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Energy and multipartite entanglement in multidimensional and frustrated spin models
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We investigate the relation between the entanglement properties of a quantum state and its energy for
macroscopic spin models. To this aim, we develop a general method to compute energy bounds for states
without certain forms of multipartite entanglement. Violation of these bounds implies the presence of these
types of multipartite entanglement. As examples, we investigate the Heisenberg model in different dimensions,
the Ising model and the XX model in the presence of a magnetic field. Finally, by studying the Heisenberg
model on a triangular lattice, we demonstrate that our techniques can be applied also to frustrated systems.
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I. INTRODUCTION

In recent years, the investigation of entanglement in con-
densed matter systems has become one of the main lines of
research in quantum-information science �1–3�. The in-
creased interest in this topic is fed by several motivations.
On the one hand, the studies helped to understand fundamen-
tal properties of condensed matter systems like quantum
phase transitions. On the other hand, they lead to results of
practical importance since they allowed one to design simu-
lation techniques for the calculation of ground state energies
of spin models �4�.

What kinds of entanglement occur in natural situations?
This question provides another motivation for studying en-
tanglement properties of condensed matter systems. Indeed,
condensed matter systems and especially spin models are
natural candidates for our studies where various forms of
entanglement might occur, mainly at low temperatures. One
possibility to study the presence of entanglement in spin sys-
tems is to relate the energy or other macroscopic observables
of the system to certain entanglement properties of the state
�5–10�.

In this paper we attempt to proceed in this direction by
investigating the relation between the energy of a state and
its multipartite entanglement properties. We will derive a
general method for calculating energy thresholds for states
without certain types of multipartite entanglement. Below
these energies, and consequently below a certain tempera-
ture, the state must therefore contain multipartite entangle-
ment. Our approach is, however, not restricted to states in
thermal equilibrium. We demonstrate that our method can
successfully be applied to various models and also to frus-
trated systems. In this way, we extend the results of Ref. �10�
where such energy thresholds have been computed for two
special spin models in one dimension.

Our paper is divided into four sections. These are orga-
nized as follows. In Sec. II we introduce the notion of mul-
tipartite entanglement that we use in this paper. That is, we
explain the definition of k-producibility. We also pose the
problem that we want to solve. In Sec. III we present our
method for computing the desired energy bounds. We present

in detail the calculation for a two-dimensional Heisenberg

1050-2947/2006/73�5�/052319�9� 052319
model on a square lattice, the generalization to other models
is then straightforward. In Sec. IV we discuss three simple
applications: the Heisenberg model in various dimensions,
and the Ising model and the XX model with a magnetic field
in one dimension. For the Ising model, we also discuss the
impact of phase transitions on our energy thresholds. In Sec.
V we consider the Heisenberg model a two-dimensional tri-
angular lattice. We show that with some modifications our
methods can also be used to investigate multipartite en-
tanglement in such a frustrated system.

II. DEFINITIONS AND STATEMENT OF THE PROBLEM

Let us first explain the notion of multipartite entanglement
that we use for our study. This is the so-called
k-producibility, introduced in Ref. �10�. It is defined as fol-
lows: For a pure state ��� on N qubits we ask whether it is
possible to write

��� = ��1� � ��2� � ¯ � ��K� , �1�

where the ��i� are states of maximally k qubits. If this is the
case, then only k-qubit entanglement is necessary to generate
��� and the state ��� does not contain any �k+1�-qubit en-
tanglement. If Eq. �1� holds, we call the state k-producible, if
not, we say that ��� contains �k+1�-partite entanglement. Ex-
amples of four-producible and two-producible states are
shown in Figs. 1 and 2.

For mixed states, we can extend this definition via con-
sidering convex combinations. i.e., we call a mixed state �
k-producible if we can write

� = �
i

pi��i���i� �2�

with pi�0,�ipi=1 and k-producible ��i�. If this is not the
case, � contains �k+1�-partite entanglement. Physically, a
k-producible mixed state requires k-qubit entanglement
and mixing for its creation only. Conversely, a state contains
�k+1�-party entanglement if and only if the quantum corre-
lations of this state cannot be explained by assuming k-qubit
entanglement only.

This classification of multipartite entanglement has some

connections to the usual notion of k-separability, which is
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often used for small numbers of qubits. This issue has been
discussed in Ref. �10�. Here, we only want to point out that
the N-separable �fully separable� states are by definition the
states which can be written as �=�ipi�1 � ¯ � �N. These
states are just the one-producible states.

