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We extend the criteria for k-particle entanglement from the spin-squeezing parameter presented in Sørensen
and Mølmer [Phys. Rev. Lett. 86, 4431 (2001)] to systems with a fluctuating number of particles. We also discuss
how other spin-squeezing inequalities can be generalized to this situation. Further, we show how, by employing
additional degrees of freedom, it is possible to extend the bounds to the case when the individual particles cannot
be addressed. As a by-product, this allows us to show that in spin-squeezing experiments with cold gases the
particles are typically distinguishable in practice. Our results justify the application of the Sørensen-Mølmer
bounds in recent experiments on spin squeezing in Bose-Einstein condensates.
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I. INTRODUCTION

Spin squeezing [1–3] is a central concept in quantum
metrology [4,5] and entanglement detection [6] in systems
with a large number of particles. The most prominent spin-
squeezing parameter, defined for N spin- 1

2 particles or qubits,
is [2]

ξ 2 = N (�Ĵ⊥)2

〈Ĵn〉2
. (1)

Here Ĵn = ∑N
i=1 ĵ

(i)
n is a collective spin operator pointing

along the direction n in the Bloch sphere, ĵ
(i)
n is the angular

momentum operator for the particle i, and ⊥ is a direction
perpendicular to n. It has been shown that a value ξ < 1 implies
that the state of the N particles is entangled [7]. In addition,
it allows for a phase uncertainty below the shot-noise limit,
that is, �θ < 1√

N
, when used as input of the interferometer

implementing the unitary transformation e−iθ Ĵm , where m is a
direction perpendicular to both n and ⊥ [2,8,9].

The relation between spin squeezing and entanglement has
been further extended by Sørensen and Mølmer in Ref. [10],
where bounds on ξ have been derived for a partitioning
of the state into groups of at most 1 � k < N particles. A
violation of these bounds implies that there is at least one
group of more than k particles that is fully entangled. Hence,
the state contains at least (k + 1)-particle entanglement or,
according to the definition in Ref. [10], an entanglement
depth k + 1. The criteria were applied recent experiments on
spin squeezing in Bose-Einstein condensates (BECs) [11,12].
However, while the criteria were derived for a fixed number of
distinguishable atoms, the experiments were performed with
a fluctuating number of bosons sharing the same trap. Hence,
the criteria have to be generalized to (i) a nonfixed number of
(ii) indistinguishable particles.

For the case k = 1, this has been done in Ref. [13]. There,
it has been shown that

ξ 2 = 〈N̂〉(�Ĵ⊥)2

〈Ĵn〉2
(2)

is a natural generalization of the spin-squeezing parameter
[14]. In particular, the condition ξ < 1 is sufficient for
sub-shot-noise phase estimation, �θ < 1√

〈N̂〉
, and signals

entanglement if the input state does not contain coherences
between states with a different number of particles [13]. This
justifies the use of the spin-squeezing parameter from Eq. (2) in
experiments with cold [16–18] and ultracold [11,12,19] atomic
gases (for an exhaustive list, see [3]). In Ref. [13], it has been
argued that, formally, the connection between sub-shot-noise
sensitivity and entanglement holds also for indistinguishable
particles.

In this paper, we extend, to the case of a fluctuating number
of particles, the k-particle entanglement criteria of Ref. [10].
We also show how the generalized spin-squeezing entangle-
ment criteria of Refs. [20,21] can be extended accordingly.
Afterward, we use additional atomic degrees of freedom to
extend the k-particle entanglement criteria to indistinguishable
particles. We show that in a typical spin-squeezing experiment
with cold, but not ultracold, atomic gases, the particles
can be treated as distinguishable effectively. These results
apply also to other spin-squeezing criteria [3,6,20–30], which
are generally derived for a fixed number of distinguishable
particles.

The article is organized as follows. In Sec. II, we discuss the
generalization to a nonfixed number of particles. In Sec. III, we
consider the applicability of the bounds for indistinguishable
particles, discussing explicitly cold atomic ensembles and
BECs. The conclusions can be found in Sec. IV.

II. SPIN-SQUEEZING BOUNDS FOR A FLUCTUATING
NUMBER OF PARTICLES

Let us first recall the definition of (k + 1)-particle entangle-
ment and see how it can be extended to the case of a fluctuating
number of particles.

A pure state of N particles is k-producible [31,32] if it can
be written as ∣∣ψ (N)

k-prod

〉 = ⊗MN

α=1

∣∣ψ (Nα)
α

〉
, (3)
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where |ψ (Nα)
α 〉 is a state of Nα � k particles (such that∑MN

α=1 Nα = N ). A mixed state is k-producible if it can be
written as a mixture ρ

(N)
k-prod = ∑

l pl|ψ (N)
kl -prod〉〈ψ (N)

kl -prod| with
kl � k for all l. A state that is (k + 1)-producible but not k-
producible is referred to as (k + 1)-particle entangled because
it contains full entanglement of at least one group of k + 1
particles (with 1 � k < N ) [10,33]. The concept of (k + 1)-
particle entanglement was referred to as entanglement depth
in Ref. [10].

The extension of the above definition to the case of a
fluctuating number of particles follows Ref. [13]. In this case,
we define a quantum state to be k-producible if and only if it is
k-producible in every fixed-N subspace. Hence, a k-producible
quantum state without coherences between states of different
N can be written as

ρ inc
k-prod =

∑
N

QNρ
(N)
k-prod, (4)

where ρ
(N)
k-prod is a state of N particles and {QN } forms a

probability distribution. In practice, QN → 0 if N is above
some threshold due to energy restrictions in the laboratory.
For a general state ρ which may contain coherences between
different N , we introduce the projection

1Nρ1N = QNρ(N), (5)

where 1N is the projector to the subspace of N particles and
ρ(N) is a state on this subspace. We may then define a state to
be k-producible in general if ρ(N) is k-producible for any N .

Note that there is an ongoing debate about whether or not
superpositions between states of different particle numbers
can actually be created [34]. It turns out that since the angular
momentum operator Ĵn = ⊕N Ĵ

(N)
n , for any arbitrary direction

n, commutes with the number operator N̂ = ⊕NN1N , such
coherences do not have any effect for entanglement detection
with Ĵn and its moments [23].

