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In the supplement, we present additional calculations for obtaining the accuracy of
the gradient measurement.

I. ADDITIONAL CALCULATIONS FOR OBTAINING hJ4
x

is(⇥) FROM OBSERVATION 3

The general expression of hJ4

xis(⇥) for N particles being at the positions zck, collected in a vector ~z c

N , has been
obtained in Eq. (59). Here and in the following we will label with ~z c

N a vector with N elements zc
1

, ..., zcN . In order to
being able to compute this for large N , we need to simplify

I
4
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+ 2I
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, (S1)

where

I
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where ck = cos( z
c
k

L ⇥) and sk = sin( z
c
k

L ⇥). We will show two ways of doing this. Firstly, as stated in Eq. (60), one can
rewrite it as
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where

Xm,n :=
N
X

k=1

cmk snk . (S4)

The proof is presented in Section IA below. Secondly, as stated in Eq. (62), one may also rewrite it more compactly
as
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where
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L
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The proof is presented in Section IB below.
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A. Proof of Eq. (S3)

Let us concentrate on the last term in Eq. (S1). We can write using a shorthand notation
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Here 6= (k = m, l = n) means that the summation is such that k = m, l = n and k 6= l. Eq. (S7) can be rewritten
after simple considerations as
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Each term in Eq. (S8) corresponds to a line in Eq. (S7). Then, we can rewrite the terms in Eq. (S8) still containing
the conditions “not equal” with terms without such conditions as follows
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where we used that we have
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for any real numbers ak and bk. Analogously, one finds that
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Substituting Eqs. (S9), (S11), and (S12) into Eq. (S8), and using again Eq. (S10) for the remaining terms of two
non-equal indices, we arrive at
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In Eq. (S13), the first four lines correspond to the first line in Eq. (S8), and the remaining two lines to the second
line. This can be simplified by combining terms that appear more than once as
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which finally yields
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The formula for I
cccc

can be obtained from the formula for I
ccss

[Eq. (S15)], by replacing sk by ck and combining
terms that appear more than once as
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Similarly, the formula for I
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is obtained as

I
ssss

=
X

k,l,m,n

skslsmsn � 6
X

k,l,m

s2kslsm +
X

k,l

(8s3ksl + 3s2ks
2

m)� 6
X

k

s4k. (S17)

Combining the results of the Eqs. (S15), (S16), and (S17), we obtain
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This is equivalent to Eq. (S3).

B. Proof of Eq. (S5)

Using the continuous distribution formalism one can write I
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from Eq. (S1) as
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where f
~z c
N

4

(~z
4

) is the reduced 4-body correlation function for the chain, cf. Eq. (72) of the main text. It is computed
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Here, SN is the permutation group of N particles and the first sum runs over all permutations ⇡ from that group. In
the second sum the kj indices ranges from 1 to N with the restriction that the indices be di↵erent, and zck are the
locations of the particles on the chain.
For any permutationally invariant probability density fN one can show that
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holds. The second equality holds because the sine expression occuring in the exponent is an odd function under the
exchange of z

1

+ z
3

and z
2

+ z
4

. In this way, we can express I
4

with the help of characteristic functions. In particular,
the multivariate characteristic of the multivariate probability density fN (~zN ) is
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As can be easily checked, f̂N (~↵N ) has the following properties: (i) f̂N is permutationally invariant if fN is, (ii)
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Comparing the Equations (56), (S21), and (S22), we observe that

I
4

=
N !