The notion of k-producibility leads to a discrete classifi-
cation of multipartite states. For pure states, it is easy to see
that the k-producible states form a set of measure zero in the
set of 2k-producible states and that in the vicinity of any
k-producible state one can find states with arbitrary high pro-
ducibility �11�. For mixed states, however, this is not true
anymore, and one can show �as for the notion of
k-separability �12�� that the set of mixed k-producible states
is not of measure zero in the space of all mixed states.

Finally, it is worth noting that the notion of
k-producibility for pure states has a close relation to the
Schmidt measure, which is an entanglement monotone for
multiqubit states �13�. The Schmidt number of a pure multi-
qubit state is defined as follows. One expands ��� as the sum
of tensor products of single qubit states ���=�k=1

R ��k
�1��

� ��k
�2�� � ��k

�3�� �¯. For every quantum state we take the
expansion with the minimal R, which will be denoted by r.
Then log2�r� is the Schmidt measure of ��� and for N-qubit
quantum states we have always log2�rq��N.

FIG. 1. �Color online� Schematic view of a four-producible state
in a spin model of 24 qubits. Dashed lines correspond to interac-
tions between disentangled qubits and solid lines represent the in-
teractions between qubits which are allowed to be entangled.

FIG. 2. �Color online� A possible grouping for a pure two-

producible state in 12-qubit spin system. See text for details.
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Since the Schmidt number for two-qubit states in maxi-
mally two and for three-qubit states is maximally three �13�,
we can conclude that for one-producible, two-producible,
and three-producible states

log2 r1p = 0,

log2 r2p �
N log2�2�

2
=

N

2
,

log2 r3p �
N log2�3�

3
	 0.53N . �3�

holds.
Now we can state the main problem we want to study in

this paper. Let us assume that we have a macroscopic spin
system of qubits on some lattice, which interact via some
Hamiltonian

H = �
�i,j�

hij , �4�

which is a sum of two-qubit interactions. We always assume
periodic boundary conditions. For this situation, we want to
derive lower bounds for �H� for k-producible states. That is,
we want to compute a constant Ekp such that

�H� � Ekp �5�

holds for all k-producible states. If this bound is then violated
at low temperatures, the state under consideration contains
�k+1�-party entanglement. Note, however, that we do not
restrict our attention to states in thermal equilibrium. Since
we assume that the number of qubits N is large, it will be
convenient to express Ekp as a rescaled energy per interaction
bond.

In the next section, we will present the main idea of our
method to compute Ekp.

III. ESTIMATING THE ENERGY

In this section, we present as the main result of the paper
a general method to estimate the energy for k-producible
states. While the main result is quite simple, its proof re-
quires some technical effort. The logical structure is as fol-
lows: For a pure k-producible state some expectation values
in the Hamiltonian factorize and some do not. We collect all
the factorizing terms in the Hamiltonian, and estimate them
via the Cauchy-Schwarz inequality. Then, we arrive at Eqs.
�13� and �14�. If we can perform the maximization in Eq.
�13� then Eq. �14� delivers the desired energy bound. The
point is that even for macroscopic k-producible states the
maximization requires only a maximization over k-qubit
states. Sometimes, this can be done analytically, otherwise it
can be solved numerically in an efficient manner. Finally, we
discuss whether the derived bounds are sharp.

So let us explain our method in the following example.
We want to derive a bound for two-producible states for a
two-dimensional Heisenberg lattice. That is, we consider the
Hamiltonian
-2
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HH = �
�i,j�

hij ,

hij = XiXj + YiY j + ZiZj , �6�

for a two-dimensional system with periodic boundary condi-
tions. Here and in the following, Xi ,Yi ,Zi denote the Pauli
matrices �x

�i� ,�y
�i� ,�z

�i�, acting on the ith qubit. We will exem-
plify the definitions required for our method using the ex-
ample of a special two-producible state of 12 qubits given in
Fig. 2.

In order to bound the energy for two-producible states, it
suffices to consider a generic pure two-producible state ���.
This comes from the fact that the mixed k-producible states
form a convex set in the state space and the pure
k-producible states are its extremal points. Thus, any linear
function takes its maximum in a pure state as an extremal
point.

A fixed two-producible ��� results in a partition of the
whole spin system into several one-qubit and two-qubit
blocks. Indeed, one can identify some pairs i , j of qubits
where the reduced state is allowed to be entangled, and some
single qubits k, which are not entangled with any other
qubit. Let us denote the total number of blocks by K, the
number of one-qubit blocks by L1 and the number of two-
qubit blocks by L2. A possible blocking is shown in Fig. 2:
We have seven blocks B1 , . . . ,B7, where B3 and B5 are
single-qubit blocks and the rest are two-qubit blocks. Thus,
we have K=7,L1=2, and L2=5. It is important to note that
we can restrict our attention to the case where the two-qubit
blocks are between interacting qubits. This is true for the
following reason: If a two-qubit block consists of two non-
interacting qubits i , j, then the Hamiltonian is only sensitive
to the reduced density matrices at each qubit, i.e., it does
only take then local properties into account. Thus, we can
replace this two-qubit block by two one-qubit blocks.