A. Generalizing the Sørensen-Mølmer criteria
to a fluctuating N

Bounds on ξ have been derived for states of N spin-j
particles among which at most groups of k particles are
entangled [10]. The bounds are computed with the help of
the function [35]

Fj (X) ≡ 1

j
min

ρ
(�ĵ⊥)2

∣∣∣ 〈ĵn〉
j

=X
, (6)

where the minimization is performed over all states ρ of a
spin-j particle which fulfill 〈ĵn〉/j = X for some X ∈ [0,1]
[36]. In Eq. (6), ĵ⊥ and ĵn are spin operators for the single
spin-j particle. It is then shown that for k-producible states,
the bound

(�Ĵ⊥)2 � Nj Fkj

( 〈Ĵn〉
Nj

)
(7)

holds, where Ĵn = ∑N
i=1 ĵ

(i)
n and in analogy for Ĵ⊥, as

introduced above. Hence, if the measured values of 〈Ĵn〉 and
(�Ĵ⊥)2 violate Eq. (7), then the state is at least (k + 1)-particle
entangled. For j = 1

2 , the state allows for a smaller uncertainty
in an interferometric protocol than any k-producible state.

Before generalizing these bounds to states with a nonfixed
N , we remark that a different method also related to phase
estimation, based on the quantum Fisher information, to detect
(k + 1)-particle entanglement for a state of a fixed number of
particles, has been recently introduced in Ref. [37].

Observation 1. For k-producible states of spin-j particles
with a fluctuating total number, and with given average values
〈N̂〉 and 〈Ĵn〉, the inequality

(�Ĵ⊥)2 � 〈N̂〉j Fkj

( 〈Ĵn〉
〈N̂〉j

)
(8)

holds, irrespective of whether coherences between different
numbers of particles are present in the state.

The proof is given in Appendix 1. Note that Eq. (8) reduces
to Eq. (7) for a fixed number of particles. Also for a fixed
N , Observation 1 extends the seminal result of Ref. [10] in
two ways. First, in the proof, a step is carried out [below
Eq. (A1)] which was not discussed explicitly in the original
proof. Further, Observation 1 does not require N

k
to be an

integer as in the original criterion. In order to apply it for
nonfixed N , simply N has to replaced by 〈N̂〉, as in the usual
spin-squeezing criterion [13].

B. Generalizing other spin-squeezing inequalities
to a fluctuating N

We now consider other spin-squeezing inequalities for
entanglement detection [3,6,20–30], which have been derived
for a fixed number of particles. Most of them can be
generalized to the case of a fluctuating number of particles
by directly using the inequality

(�Ĵn)2 =
∑
N

QN

〈(
Ĵ (N)

n

)2〉 −
(∑

N

QN

〈
Ĵ (N)

n

〉)2

�
∑
N

QN

(
�Ĵ (N)

n

)2
, (9)

which can be derived using the Cauchy-Schwarz inequality, for
any arbitrary direction n. It also follows from the concavity
of the variance. Further, note that for any operator Ô =
⊕∞

N=0Ô
(N), which commutes with N̂ ,

〈Ôl〉 = Tr[ρÔl] =
∑
N

QNTr[ρ(N)(Ô(N))l] (10)

holds for any power l. All angular momentum operators Ĵn
are of this form. Therefore, coherences between states of
different N in ρ do not play any role in entanglement de-
tection with any kind of spin-squeezing criteria, as mentioned
above.

As an example, we perform the generalization for the
complete set of inequalities from Ref. [20] and for the criteria
detecting k-particle entanglement from Ref. [21]. All these
criteria have been derived for N particles with spin j = 1

2 .
The set of criteria of Ref. [20] is〈

Ĵ 2
x

〉 + 〈
Ĵ 2

y

〉 + 〈
Ĵ 2

z

〉
� N (N + 2)/4, (11)

(�Ĵx)2 + (�Ĵy)2 + (�Ĵz)2 � N/2, (12)

012337-2



ENTANGLEMENT AND EXTREME SPIN SQUEEZING FOR A . . . PHYSICAL REVIEW A 86, 012337 (2012)

〈
Ĵ 2

i

〉 + 〈
Ĵ 2

j

〉 − N/2 � (N − 1)(�Ĵl)
2, (13)

(N − 1)[(�Ĵi)
2 + (�Ĵj)

2] �
〈
Ĵ 2

l

〉 + N (N − 2)/4, (14)

where i,j,l take all possible permutations of x,y,z. This set is
complete in the sense that it detects all entangled states which
can be detected based on the knowledge of 〈Ĵ 2

i 〉 and (�Ĵi)2

for i = x,y,z [20].
Due to linearity, inequality (11), which is valid for all

quantum states, directly generalizes to〈
Ĵ 2

x

〉 + 〈
Ĵ 2

y

〉 + 〈
Ĵ 2

z

〉
� [〈N̂2〉 + 2〈N̂〉]/4. (15)

Inequality (12) can be generalized using Eq. (9) to

(�Ĵx)2 + (�Ĵy)2 + (�Ĵz)2 � 〈N̂〉/2. (16)

This generalization has been obtained already in Ref. [38]. In
analogy, the inequalities (13) and (14) can be generalized by
applying Eq. (9) to the variances. The result can be written as

(�Ĵl)
2 �

〈
(N̂ − 1)−1Ĵ 2

i

〉
+ 〈

(N̂ − 1)−1Ĵ 2
j

〉 − 〈(N̂ − 1)−1N̂〉/2, (17)

(�Ĵi)
2 + (�Ĵj)

2 �
〈
(N̂ − 1)−1Ĵ 2

l

〉
+〈(N̂ − 1)−1N̂ (N̂ − 2)〉/4. (18)

Here it is assumed that Q0 = Q1 = 0. This should not pose
a problem because the spin-squeezing criteria are developed
for a large number of particles. A conceptual change in the
generalized criteria from Eqs (17) and (18) is that instead
of the expectation values 〈Ĵ 2

i 〉, terms such as 〈(N̂ − 1)−1Ĵ 2
i 〉

appear. This implies that the number of particles has to be
measured in each shot, which might complicate the application
in some experiments. In the same way, the set of inequalities
for N spin-j particles from Ref. [30] can be generalized to a
nonfixed N .