(N � 4)!
f̂
~z c
N

4

(↵,�↵,↵,�↵), where ↵ =
⇥

L
, (S23)
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Let us compute the characteristic function of f
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N

M , dropping from now on the upper index ~z c

N in order to simplify the
notation. We obtain the following recurrence relation
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where êl is a vector of length M � 1 that has only one nonvanishing element (that is equal to 1) at the position l. It
can be used to compute I
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via Eq. (S23), leading to
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We can apply the recurrence relation again for M = 3 in order to reduce the complexity of this expression. We obtain

f̂
3

(~↵
3

) =
1

(N � 1)(N � 2)

n

N2f̂
1

(↵
1

)f̂
1

(↵
2

)f̂
1

(↵
3

) + 2f̂
1

(↵
1

+ ↵
2

+ ↵
3

)

N
⇥

f̂
1

(↵
1

)f̂
1

(↵
2

+ ↵
3

) + f̂
1

(↵
2

)f̂
1

(↵
1

+ ↵
3

) + f̂
1

(↵
3

)f̂
1

(↵
1

+ ↵
2

)
⇤

o

,

which for the two cases of interest in Eq. (S26) yields
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For the special case of interest ↵
1

= �↵
2

occuring in Eq. (S26) this reduces to
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Finally
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which due to the identity (S23) is equivalent to Eq. (S5) for f̂
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II. ADDITIONAL CALCULATIONS FOR OBTAINING (�⇥)�2
s |⇥=0 FOR OBSERVATION 7

We will show that for ⇥ ! 0, the inverse variance of the estimation of ⇥ is given by
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Proof. We estimate the uncertainty from the error propagation formula
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cf. Eq. (48) of the main text, for general continuous density profiles. The quantities which occur are hJ2

xis(⇥),
@
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from the Eqs. (37,38) and (43). Averaging this over a general permutationally independent density profile fN (~zN ),
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where the last line is obtained by adding and subtracting a term hz
1

i2. We also used that due to the permutational
invariance hz2

1
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2

i and hz
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and
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Let us now consider the expansion of the term hJ4

xis(⇥). Again for fixed positions ~zN , we have [cf. Eq. (67)]
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4

from Eq. (S1) above. Note that in contrast to this equation, the particle positions are labelled by ~zN instead
of ~z c

N because we have to average the expression over fN . This leads to

hJ4

xifNs (⇥)

~4 =
3N2 � 2N

16
� N(3N � 4)

8

Z

dz
1

dz
2

f
2

(z
1

, z
2

) cos
⇣z

1

� z
2

L
⇥
⌘

+
3N(N � 2)

16

Z

d4zf
4

(~z
4

)
⇣

c
1

c
2

c
3

c
4

+ s
1

s
2

s
3

s
4

+ 2c
1

c
2

s
3

s
4

⌘

⌘ 3N2 � 2N

16
� N(3N � 4)

8
Ĩ
2

+
3N(N � 2)

16
Ĩ
4

, (S35)
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where we used again the permutational invariance of fN . We need to expand the expression Ĩ
4

. Using the first
equality from Eq. (S21) and expanding the occurring cosine as before one obtains that

Ĩ
4

⇡ 1� 1

2L2

Z

d4zf
4

(z
1

, z
2

, z
3

, z
4

)(z
1

+ z
2

� z
3

� z
4

)2⇥2 +O(⇥4)

= 1� 2

L2

[�2 � cov(z
1

, z
2

)]⇥2 +O(⇥4). (S36)

Inserting the expansions of Ĩ
2

from Eq. (S32) and of Ĩ
4

from Eq. (S36) into Eq. (S35) leads to

hJ4

xifNs (⇥)

~4 ⇡ 3N2 � 2N

16
� N(3N � 4)

8

⇣

1� 1

L2

[�2 � cov(z
1

, z
2

)]⇥2

⌘

+
3N(N � 2)

16

⇣

1� 2

L2

[�2 � cov(z
1

, z
2

)]⇥2

⌘

+O(⇥4)

=
N

4L2

[�2 � cov(z
1

, z
2

)]⇥2 +O(⇥4). (S37)

Now we have all the necessary ingredients to prove the claim. Indeed, inserting the Eqs. (S33,S34,S37) into Eq. (S31)
we obtain

(�⇥)�2

s

⇡
N2~4

4L4 [�2 � cov(z
1

, z
2

)]2⇥2 +O(⇥4)
N~4

4L2 [�2 � cov(z
1

, z
2

)]⇥2 +O(⇥4)
=

N

L2

[�2 � cov(z
1

, z
2

)] +O(⇥2),

which proves Eq. (S29).