In general, the mean value of the Hamiltonian consists of
two-qubit expectation values of the type Wij = �AiAj� ,A
=X ,Y ,Z. For simplicity, we denote in the following �AiBj�
=aibj and �Ai�=ai for A ,B=X ,Y ,Z. Note that this definition
implies that in general aibj�ai�bj and these notations have
to be distinguished. Due to the special partition, however,
some of the mean values factorize. For instance, in the situ-
ation of Fig. 2 we have x2x3=x2�x3. Now we have to find an
efficient way for taking all these contributions into account.

For this purpose, we define for each block Bi three sets of
indices: I�i� are the qubits which lie inside Bi, R�i� are the
qubits inside Bi which interact via the Hamiltonian with qu-
bits outside of Bi and N�i� are the qubits outside Bi, which
nevertheless interact with some qubit of I�i�. For instance, in
the example of Fig. 2 we have I�1�= 
1,2�, R�1�= 
1,2� and
N�1�= 
3,4 ,5 ,6 ,9 ,10�. For our special case of a two-
producible state we have I�i�=R�i�, but in general this does
not have to be the case.

Now we can define for each block a set of expectation
values from the Hamiltonian in the following way. We define
I�i� ª 
Wkl � k,l � I�i�� �7�
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as the contributions of the Hamiltonian inside the block Bi.
In our example, this would be I�1�= 
x1x2 ,y1y2 ,z1z2�. Note
that the set I�i� is empty for the one-qubit blocks. In the
following, we will denote the single elements of sets like I�i�
by I�i��j�.

Then, we collect the “outgoing” contributions from a
block via all the two-qubit Hamiltonians. That is, we define

R�i� ª 
�Wkl��k � k � R�i�,l � N�i�� . �8�

Here, using �k with k�R�i� we express that the
two-qubit contributions are restricted to the operator
acting only on the qubit belonging to R�i�. For example,
from a term of the form W23= �X2X3� we take only the
term �X2�=x2. Also, we take all terms with their respective
multiplicity, i.e., if the qubit k�R�i� interacts with
several qubits in N�i�, the same term appears several times
in R�i�. For our example in Fig. 2 we would have: R�1�
= 
x1 ,y1 ,z1 ,x1 ,y1 ,z1 ,x1 ,y1 ,z1 ,x2 ,y2 ,z2 ,x2 ,y2 ,z2 ,x2 ,y2 ,z2�.

Finally, we count for each block the contributions in the
neighborhood via

N�i� ª 
�Wkl��l, � k � R�i�,l � N�i�� . �9�

These are, in a certain sense, the complementary contribu-
tions to the contributions in R�i�. We always write them in
the same order as the contributions in R�i�, i.e., the first
element of R�i� should correspond to the first element of
N�i� in the Hamiltonian, etc. In our example, we would
have: N�1�= 
x9 ,y9 ,z9 ,x4 ,y4 ,z4 ,x5 ,y5 ,z5 ,x10,y10,z10,x3 ,y3 ,
z3 ,x6 ,y6 ,z6�. The idea behind these definitions of R�i�
and N�i� is the following: The terms in R�i� and N�i� are
just the ones which factorize in the Hamiltonian. Thus, view-
ing R�i� and N�i� as vectors, the scalar product corresponds
to the mean value of some terms in the Hamiltonian,
R�i� ·N�i�=�kR�i��k�N�i��k�=�k�B�i�,l�B�i��Wkl�.

To estimate �H� for a given two-producible state ��� we
interpret R�i� and N�i� as real vectors. We then define

v�1 ª
1
�2

R�1� � ¯ �
1
�2

R�K� ,

v�2 ª
1
�2

N�1� � ¯ �
1
�2

N�K� . �10�

Please note that a term of the type Wkl=xkxl=xk�xl origi-
nating from an interaction between two blocks Bi and Bj
appears twice in each of these vectors: one time with
xk�R�i� and xl�N�j� and one time with xk�N�i� and
xl�R�j�. Thus, v�1 and v�2 are built of the same terms, but in
different order. This implies that 
v�1 
 = 
v�2
.