Note that alternatively, the criteria could be tested for a fixed
number of particles N . In this case, one could collect separate
statistics for each N . If the number fluctuates strongly, it would
be very difficult to collect enough statistics for a given fixed
N , while it is still possible to have enough statistics for the
generalized criteria.

We finally remark that the bound

(�Ĵz)2 � 1

k + 2

[〈
Ĵ 2

x

〉
N

+
〈
Ĵ 2

y

〉
N

]
− 1

4
(19)

for k-producible states from Ref. [21] can be generalized to

(�Ĵz)2 � 1

k + 2

[〈
N̂−1Ĵ 2

x

〉 + 〈
N̂−1Ĵ 2

y

〉] − 1

4
. (20)

This bound is optimal for the symmetric twin-Fock states with
N/2 particles in each of the two modes of an interferometer
which promises a phase uncertainty close to the ultimate
Heisenberg limit, �θ = 1

N
[39]. Recently, such states have

been prepared experimentally with ultracold atomic gases
[40–43]. Since the number of atoms fluctuates in these
experiments, Eq. (20) could be used to bound k, while
Eq. (8) from Observation 1 is generally not useful in this
situation since 〈Ĵn〉 = 0 for these states. However, the same

problem concerning the indistinguishability of the particles
occurs also here. This problem is discussed in the next section.

III. SPIN-SQUEEZING BOUNDS FOR
INDISTINGUISHABLE PARTICLES

The bounds (7) and (8) presented above have been derived
for distinguishable particles. This corresponds to the usual
situation employed in quantum information theory with, for
instance, trapped ions. In this case the particles are assumed
to sit at remote locations and operations are only performed
on the internal degrees of freedom, locally at each trap. The
particles can be treated as distinguishable, labeled by the trap
number, and the (anti-)symmetrization can be dropped [44].

However, Eq. (7) has been recently applied to discuss spin-
squeezing experiments with BECs [11,12]. In this situation,
all the particles (bosons) share the same trap state. Their
collective internal state has to be fully symmetric with respect
to the interchange of any two particles in first quantization.
For indistinguishable bosons, the (symmetric) fully separable
states have the form |φ〉⊗N . The spin-squeezing condition ξ <

1 [see Eqs. (1) and (2)] still holds and signals entanglement in
the sense that the state of the indistinguishable bosons cannot
be written as |φ〉⊗N . The relation between shot-noise limit and
separable states holds formally as well [13,45,46,48].

In contrast, a symmetric state of N particles can be either
fully separable or fully entangled, but no symmetric states
that are k-particle entangled as in Eq. (3) exist for 1 < k <

N [50–52]. Hence, the classification introduced above for
distinguishable particles is not directly applicable to recent
experiments with BECs, where the individual particles are not
addressable. The same problem would occur if the criteria for
k-particle entanglement proposed in [21] and generalized in
Eq. (20) were applied to the twin-Fock states produced recently
with ultracold atomic gases [40–43].

A. Entanglement and spin squeezing due to symmetrization

First, let us notice that the collective spin operators Ĵn,
which appear in the definition of the spin-squeezing parameter
ξ [Eqs. (1) and (2)], are permutationally invariant, that is,
P̂π ĴnP̂

†
π = Ĵn for any of the N ! permutations π of the N

particles (represented by P̂π ). Therefore, Tr[ρĴn] = Tr[ρPIĴn],
where ρPI = 1

N!

∑
π P̂πρP̂ †

π is permutationally invariant. One
may think that, because of this property of the collective
spin operators, the spin-squeezing bounds for nonsymmetric
states and the corresponding symmetrized states should remain
the same. However, a state of N bosons needs not only to be
permutationally invariant, but symmetric with respect to the
interchange of any two particles; that is, it has to be possible
to write it as a mixture of symmetric pure states fulfilling
P̂π |ψS〉 = |ψS〉 for any permutation π . This is a much stronger
requirement [53].

Consider, for example, the permutationally invariant state of
N = 2 particles 
PI = [|0〉〈0| ⊗ |1〉〈1| + |1〉〈1| ⊗ |0〉〈0|]/2.
Here |0〉 and |1〉 are eigenstates of the Pauli matrix σ̂z with
eigenvalue + 1 and −1, respectively. This can be rewritten
as 
PI = [|ψ+〉〈ψ+| + |ψ−〉〈ψ−|]/2, where |ψ±〉 = (|01〉 ±
|10〉)/√2. Hence, 
PI does not live on the symmetric subspace
because it has an antisymmetric component |ψ−〉. Since the
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state is separable, ξ � 1 for any combination of the directions
n and ⊥. Hence, it does not allow for sub-shot-noise phase
estimation. Projecting 
PI onto the symmetric subspace leads
to 
PI → |ψ+〉. This state is known as a twin-Fock state
of N = 2 particles [39]. It is entangled [45] and allows
for sub-shot-noise phase estimation [39] even though it is
not spin squeezed because 〈ψ+|Ĵn|ψ+〉 = 0 for any n. In
Appendix 2, we consider an additional example where a
separable state is transformed into an entangled spin-squeezed
state by symmetrization.

This shows that symmetrization preserves neither entangle-
ment nor spin squeezing. In general, symmetrization does not
preserve the k-producibility class of a state of N particles. A
k-producible state will generally be N -particle entangled after
the symmetrization, and the bounds for a given k do not apply
anymore.

B. Generalizing the Sørensen-Mølmer criteria for
indistinguishable particles

We assume that the collective spin transformations and
measurements are performed on two energy levels of each
atom, which we refer to as the internal degrees of freedom.
The extension of the bounds (7) and (8) to indistinguishable
particles is based on the inclusion of the atomic external
degrees of freedom such as the spatial trap states. We thus
consider operations of the form Âin ⊗ 1ex, where Âin acts
on the internal degrees of freedom and 1ex is the identity
acting on the external degrees of freedom. The operator Âin ⊗
1ex must be permutationally invariant because we consider
indistinguishable particles [44]. As mentioned above, this is
the case for the collective spin operators Âin = Ĵn.

