{\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}^{z_{N}}(\Theta)}{\hbar^{4}}=\frac{3 N^{2}-2 N}{16}-\frac{3 N-4}{8(N-1)} \sum_{k \neq l} \cos \left(\frac{z_{n}-z_{m}}{L} \Theta\right)+\frac{3}{16} \frac{1}{(N-1)(N-3)} I_{4},
$$

with I_{4} from Eq. (S1) above. Note that in contrast to this equation, the particle positions are labelled by \vec{z}_{N} instead of $\vec{z}_{N}^{\text {c }}$ because we have to average the expression over f_{N}. This leads to

$$
\begin{align*}
\frac{\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}^{f_{N}}(\Theta)}{\hbar^{4}} & =\frac{3 N^{2}-2 N}{16}-\frac{N(3 N-4)}{8} \int \mathrm{~d} z_{1} \mathrm{~d} z_{2} f_{2}\left(z_{1}, z_{2}\right) \cos \left(\frac{z_{1}-z_{2}}{L} \Theta\right) \\
& +\frac{3 N(N-2)}{16} \int \mathrm{~d}^{4} z f_{4}\left(\vec{z}_{4}\right)\left(c_{1} c_{2} c_{3} c_{4}+s_{1} s_{2} s_{3} s_{4}+2 c_{1} c_{2} s_{3} s_{4}\right) \\
& \equiv \frac{3 N^{2}-2 N}{16}-\frac{N(3 N-4)}{8} \tilde{I}_{2}+\frac{3 N(N-2)}{16} \tilde{I}_{4}, \tag{S35}
\end{align*}
$$

where we used again the permutational invariance of f_{N}. We need to expand the expression \tilde{I}_{4}. Using the first equality from Eq. (S21) and expanding the occurring cosine as before one obtains that

$$
\begin{align*}
\tilde{I}_{4} & \approx 1-\frac{1}{2 L^{2}} \int \mathrm{~d}^{4} z f_{4}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\left(z_{1}+z_{2}-z_{3}-z_{4}\right)^{2} \Theta^{2}+O\left(\Theta^{4}\right) \\
& =1-\frac{2}{L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right] \Theta^{2}+O\left(\Theta^{4}\right) \tag{S36}
\end{align*}
$$

Inserting the expansions of \tilde{I}_{2} from Eq. (S32) and of \tilde{I}_{4} from Eq. (S36) into Eq. (S35) leads to

$$
\begin{align*}
\frac{\left\langle J_{x}^{4}\right\rangle_{\mathrm{s}}^{f_{N}}(\Theta)}{\hbar^{4}} & \approx \frac{3 N^{2}-2 N}{16}-\frac{N(3 N-4)}{8}\left(1-\frac{1}{L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right] \Theta^{2}\right) \\
& +\frac{3 N(N-2)}{16}\left(1-\frac{2}{L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right] \Theta^{2}\right)+O\left(\Theta^{4}\right) \\
& =\frac{N}{4 L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right] \Theta^{2}+O\left(\Theta^{4}\right) . \tag{S37}
\end{align*}
$$

Now we have all the necessary ingredients to prove the claim. Indeed, inserting the Eqs. (S33,S34,S37) into Eq. (S31) we obtain

$$
(\Delta \Theta)_{\mathrm{s}}^{-2} \approx \frac{\frac{N^{2} \hbar^{4}}{4 L^{4}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right]^{2} \Theta^{2}+O\left(\Theta^{4}\right)}{\frac{N \hbar^{4}}{4 L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right] \Theta^{2}+O\left(\Theta^{4}\right)}=\frac{N}{L^{2}}\left[\sigma^{2}-\operatorname{cov}\left(z_{1}, z_{2}\right)\right]+O\left(\Theta^{2}\right)
$$

which proves Eq. (S29).