With this definition, it follows that:

�H� = �
i=1

K

�
k

I�i��k� + v�1 · v�2 �11�

holds. This implies due to the Cauchy-Schwarz inequality

that
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�H� � �
i=1

K

�
k

I�i��k� − 
v�1

v�2


= − ��
i=1

K

�
k

− I�i��k� + 
v�1
2� . �12�

The key point is that the right hand side of this inequality can
be estimated by minimization for each of the blocks Bi sepa-
rately. Indeed, if we define for the block Bi

Ci ª max
��� ��k

− I�i��k� + 1
2�

k


R�i��k��2� , �13�

where ��� is a quantum state on the block Bi, we have

�H� � − �
i

Ci. �14�

The estimation of the Ci does now only depend on the fact
whether the block Bi is a one-qubit or a two-qubit block and
not on the relations between these blocks. For the Heisenberg
interaction, we have

Ci = max
���

�2�xk
2 + yk

2 + zk
2�� = 2 �15�

for a one-qubit block Bi on the qubit k and

Ci = max
���

�− xkxl − ykyl − zkzl + 3
2 �xk

2 + yk
2 + zk

2 + xl
2 + yl

2 + zl
2��

= 13
3 �16�

for a two-qubit block on the qubits k and l. This bound
can be obtained from the representation of
����� � =�k,l=1,x,y,z�kl�k � �l �10�. It is also a special case of a
general bound presented as lemma 1 in the Appendix.

With these bounds, we immediately get for our example
in Fig. 2 the bound �HH��−�5�13/3+2�2�=−77/3. For
the general case of N qubits, we get

�HH� � − max
L1+2L2=N

�2L1 +
13

3
L2� � −

13N

6
	 − 2.16N .

�17�

Since a two-dimensional lattice of N qubits has 2N bonds,
the energy per bond for two-producible states is bounded
from below by

�HH�
2N

� E2p = −
13

12
. �18�

Two questions arise at this point. First, we have to ask
whether this bound is useful, in the sense that it is violated at
low temperatures. This is the case since for the ground state
the energy per bond is E0=−1.338 �7,14�. Thus, in a consid-
erable temperature regime, the thermal states cannot be two-
producible.

Second, the question arises whether the derived bound
is sharp. By this we mean the question whether or not there
exists a two-producible state which saturates the bond. This
question deserves some discussion. The idea to show sharp-
ness of an obtained bound is the following: Let us assume we

have found states ��i� for which the maxima Ci in Eq. �13�
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are obtained. Then we have to build out of these states
��i� the total state ��� such that ��� saturates the bound in
Eq. �14�. To do so, we have to assure, that for the state ���
the Cauchy-Schwarz inequality in Eq. �12� was sharp,
i.e., v�1 ·v�2=−
v�1 
 
v�2
. This can be done in two steps: First
we guarantee that v�1 ·v�2= 
v�1 
 
v�2
. Then, by applying some
unitary transformations on the ��i� we make sure that
v�1 ·v�2=−
v�1 
 
v�2
.

Let us show how this works in our example of two-
producible states �15�. Let ���k,l be the state saturating
Eq. �13� on the qubits k , l. Let us enumerate the qubits as in

Fig. 2 and consider the total state ��̃�= ���1,2 � ����3,4

� ���5,6 � ����7,8 � ���9,10¯. Here, ����=S����� is the state
��� where the qubits are swapped. This construction implies

that the reduced states of ��̃� on the qubits 1 ,4 ,5 ,8¯ are
identical, as well as the reduced states on the qubits
2 ,3 ,6 ,7¯. Since the corresponding reduced states are iden-
tical, the factorizing terms between two qubits �say, 2 and 3�
are just squares of some expectation values, hence, v�1 and v�2
are parallel and v�1 ·v�2= 
v�1 
 
v�2
.

To perform the second step, note that the state ���k,l on the
qubits k , l gives rise to some sign distribution of the expec-
tation values xk ,yk ,zk and xl ,yl ,zl. Then we define ���� as
follows. We first swap, i.e., ����m,n= ����m,n=S����m,n�, then,
by local unitary transformations, we flip the signs of xm ,zm
and xn ,zn on the qubits m ,n. Finally, we transpose the den-
sity matrix of the state, which flips also the signs of ym and
yn. Thus, we have finally ak=−an and al=−am for a=x ,y ,z
and ����. Note that ���� still saturates Eq. �16�, since the
expectation values aman are not affected. Then, defining
���= ���1,2 � ����3,4 � ���5,6 �¯ we arrive at a state for
which v�1 ·v�2=−
v�1 
 
v�2
. Thus, this state saturates Eq. �14�.

In general, however, the bounds derived by the method
above are not sharp. Especially, when we consider frustrated
lattices, the bounds are not sharp, and more sophisticated
estimates are required. We will discuss one example of a
frustrated lattice later in detail. Also, if N is not a multiple of
k, the bound for k-producibility may not be sharp. This is,
however, not a major problem. The energy difference be-
tween this case and the nearest N which is multiple of k is
bounded by a constant. Since we are interested in the ther-
modynamic limit N→	, and the energy difference per bond
decreases as 1/N, we can neglect this case.