The basic idea is that particles can be distinguished here
by their external state. Therefore, the state needs to be sym-
metrized only with respect to all particles in the same external
state, but not with respect to particles in different external
states. This is true even though the operations introduced above
do not resolve the external states [54]. We remark that this is
similar to the situation considered in Refs. [55,56] of particles
which are distinguishable in principle by some external modes,
but which the measurement apparatus is not able to resolve.

Let us illustrate our approach with an example. We consider
N = 2 particles, labeled as 1 and 2, in two different external
states, labeled as a and b (〈a|b〉 = 0). Following Ref. [44], a
general pure symmetric state can be written as

|ψ〉 = 1√
2

(|ψ12〉in ⊗ |a1b2〉ex + |ψ21〉in ⊗ |b1a2〉ex), (21)

where |ψ12〉in is a general (not necessarily symmetric) internal
state of the two particles, |ψ21〉in = P̂in|ψ12〉in, P̂in permutes
the particles, and |aibj 〉ex is the external (e.g., spatial) wave
function (i,j = 1,2, i �= j ). The mean value of the operator
Âin ⊗ 1ex is

〈ψ |Âin ⊗ 1ex|ψ〉 = 〈ψ12|Âin|ψ12〉 + 〈ψ21|Âin|ψ21〉
2

, (22)

where the two terms in the sum are equal since Âin is
permutationally invariant:

〈ψ21|Âin|ψ21〉 = 〈ψ12|P̂ †
inÂinP̂in|ψ12〉 = 〈ψ12|Âin|ψ12〉. (23)

(b)

(c)(a)

FIG. 1. (Color online) Illustration of Observation 2 with particles
of din = 2 internal states. The light-gray structure (blue online)
indicates entanglement between particles. (a) Fully distinguishable
particles (dex = N ). Depicted is a three-particle entangled state
of N = 8 particles. Entanglement is present between the particles
with energy level γ equal to 2, 3, and 5 (counting upward from
the lowest level with γ = 1), and between particles 7 and 8.
(b) Fully indistinguishable particles (dex = 1). Depicted is a state
which does not factorize. (c) Mixed situation (1 < dex < N ). De-
picted is a four-particle entangled state of N = 11 particles in
dex = 5 external levels. There are two groups of four fully entangled
particles: In the external level γ = 2, where the four particles are
indistinguishable and in a nonfactorisable state; and in levels 4
and 5. In the latter case, the group of particles in level γ = 4 is
distinguishable from the particle in level γ = 5. The two particles in
the lowest level γ = 1 are in a symmetric separable state of the form
|φ〉 ⊗ |φ〉.

We dropped the label “in” of |ψ12〉in for simplicity. The above
equations show that |ψ12〉 is sufficient to describe the state
of the two particles. In particular, nonsymmetric states |ψ12〉
are allowed and the two particles can be formally treated as
distinguishable.

The generalization to a system of Nγ particles in the
external level γ (such that

∑
γ Nγ = N ) can be formulated

as follows.
Observation 2. The expectation value 〈Âin ⊗ 1ex〉 for any

permutationally invariant operator Âin with respect to a fully
symmetric state |ψ〉 with Nγ bosons in the external state γ is
equal to the expectation value 〈Âin〉 computed with respect to
the corresponding internal state |ψ〉in, which is symmetrized
only with respect to the particles sharing the same state γ , for
all γ .

This observation is formulated more precisely in
Appendix 3 below, where also the relationship of |ψ〉 and
|ψ〉in is explained in detail.

Figure 1 illustrates several examples of N particles in
din = 2 internal and dex external modes. The usual situation
employed in quantum information theory, where all particles
are distinguishable (dex = N ), is shown in Fig. 1(a). For what
concerns our discussion, this is formally equivalent to an array
of separated wells, as in ion traps. The opposite situation of
all particles occupying the same level (dex = 1) is shown in
Fig. 1(b). For indistinguishable particles, only two possibilities
are allowed in this case: Either all particles are in a separable
(that is, product |φ〉⊗N ) state, or all particles are entangled,
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due to the symmetrization [50–52]. As mentioned above, the
k-particle entanglement criterion discussed in Sec. II does not
apply in this case. The interesting intermediate situation is
shown in Fig. 1(c). In this case several particles may occupy
the same external state. As noticed in Observation 2, the
symmetrization is necessary only for particles that share the
same external level γ . In this case, the Nγ particles may be only
found in a fully entangled or fully separable state. However,
entanglement is also possible between particles occupying
different levels.

We can now extend the Sørensen-Mølmer bounds. A state
can be considered as (effectively) k-producible if

|ψ〉in = ⊗M
α=1|ψα〉, (24)

where |ψα〉 is the state of Nα � k particles (
∑M

α=1 Nα = N )
for all α. The particles in the state |ψα〉 can occupy a single
external state γ (in which case Nα = Nγ and |ψα〉 = |ψγ 〉
is symmetric) or different external states γ ∈ Iα (in which
case Nα = ∑

γ∈Iα
Nγ and |ψα〉 is not necessarily symmetric).

As an example, the state schematically shown in Fig. 1(c) is
four-particle entangled.

With this notion, the Sørensen-Mølmer criteria can be
applied in systems of indistinguishable particles as follows.

Observation 3. (i) For particles of spin j , if the spin-
squeezing parameter violates Eq. (7) for a given k, then
the input state cannot be written as a mixture of effectively
k-producible states of Eq. (24). (ii) For particles of spin 1

2 ,
if the spin-squeezing parameter violates Eq. (7) for a given
k, then the input state allows for a smaller phase uncertainty
than the smallest one achievable with a mixture of effectively
k-producible states of Eq. (24).

In both cases, effective (k + 1)-particle entanglement is
proven by a violation of the criteria. These notions directly
generalize to systems of a fluctuating number of particles as
in Sec. II.

C. Cold atoms

Observation 2 is also useful in the context of entanglement
detection with generalized spin-squeezing inequalities (SSIs)
[3,6] in cold atomic clouds. Usually the atomic ensembles are
not ultracold, and can be assumed to be in a thermal state
externally. We estimate the population of the trap levels using
the statistics of an ideal Bose gas taking the parameters from a
typical experiment with a cigar-shaped configuration [57,58]:
ωz = 2, ω⊥ = 1000 (trap frequencies in units of 2πs−1), T =
30 μK, N = 5 × 105. The chemical potential μ is defined
implicitly by the relation N = ∑

k〈nk〉, where [59]

〈nk〉 =
∑

n

[
e−βn(Ek−μ)∑
n′ e−βn′(Ek−μ)

]
n = 1

eβ(Ek−μ) − 1
(25)

is the average population of the level k, β = 1/kBT with the
the Boltzmann constant kB , and Ek is the energy of level k. We
approximate this by the energy levels of a three-dimensional
harmonic oscillator with the given trap frequencies.

The largest average population is obtained for the ground
state with energy E0 = h̄(ωz/2 + ω⊥). We obtain βμ ≈
−12.41, which leads to 〈n0〉 ≈ 4.1 × 10−6. Further, the
probability of having nk particles in the level k, given by
the expression in square brackets in Eq. (25), decreases

exponentially with nk . The ratio pnk+1/pnk
= e−β(Ek−μ) is the

largest for k = 0, where it is equal to 4.1 × 10−6. Therefore, it
can be assumed that at most one particle occupies each level.
Since only internal quantities are used in the generalized SSI,
one can therefore treat the particles as distinguishable by using
Observation 2. This situation corresponds to the one depicted
in Fig. 1(a).

D. Bose-Einstein condensates

In BECs particles share the same external state, as schemat-
ically illustrated in Fig. 1(b). In this case, it is not possible to
directly apply the bounds (7) and (8): Particle entanglement is
either absent or maximal, due to symmetrization [50–52].

However, we recall that Eqs. (7) and (8) are sufficient
conditions for entanglement and, as mentioned in the Intro-
duction, for spin j = 1

2 particles, they are strongly related to
the usefulness of the entangled state for parameter estimation.
Therefore, a measurement of the spin-squeezing bounds in
BECs might still be consistent with k < N , even if, by some
other means, it is possible to show that all particles share
the same external state, as in Ref. [11]. The outcome k < N

should be interpreted either as due to noise or by saying that
all particles are entangled but the state is only partially useful
for parameter estimation. It is known, indeed, that there are
symmetric states which are fully N -particle entangled, but
that are not spin squeezed and do not allow for sub-shot-noise
phase estimation [45].

Finally, one might think that, by making the BEC cloud
very dilute, it is possible to effectively distinguish the particles
and thus use the spin-squeezing bounds (7) and (8). In
Appendix 4 we show that this is not the case.

IV. CONCLUSIONS

The spin-squeezing criteria introduced by Sørensen and
Mølmer for N distinguishable particles in Ref. [10] are
a powerful and experimentally feasible method to detect
k-particle entanglement, also referred to as entanglement
depth k. However, most of the spin-squeezing experiments
are performed with a fluctuating number of particles and, as
in the case of BEC, these particles are indistinguishable. To
fill this gap between theory and experiment, we have extended,
in the first part of this article, the Sørensen and Mølmer criteria
to systems with a fluctuating number of particles. We have
also shown how other SSIs [20,21] can be generalized to
this situation. In the second part of the paper, we discussed
the conceptual problems that occur when the individual
particles are indistinguishable. In this case, effective k-particle
entanglement can be defined only by making use of additional
degrees of freedom of the atoms. The spin-squeezing bounds
of Ref. [10] can then be interpreted as conditions of such
effective k-particle entanglement. Our results make it possible
to apply the bounds of Ref. [10] in spin-squeezing experiments
with cold atoms and BECs.
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APPENDIX

1. Proof of Observation 1

The proof follows the lines of the proof of Eq. (7)
for fixed N [10] using methods developed for nonfixed N

in Ref. [13]. We want to compute a lower bound on the
variance of Ĵ⊥ for all k-producible states. Since the variance
is concave in the state, its minimum value is reached by pure
states of the form |ψk-prod〉 = ∑

N

√
QN |ψ (N)

k-prod〉 [60], where√
QN are real numbers with

∑
N QN = 1 and |ψ (N)

k-prod〉 =⊗MN

α=1 |ψ (Nα)
α 〉 is a k-producible state of N particles [cf. Eq. (3)].

Using Eq. (9) we can write (�Ĵ⊥)2 �
∑

N QN (�Ĵ
(N)
⊥ )2. In

addition, we note that, due to the product structure of the
states |ψ (N)

k-prod〉 and since Ĵ
(N)
⊥ is the sum of operators acting

on different sets of Nα particles, Ĵ
(N)
⊥ = ∑MN

α=1 Ĵ
(Nα)
⊥ , we have

(�Ĵ
(N)
⊥ )2 = ∑MN

α=1(�Ĵ
(Nα)
⊥ )2. Therefore, the variance of Ĵ⊥ for

k-producible states is bounded by

(�Ĵ⊥)2 �
∑
N

QN

MN∑
α=1

(
�Ĵ

(Nα )
⊥

)2
, (A1)

where the operator on the right-hand side acts on the Nα

particles in the state |ψ (Nα)
α 〉. Note that we did not attach an

index N to Nα in order to simplify the notation.
Now we have to find the minimal bound for the variances

(�Ĵ
(Nα)
⊥ )2 for every N , given the mean value 〈Ĵ (Nα )

n 〉. If we
consider Nα spin-j particles, the total spin jα can range
from 0 (if Nα is even) or 1/2 (if Nα is odd) up to Nα j .
We show that for any 〈Ĵ (Nα )

n 〉, the smallest bound is reached
by choosing the largest total spin possible by using that
(�Ĵ

(Nα)
⊥ )2 � jαFjα

(〈Ĵ (Nα )
n 〉/jα) for states with a fixed spin jα

[cf. Eq. (6)]. The ingredients needed for showing this, which
have been proven in Ref. [10], are (i) the functions Fjα

are
convex, that is, Fjα

(aX + bY ) � aFjα
(X) + bFjα

(Y ) for all
jα and a,b � 0 with a + b = 1; (ii) Fjα

(0) = 0 for all jα; and
(iii) that Fjα

(X) � Fj ′
α
(X) if jα � j ′

α . By using the inequality

(i) with a = j ′
α

jα
, Y = 0, and b = 1 − a, and the property (ii), we

have Fjα
( j ′

α

jα
X) � j ′

αFjα
(X)/jα . Multiplying by jα both terms

and using (iii), we arrive at jαFjα
( j ′

α

jα
X) � j ′

αFj ′
α
(X) if j ′

α � jα .