What is required to derive similar bounds as Eq. �18� for
other spin systems and higher degrees of multipartite en-
tanglement? The main ingredient are bounds as in Eqs. �13�,
�15�, and �16�. These bounds depend on the Hamiltonian and
on the underlying lattice. For many Hamiltonians and two-
qubit blocks, these bounds can straightforwardly be com-
puted analytically. But even if this is not possible, one can
simply compute them by numerical minimization over a
small number of qubits, if desired, this minimization can be
performed with assurance of global optimality �16�.

Finally, the reader should note the difference between the
estimation method presented in this section and the one used
in Ref. �10�. The method in Ref. �10� does not separate be-
tween factorizing and nonfactorizing terms in the Hamil-

tonian, instead, it estimates the complete Hamiltonian via the
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Cauchy-Schwarz inequality. As a consequence, it requires
more effort and is restricted to one-dimensional systems.

IV. THREE SIMPLE APPLICATIONS

In this section, we will apply the presented method to
various examples of spin systems. We will first compute en-
ergy bounds for k-producibility of spin systems with an an-
tiferromagnetic Heisenberg interaction in various dimen-
sions. Then we will consider the Ising model and the XX
model in an external magnetic field.

A. The Heisenberg model

Let us first consider the antiferromagnetic Heisenberg in-
teraction. That is, we consider the Hamiltonian

HH = �
�i,j�

XiXj + YiY j + ZiZj �19�

on a D-dimensional lattice. For this model, we can state:
Theorem 1. �a� Let us consider an infinite one-

dimensional �1D� spin system with the Heisenberg interac-
tion. Then, the energy bounds per bond for one-producible,
two-producible, three-producible, and four-producible states
are given by

E1p
1D = − 1; E2p

1D = − 3
2 ;

E3p
1D = − 1.505; E4p

1D = − 1.616. �20�

The ground state energy per bond is known to be
E0=−�4 ln 2−1�	−1.773 �17�, thus all the bounds above are
violated by the ground state.

�b� For the two-dimensional square lattice, the respective
energies per bond are given by

E1p
2D = − 1; E2p

2D = − 13
12;

E3p
2D = − 1.108; E4p

2D = − 1.168. �21�

Here, the energy per bond in the ground state is given by
E0=−1.338 �7�.

�c� For the three-dimensional lattice we have E0=−1.194
�7� and the thresholds for multipartite entanglement read

E1p
3D = − 1; E2p

3D = − 31
30;

E3p
3D = − 1.044; E4p

3D = − 1.067. �22�

All the bounds given in this theorem are sharp.
Proof. The proof of this theorem works just as described

in the previous section. For the one-producible �i.e., the fully
separable� states, the bounds have already been shown before
�5–7�. The bounds for two-producible states have been ob-
tained analytically �see lemma 1 in the Appendix�; here, the
bound for the one-dimensional chain was already derived in
Ref. �10�. The bounds for the three-qubit and four-qubit case
have been obtained numerically �18�. Note that for four-
producible states and D�2 several possibilities of four-qubit
blocks have to be taken into account. The sharpness of the

bounds follows also as discussed in the previous section. �
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B. The Ising model in a transverse magnetic field

As a second example, let us study the one-dimensional
Ising-model in a transverse magnetic field. That is, we con-
sider the Hamiltonian

HI = �
�i,j�

XiXj + B�
i

Zi. �23�

The estimation of the energy for k-producible states can be
performed as in the previous section. Only the interaction
terms with the magnetic field have to be added in the defi-
nition of I�i�. For instance, for two-qubit blocks, we have to
compute

Ci = max
���

�− xkxl − B�zk + zl� + 1
2 �xk

2 + xl
2�� . �24�

This and similar maximizations can easily be performed nu-
merically. The resulting bounds are always sharp. Note that
the bound for one-producible states has already been derived
employing a different method in Refs. �5,7�.

The Ising model is analytically solvable and the thermo-
dynamic properties of the thermal states are known �19�. To
investigate the multipartite entanglement properties, we first
compute the energy thresholds Ekp for k-producible states.
We then compare these energies with the ground state energy
by calculating the entanglement gap

Eg�k,B� = Ekp�B� − E0�B� , �25�

that is the difference between the ground state energy and the
minimal energy for k-producible states �7�. Note that the en-
ergy minimum for separable states for a quantum Hamil-
tonian equals the energy minimum of the corresponding clas-
sical spin chain �5�. Thus Eg�1,B� is the energy difference
between the classical and the quantum Ising spin chains. The
results are shown in Fig. 3.