Finally, taking X = 〈Ĵ (Nα )
n 〉
j ′
α

, we have

jαFjα

(〈
Ĵ

(Nα )
n

〉
jα

)
� j ′

αFj ′
α

(〈
Ĵ

(Nα )
n

〉
j ′
α

)
(A2)

if jα � j ′
α . Let us now consider a superposition |ψ〉 =

cjα
|ψjα

〉 + cj ′
α
|ψj ′

α
〉 of states with a different fixed spin jα �

j ′
α . Since the spin operator Ĵ⊥ does not couple the states

of different total spin jα and j ′
α , its variance with respect

to |ψ〉 is equal to the variance with respect to the mixture
ρ = |cjα

|2|ψjα
〉〈ψjα

| + |cj ′
α
|2|ψj ′

α
〉〈ψj ′

α
|. Using the concavity

of the variance, we obtain that

(�Ĵ⊥)2
|ψ〉 � |cjα

|2(�Ĵ⊥)2
|ψjα 〉 + |cj ′

α
|2(�Ĵ⊥)2

|ψj ′
α
〉

� |cjα
|2Fjα

(〈Ĵn〉|ψjα 〉/jα) + |cj ′
α
|2Fj ′

α
(〈Ĵn〉|ψj ′α 〉/j ′

α)

� Fjα
(〈Ĵn〉|ψjα 〉/jα),

where we have used Eq. (A2) and |cjα
|2 + |cj ′

α
|2 = 1.

Taking the maximum value of jα (i.e., jα = Nαj ) we arrive
at

(
�Ĵ

(Nα )
⊥

)2 � NαjFNαj

(〈
Ĵ

(Nα )
n

〉
Nαj

)
� NαjFkj

(〈
Ĵ

(Nα )
n

〉
Nαj

)
,

(A3)

where the second inequality is due to (iii) and Nα � k for
k-producible states. Since the function Fjα

(X) is convex in X,
we can now apply Jensen’s inequality [62] to the last term in
Eq. (A3). We obtain that

MN∑
α=1

(
�Ĵ

(Nα )
⊥

)2 � NjFkj

(〈
Ĵ

(N)
n

〉
Nj

)
, (A4)

where 〈Ĵ (N)
n 〉 = ∑

α〈Ĵ (Nα )
n 〉 for any N . Finally, by combining

Eqs. (A1) and (A4), and using again Jensen’s inequality [62],
we have

(�Ĵ⊥)2 �
∑
N

QNNj Fkj

(〈
Ĵ

(N)
n

〉
Nj

)
� 〈N̂〉jFkj

( 〈Ĵn〉
〈N̂〉j

)
,

where 〈N̂〉 = ∑
N QNN and 〈Ĵn〉 = ∑

N QN 〈Ĵ (N)
n 〉. This

proves Observation 1 [cf. Eq. (8)]. �

2. Example: Symmetrization creates spin squeezing

Let us consider the state

|ψα〉=√
α|11〉+√

1 − α|01〉= (
√

α|1〉+√
1 − α|0〉) ⊗ |1〉,

(A5)

which is clearly separable. Therefore, it has a spin-squeezing
parameter ξ 2 � 1 for any α and any combination of the
directions n and ⊥; that is, it is not spin squeezed. In particular,
for the directions n = z and ⊥ = x it is given by [cf. Eq. (1)]

ξ 2
α = 1

α2
− 2

α
+ 2 � 1. (A6)

The corresponding state which could be realized in the scenario
of indistinguishable bosons is obtained by symmetrizing (and
normalizing) the state |ψα〉, leading to∣∣ψS

α

〉 =
√

β |11〉 +
√

1 − β
|01〉 + |10〉√

2
, (A7)

where β = 2α
1+α

. For this state, the spin-squeezing parameter
for the same particular directions n = z and ⊥ = x is given by
[cf. Eq. (1)]

ξ 2
β = 2

α2
− 5

α
+ 4. (A8)

This is smaller than the critical value 1 for a large range of
parameters. The minimum is reached at ξ 2

β = 7/8 for β = 4/5,
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FIG. 2. (Color online) Plot of the spin-squeezing parameters ξ 2
α

[dashed line, Eq. (A6)] and ξ 2
β [solid line, Eq. (A8)]. While ξ 2

α never
goes below the value 1 (dotted line), ξ 2

β is below 1 for a large interval.

which corresponds to α = 2/3. Therefore, symmetrization
preserves neither entanglement nor spin squeezing. In order
to illustrate the results, the two curves are plotted in Fig. 2.

3. Proof of Observation 2

Let us first introduce the formalism used in the proof.
Recall that we are considering here N particles with din

(dex) internal (external) degrees of freedom, labeled by i =
1, . . . ,din (γ = 1, . . . ,dex). Referring to Fig. 1, we can think
of the external states as the energy levels of a spatial trap.
Each level γ contains Nγ particles in the state |γ 〉ex. These
particles can be in different internal states |i〉in. In general,
we have Ni,γ particles in the state |i,γ 〉 ≡ |i〉in ⊗ |γ 〉ex (to
simplify the notation, we remove here the tensor product sign
and pendices “in” and “ex”). We also introduce a vector
Nex = (N1,N2, . . . ,Ndex ) giving the occupation numbers of
each external state and a vector Nγ = (N1,γ ,N2,γ , . . . ,Ndin,γ )
with occupations of the internal states for a fixed external level
γ . Here, the relations

∑dex
γ=1 Nγ = N and

∑din
i=1 Ni,γ = Nγ

hold.
Let us consider a specific example for din = dex = 2 and

N = 3. Choosing N1,1 = 1, N2,1 = 0, N1,2 = 2, and N2,2 =
0, we obtain Nex = (1,2), N1 = (1,0), and N2 = (2,0). The
(nonsymmetric) state is

⊗2
γ=1 ⊗2

i=1 |i,γ 〉⊗Ni,γ = |1,1〉 ⊗ |1,2〉 ⊗ |1,2〉. (A9)

Finally, {Nγ }γ is the complete set of occupation numbers Nγ

for all the γ levels. The corresponding symmetrized states with
occupation numbers Nγ is given by

∣∣D{Nγ }
Nex

〉 ≡ 1√
N

∑
π

P̂π

[ ⊗dex
γ=1 ⊗din

i=1|i,γ 〉⊗Ni,γ
]
, (A10)

where P̂π is a representation of the permutation π , and the sum
runs through all distinct permutations, the number of which is

N ≡ (
N

{Nγ } ) ≡ N!
�i,γ Niγ ! . The states |D{Nγ }

Nex
〉 form a basis which

is the analogous to a Fock state basis in second quantization.

The nonsymmetric state from the example above [cf.
Eq. (A9)] becomes∣∣D{Nγ }

Nex

〉 = 1√
3

(|1,1〉 ⊗ |1,2〉 ⊗ |1,2〉
+ |1,2〉 ⊗ |1,1〉 ⊗ |1,2〉 + |1,2〉 ⊗ |1,2〉 ⊗ |1,1〉).

We use the label D in general for Fock states with a fixed
occupation in internal and external levels in first quantization.
In particular, we employ symmetric states with Nγ particles in
the single external level γ ,∣∣DNγ

Nγ

〉 ≡ ∣∣INγ

Nγ

〉 ⊗ |γ 〉⊗Nγ , (A11)

where ∣∣INγ

Nγ

〉 ≡ 1√
Nγ

∑
π

P̂π

[ ⊗i |i〉⊗Ni,γ

γ

]
, (A12)

and Nγ ≡ ( Nγ

Nγ
) ≡ Nγ !

�iNiγ ! is the number of distinct permuta-
tions π . We attach the label γ to |i〉 in order to keep track of
the external level γ the particle is in. This will be important
below.

With these definitions, we can reformulate Observation 2
in technical terms.

Observation 2. For any permutationally invariant operator
Âin acting on the internal degrees of freedom, and for a
symmetric state |�Nex

S 〉 = ∑
{Nγ } c{Nγ }|D{Nγ }

Nex
〉 with a fixed

occupation vector Nex,〈
�

Nex
S

∣∣Âin ⊗ 1ex

∣∣�Nex
S

〉 = 〈
�Nex

in

∣∣Âin

∣∣�Nex
in

〉
(A13)

holds, where |�Nex
in 〉 = ∑

{Nγ } c{Nγ }[⊗γ |INγ

Nγ
〉], and |INγ

Nγ
〉 is a

symmetric internal state as defined in Eq. (A12).
Proof. By inserting the definitions of |�Nex

S 〉 and |�Nex
in 〉 it is

easy to see that Eq. (A13) holds if〈
D

{Nγ }
Nex

∣∣Âin ⊗ 1ex

∣∣D{N′
γ }

Nex

〉 = [ ⊗γ

〈
I

Nγ

Nγ

∣∣] Âin
[ ⊗γ ′

∣∣IN′
γ ′

N ′
γ ′

〉]
(A14)

is true for all {Nγ } and {N′
γ ′ } with the same Nex. We show

now that this is the case. We insert into the left-hand side of
Eq. (A14) the definition of the states |D{Nγ }

Nex
〉 [cf. Eq. (A10)],

which leads to

∑
π,π ′

[
P̂π√
N

⊗γ,i |i,γ 〉⊗Ni,γ

]†

Âin ⊗ 1ex

×
[

P̂π ′√
N ′ ⊗γ ′,i ′ |i ′,γ ′〉⊗N ′

i′ ,γ ′

]
. (A15)

As before, we consider the sum of distinct permutations only.
Due to the identity 1ex on the external states the terms in the
sum will vanish unless the Nγ particles in level γ are on the
same positions in the permutations on both sides of Âin ⊗ 1ex,
since 〈i,γ |Âin ⊗ 1ex|i ′,γ ′〉 = 〈i|Âin|i ′〉δγ,γ ′ . Therefore, we can
rewrite expression (A15) as

∑
π,π̃,π̃ ′

[
P̂π P̂π̃√

N
⊗γ,i |i〉⊗Ni,γ

γ

]†

Âin

[
P̂π P̂π̃ ′√

N ′ ⊗γ ′,i ′ |i ′〉⊗N ′
i′ ,γ ′

γ

]
.

(A16)
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Here the permutations π̃ and π̃ ′ permute particles stemming
from the same external state γ , and π permutes particles with a
different γ . Note that for simplicity we use the same operators
P̂π̃ to represent a permutation π̃ of the N particles even though
now the state space of each particle is reduced to the internal
states. In order to clarify the notation we employed, we note
that for the example considered in Eq. (A9), the reduced state
would be

⊗γ,i |i〉⊗Ni,γ

γ = |1〉1 ⊗ |1〉⊗2
2 = |1〉1 ⊗ |1〉2 ⊗ |1〉2.

Since Âin is permutationally invariant, we have that P̂π Âin ⊗
1exP̂

†
π = Âin ⊗ 1ex. Hence, in the sum over π each term contri-

butes equally, and the sum can be replaced by the number
of distinct permutations Nex ≡ ( N

Nex
) ≡ N!

�γ Nγ ! in expression
(A16).

We observe that because the permutations π̃ only per-
mute particles with the same γ , one can rewrite

∑
π̃ P̂π̃ =

�γ (
∑

πγ
P̂πγ

) of permutations πγ which permute particles in
the level γ . This leads to∑

π̃

P̂π̃

[ ⊗γ,i |i〉⊗Ni,γ

γ

] = ⊗γ

∑
πγ

P̂πγ

[ ⊗i |i〉⊗Ni,γ

γ

]

= √
�γNγ

[ ⊗γ

∣∣INγ

Nγ

〉]
[cf. Eq. (A12)]. We arrive at√

N 2
ex �γNγ �γ ′N ′

γ ′

NN ′
[ ⊗γ

〈
I

Nγ

Nγ

∣∣] Âin
[ ⊗γ ′

∣∣IN′
γ ′

Nγ ′

〉]
.