To discuss these results, let us consider Fig. 3 and look at
the curve corresponding to Eg�1,B�. For a magnetic field
slightly larger than Bc=1 the entanglement gap �and thus the
entanglement in the thermal state� is larger than further from
this point. Note that at Bc=1 the ground state of the Ising

FIG. 3. �Color online� Entanglement gap Eg�k ,B� for two-
partite, three-partite, four-partite, and five-partite entanglement for
the Ising model in a transverse magnetic field. See text for details.
model undergoes a quantum phase transition. Eg�n ,B� for
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n
1 also takes its maximum around Bc. Figure 3 shows that
the field corresponding to this maximum is decreasing with
increasing n.

Now let us study F�k ,B�=�Eg�k ,B� /�B as the derivative
of Eg�k ,B� with respect to B. These curves are shown in Fig.
4. One can see directly from this figure that the slope of
F�1,B� has an abrupt change at Bc,1=2. Further analysis
shows, that F�1,B� is also non-analytical at Bc=1. The
nonanalytical point Bc corresponds to a quantum phase tran-
sition of the quantum spin chain, while the change in the
slope at Bc,1=2 corresponds to the critical point of the clas-
sical spin system �20�.

Similar results can be obtained for Eg�k ,B� for k
1. The
energy minimum for k-producible states equals also the en-
ergy minimum of a spin model in which blocks of k quantum
spins interact classically, i.e., in a mean-field fashion �21�.
Again there are nonanalytical points for F�k ,B� at Bc=1 and
at Bc,n
1. Figure 4 shows the curves corresponding to
F�1,B�, F�2,B�, and F�4,B�. It is clearly visible how Bc,k

approaches Bc=1 with increasing n. It can also be seen that
the maximum of F�k ,B� also approaches Bc as k increases. A
detailed study of the thermodynamics arising from these
models intermediate between classical and quantum spin
chains will be reported elsewhere.

C. The XX model in a magnetic field

As a third example, we study the one-dimensional XX
model in a magnetic field. The Hamiltonian of this model is

HXX = �
�i,j�

XiXj + YiY j + B�
i

Zi. �26�

The estimation of the energy for k-producible states can be
performed similarly as for the Ising model. Since the
XX-model can be solved analytically �22�, it is now interest-
ing to investigate the regions in the T-B plane where multi-
partite entanglement must be present. This has been done in
Fig. 5. Similar to the Ising model after the quantum phase
transition at B=2 the thermal states show different forms of
multipartite entanglement, even at relatively high tempera-
tures.

FIG. 4. �Color online� Derivative of the entanglement gap
F�k ,B�=�Eg�k ,B� /�B for k=1,2, and 4.
052319
V. THE HEISENBERG MODEL
ON A TRIANGULAR LATTICE

Let us finally demonstrate with an example that our
method with some modifications also allows the computation
of energy thresholds for frustrated lattices �23�. Generally, all
lattices can be divided into two classes: Bipartite lattices
are lattices, where the lattice points can be divided into two
sublattices, such that each point in each sublattice interacts
only with points which belong to the other sublattice. An
example is the two-dimensional square lattice, for which
these two lattices form a chessboardlike configuration. A lat-
tice is called frustrated if it is not bipartite. This terminology
refers to the fact that for such lattices the ground state energy
per bond is usually larger than that for two qubits interacting
alone.

Entanglement properties of frustrated systems have also
been investigated �7,24�. Concerning our approach, the fact
that the ground state energy is large makes it difficult to
derive energy bounds for k-producible states which are
violated by the ground state.

As such an example of a frustrated quantum system we
study now the Heisenberg model on a two-dimensional tri-
angular lattice. That is, we consider the Hamiltonian of Eq.
�6� on the lattice of Fig. 6. Let us shortly note some proper-
ties of this system. The ground state energy per bond is
known to be E0=−0.726 �14�. From a comparison with a
classical spin configuration, it was shown in Ref. �7� that the
minimal energy per bond for fully separable �i.e., one-
producible� states is E1p=−0.5. Here, we want to derive a
bound for two-producible states.

If we apply directly the method of the previous section,
the resulting bound is not violated by the ground state. The
reason is the following: In the derivation, we used in Eq. �12�
the bound v�1 ·v�2�−
v�1 
 
v�2
. This bound is not sharp for
frustrated lattices. Thus, we have to make a more sophisti-
cated estimate.