One can directly check that the prefactor is equal to 1.
Therefore, condition Eq. (A14) is fulfilled. �

4. Dilute cloud argument

One may think that, after preparing the BEC atoms in
the ground state of a confining trap, it is possible to apply
the SSIs (7) and (8) by simply releasing the trap, letting the
cloud expand and fall onto a grid of small detectors capable
of measuring the internal state of a single atom. If the cloud
is dilute enough, it is very likely that, at most, a single atom
enters each detector, thus making the atoms distinguishable.
This would make it possible to apply the Sørensen-Mølmer
bounds. The situation is illustrated in Fig. 3. We show here
that this argument, which is often encountered in discussions,
does resolve the problem.

Let us assume that, before releasing the atoms from the
trap, their state is of the form

|�〉 = |ψS〉in ⊗ |0〉⊗N
ex , (A17)

FIG. 3. Initially, all particles are in the lowest energy level of the
trap. The cloud is then released. If it is diluted enough along the
horizontal direction, it is likely that at most one particle falls into
each of the boxes, which represent the single detectors.

where |ψS〉in is a symmetric total internal state and each atom is
in the ground state of the trap |0〉ex. Here “ex” (“in”) indicates
the external (internal) degree of freedom as in Sec. III B.
We assume here that all atoms share the same spatial wave
function, which can thus be factorized. If interactions can
be neglected during free fall, then only the spatial state of
each atom changes, leaving the internal state symmetric. By
waiting long enough, the single-particle spacial wave function
becomes so spread that the probability to detect two atoms at
the same spatial detector is negligible.

Let us assume for simplicity that the atoms are trapped and
detected state-insensitively first, such that at most one atom is
detected in each site. A problem is that in each shot, different
sites will be occupied. This might still be considered as a minor
problem. In a one-dimensional trap, for instance, it could be
resolved by identifying particle “1” with the leftmost trap,
particle “2” with the particle right from particle “1”, and so
on. Alternatively, one could postselect on events where always
the same N sites are occupied.

In general, the position measurement makes the state
effectively distinguishable. Let us illustrate the situation with
an example for N = 2 particles, labeled as 1 and 2, in two
different sites labeled by a and b. As in Sec. III B, we consider
a general pure symmetric state

|ψ〉 = 1√
2

(|ψ12〉in ⊗ |a1b2〉ex + |ψ21〉in ⊗ |b1a2〉ex), (A18)

with the same definitions as in Eq. (21). An operator M̂a acting
on the internal state of the particle in site a can be written as

M̂a = (Â1 ⊗ 12)in ⊗ (
m̂a

1 ⊗ 12
)

ex

+ (11 ⊗ Â2)in ⊗ (
11 ⊗ m̂a

2

)
ex,

where m̂a|a〉 = |a〉 and m̂a|b〉 = 0 since we measure locally
at site a. M̂a has to be permutationally invariant with respect
to the interchange of the particle labels since the particles are
indistinguishable [44]. The expectation value with respect to
the state (A18) is

〈ψ |M̂a|ψ〉 = 1
2 [〈ψ12|Â1 ⊗ 12|ψ12〉 + 〈ψ21|11 ⊗ Â2|ψ21〉],

(A19)

where the two terms are equal since

〈ψ21|11 ⊗ Â2|ψ21〉 = 〈ψ12|P̂ †
in(11 ⊗ Â2)P̂in|ψ12〉

= 〈ψ12|Â1 ⊗ 12|ψ12〉.
We dropped the label “in” of |ψ12〉in for simplicity. An
analogous result is obtained when considering an operator
acting on the internal state of the particle on site b. Since
only such operators are measured in the usual scenario,
we can identify particle 1 with site a and particle 2 with
site b, and |ψ12〉 is sufficient to describe the state of
the two particles. This is a state of two distinguishable
particles.

However, since the measurement acts only on the external
degrees of freedom, the product structure between the internal
and the external degrees of freedom in Eq. (A17) is preserved.
It is then evident that the internal state remains fully symmetric
even after the position measurement, since this affects the
external state only. Hence, making the state distinguishable
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effectively after the state transformation in the measurement
does not make it possible to leave the restricted class of sym-
metric states: In the interferometric situation we considered
above, when only the sites a and b are occupied, then we
arrive at the state of Eq. (A18), but with a symmetric internal

state |ψ12〉. Therefore, the effective state of the distinguishable
particles is symmetric. This example, which can be directly
generalized to N particles, shows that simply making the cloud
dilute does not make it possible to apply the spin-squeezing
bounds discussed in this paper.
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[43] R. Bücker, J. Grond, S. Manz, T. Berrada, T. Betz, C. Koller,
U. Hohenester, T. Schumm, A. Perrin, and J. Schmiedmayer,
Nat. Phys. 7, 608 (2011).

[44] A. Peres, Quantum Theory: Concepts and Methods (Kluwer,
New York, 2002).

[45] P. Hyllus, O. Gühne, and A. Smerzi, Phys. Rev. A 82, 012337
(2010).

[46] Other authors favor the use of a mode picture [47], even though
there is no direct connection between entanglement and the
precision in this case except for special situations [15].

[47] F. Benatti, R. Floreanini, and U. Marzolino, Ann. Phys. 325, 924
(2010); J. Phys. B 44, 091001 (2011).

[48] There is a large body of literature on general entanglement of
indistinguishable particles. For a recent review, see [49].

[49] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[50] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann.
Phys. 299, 88 (2002).

[51] T. Ichikawa, T. Sasaki, I. Tsutsui, and N. Yonezawa, Phys. Rev.
A 78, 052105 (2008).

[52] T.-C. Wei, Phys. Rev. A 81, 054102 (2010).
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〈Ĵz〉, which is a convex set. For such a problem, the minimum is
reached on the pure states [61].

[61] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge
University Press, Cambridge, UK, 2004).

[62] Jensen’s inequality,

φ

(∑
i aixi∑
i ai

)
�

∑
i aiφ(xi)∑

i ai

, (A20)

holds for any convex function φ and positive weights ai [61].

012337-10

http://dx.doi.org/10.1103/PhysRevLett.98.043601
http://dx.doi.org/10.1103/PhysRevA.78.033832
http://dx.doi.org/10.1103/PhysRevA.79.043815
http://dx.doi.org/10.1103/PhysRevA.79.043815