First, note that the scalar product v�1 ·v�2 represents all fac-
torizing terms in the Hamiltonian. These terms can be
grouped into the contributions corresponding to different tri-

FIG. 5. �Color online� Entanglement in thermal states of the XX
model in a magnetic field. The regions in the T-B plane are shown
where the different types of multipartite entanglement can be de-
tected with our method.
angles Ti. So we can write
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2v�1 · v�2 = �
triangles Ti

h�Ti� , �27�

where the triangle contributions h�Ti� can be of two types,
depending on the triangle: For a triangle on the qubits j ,k , l
with no entanglement between the qubits j ,k , l �type A tri-
angle, see Fig. 6� we have

h�Ti� = �
a=x,y,z

�aj � ak + ak � al + al � aj� . �28�

For triangles where two of the three qubits �say, k and l� may
be entangled �type B� we have

h�Ti� = �
a=x,y,z

�aj � ak + aj � al� . �29�

The prefactor of two in Eq. �27� stems from the fact that
every bond contributes to two triangles.

Now we need the facts that

− � aj

�2
�

aj

�2
+

ak

�2
�

ak

�2
+

al

�2
�

al

�2
�

� aj � ak + ak � al + al � aj , �30�

which holds for all real numbers aj ,ak ,al, and we need the
estimate

− �akal + 1
�2

�
aj

�2
+

akal + 1
�2

�
aj

�2
� � ak � aj + al � aj .

�31�

This estimate holds since ai and akal are expectation
values of �tensor products� of Pauli matrices. Namely,
from the positivity of the density matrix the relation
−�1+akal��ak+al� �1+akal� follows, which results in

FIG. 6. �Color online� A two-producible state on a triangular
lattice. Solid lines represent possible entanglement between the qu-
bits. The triangle �2,5 ,3� is type A, i.e., it does not have entangle-
ment between its qubits. The triangle �1,2 ,3� is of type B since
qubits 1 and 2 may be entangled. When estimating Ci for the block
of the qubits 1 and 2, the two triangles �1,2 ,3� and �1,2 ,4� are
estimated via Eq. �31�, since there are definitely of type B. See text
for further details.
Eq. �31�.
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The bounds in Eqs. �30� and �31� can be interpreted in the
following way: for each of the h�Ti� there are two vectors
w� i

�1� and w� i
�2� such that

h�Ti� � − w� i
�1� · w� i

�2�. �32�

If Ti is of the type A then w� i
�1� has nine entries and if Ti is of

the type B it has six entries. Note that the definition of w� i
�1�

etc. does not directly correspond to the R and N in the
definition of v�1/2.

Thus, if we define

W� �1� = �
i

w� i
�1�, W� �2� = �

i
w� i

�1�, �33�

it follows that 2v�1 ·v�2�−W� �1� ·W� �2�. Using the Cauchy-
Schwarz inequality yields

v�1 · v�2 � − 1
4 �
W� �1�
2 + 
W� �2�
2� . �34�

The right hand side of Eq. �34� is a sum of many squares
of expectation values of one-qubit or two-qubit observables.
Each of these expectation values originates from a certain
block. By counting carefully the contributions of each block,
we can now estimate them separately for each block.

A one-qubit block on the qubit k, contributes to the esti-
mates of six triangles. These may be triangles of type A or B.
An estimate of one triangle of the type A results in two times

a contribution �ak /�2�2 in 
W� �1�
2+ 
W� �2�
2, one in 
W� �1�
2 and

one in 
W� �2�
2 �see Eq. �30��. A triangle of the type B gives
also two times this contribution, but now either two times in


W� �1�
2 or two times in 
W� �2�
2 �see Eq. �31��. Thus, in anal-
ogy to Eqs. �13� and �15�, we have to estimate

Ci = max
���

�1

4
� 6 � 2� xk

2

2
+

yk
2

2
+

zk
2

2
�� = 3

2 . �35�

A two-qubit block on the qubits k and l contributes to ten
triangles. Two of them contain both the qubits k and l and are
thus of the type B �see Fig. 6�. Each of them contribute two

times �akal+1/�2�2 to 
W� �1�
2+ 
W� �2�
2, either both in 
W� �1�
2

or both in 
W� �2�
2 �see Eq. �31��. For the other eight triangles,
it does not matter as for the one-qubit blocks whether they
are of the type A or B. Thus, we have to estimate

Ci = max
���

�− xkxl − ykyl − zkzl�

+
2 � 2

4
� �1 + xkxl�2

2
+

�1 + ykyl�2

2
+

�1 + zkzl�2

2
��

+
4 � 2

4
� xk

2

2
+

yk
2

2
+

zk
2

2
+

xl
2

2
+

yl
2

2
+

zl
2

2
�� = 4. �36�

This follows similarly as before, see also lemma 2�b� in the
Appendix.

With these bounds we have for the two-producible state
�H��−�iCi, which finally results in a minimal energy per
bond of
-7
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E2p = − 2
3 , �37�

which is clearly violated by the ground state. Thus, at a con-
siderable temperature, in a frustrated triangular Heisenberg
lattice the thermal state is not two producible and the effects
of multipartite entanglement cannot be neglected.

Finally, it should be noted that it is not clear whether the
bound in Eq. �37� is sharp. Two facts suggest that this is not
the case. First, the use of the Cauchy-Schwarz inequality in

Eq. �34� is probably not sharp, since all the vectors W� �1� and

W� �2� are usually not parallel. Second, the maximum in Eq.
�36� is obtained for a separable state, no entanglement is
required to saturate this bound.

VI. CONCLUSION

In conclusion, we have developed a method to investigate
the presence of multipartite entanglement in spin models.
Our method relies on energy bounds for certain classes of
multipartite entangled states and can be applied to any state,
not only to thermal states. We discussed different examples
and showed that our ideas can in principle also be applied to
the investigation of frustrated systems.

The results of this paper may be applied in several direc-
tions. On the one hand, based on our energy thresholds one
may derive temperature bounds below which entanglement
must be present. Then, one may try to design methods to
extract this entanglement and make it useful for some tasks.

On the other hand, our results can also be used to gain
theoretical insight concerning the validity of ground state
approximations. For example, one might be interested in the
ground state energy E0. To approximate this, one may con-
sider some mean-fieldlike approximation, where the trial
wave function is a product state with respect to all qubits
�25�. This corresponds to a one-producible state. Concerning
the justification of this approximation, we can say with our
method the following: If E1p	E2p the approximation might
be justified, while if E1p�E2p this is clearly not the case.
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APPENDIX

Here, we prove two useful bounds for our proofs.
Lemma 1. For two-qubit state ��� on the qubits k , l and
��1/2 we have the following sharp bound:

052319
− xkxl − ykyl − zkzl + ��xk
2 + yk

2 + zk
2 + xl

2 + yl
2 + zl

2�

� 1 + 2� +
1

2�
. �A1�

Proof. We have to maximize the left hand side of the
inequality over all states. First note that a generic quantum
state can be written as

������ = 1
4 �

i,j=1,x,y,z
�ij�i � � j , �A2�

with �1=1. Here, �ij = �� ��i � � j ��� holds, thus we can
directly maximize over all allowed �ij. Let us first consider
local unitary transformations. These transformations act
on �ij as ��ij�→ �1 � OL���ij��1 � OR� where OL and OR are
orthogonal 3�3 matrices. Here, 1 � OR denotes a 4�4
matrix with a block structure, i.e., with “1” in the left upper
corner and OR denotes the 3�3 block in the right bottom
corner. These transformations do not change the purities of
the reduced states, thus they do not change xk

2+yk
2+zk

2 and
xl

2+yl
2+zl

2. Furthermore, �xkxl � + �ykyl � + �zkzl� is the sum of the
absolute values of the diagonal elements of the 3�3 subma-
trix �ij

red=�i,j=x,y,z. This sum is maximized when �red is
brought to diagonal form via a singular value decomposition.
This decomposition can be performed by local unitary opera-
tions.

Thus it suffices to consider ���=� �00�+
 �11� with
�2+
2=1, since for that state we have

��ij� =�
1 0 0 �2 − 
2

0 2�
 0 0

0 0 − 2�
 0

�2 − 
2 0 0 1
� . �A3�

The final maximization over all � can then be directly per-
formed. The left hand side of Eq. �A1� is maximized for
4�2=2−�4�2−1/� which proves the bound in Eq. �A1�. �

Lemma 2. �a� For two-qubit state ��� on the qubits k , l and
��1/2 we have the following sharp bound:

− xkxl − ykyl + ��xk
2 + yk

2 + xl
2 + yl

2� � 1 + 2� + 1
8� . �A4�

�b� Similarly, we have

3
2 + 1

2 �xkxl
2 + ykyl

2 + zkzl
2� + �xk

2 + yk
2 + zk

2 + xl
2 + yl

2 + zl
2� � 4.

�A5�

Proof. �a� For the minimization it does not matter whether
we minimize over the observables X ,Y �as in Eq. �A4�� or
X ,Z. Then, the bound can be derived as in the proof of
lemma 1. One arrives again at Eq. �A3�, now only one of the
terms 2�
 has to be omitted in the final maximization. �b�
This can also be derived as in lemma 1. When applying local
unitary transformations, ��xkxl�2+ �ykyl�2+ �zkzl�2� is maximal,
when the 3�3 matrix is diagonal. Finally, one has only to

maximize over � again. �
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