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Role of correlation in the operation of quantum-dot cellular automata
Géza Tótha) and Craig S. Lent
Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

~Received 27 December 2000; accepted for publication 7 March 2001!

Quantum-dot cellular automata~QCA! may offer a viable alternative of traditional transistor-based
technology at the nanoscale. When modeling a QCA circuit, the number of degrees of freedom
necessary to describe the quantum mechanical state increases exponentially making modeling even
modest size cell arrays difficult. The intercellular Hartree approximation largely reduces the number
of state variables and still gives good results especially when the system remains near ground state.
This suggests that a large part of the correlation degrees of freedom are not essential from the point
of view of the dynamics. In certain cases, however, such as, for example, the majority gate with
unequal input legs, the Hartree approximation gives qualitatively wrong results. An intermediate
model is constructed between the Hartree approximation and the exact model, based on the
coherence vector formalism. By including correlation effects to a desired degree, it improves the
results of the Hartree method and gives the approximate dynamics of the correlation terms. It also
models the majority gate correctly. Beside QCA cell arrays, our findings are valid for Ising spin
chains in transverse magnetic field, and can be straightforwardly generalized for coupled two-level
systems with a more complicated Hamiltonian. ©2001 American Institute of Physics.
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I. INTRODUCTION

In recent years the development of integrated circuits
been essentially based on scaling down, that is, increa
the element density on the wafer. Scaling down of comp
mentary metal-oxide-semiconductor circuits, however,
its limits. Above a certain element density various physi
phenomena, including quantum effects, conspire to m
transistor operation difficult if not impossible. If a new tec
nology is to be created for devices of nanometer scale,
design principles are necessary. One promising approac
to move to a transistor-less cellular architecture based
interacting quantum dots, quantum-dot cellular autom
~QCA,1–7!.

The QCA paradigm arose in the context of electrost
cally coupled quantum dots. A QCA cell consists of four~or
five! such dots arranged in a square pattern. Informatio
encoded in the arrangement of charge~i.e., two extra elec-
trons! within the cell. When a cell is switched, these ele
trons tunnel through inter-dot barriers to neighboring d
inside the cell.

The physical descriptions of the two limiting cases a
the semiclassical QCA dynamics8,10 and the quantum QCA
dynamics.4 The first is used to model the metallic-islan
implementation of the QCA circuits where the dots cont
many electrons~however, only the two extra electrons tunn
to neighboring dots when being switched! and the circuit is
described in terms of classical quantities as charging e
gies, capacitance, etc. The quantum QCA dynamics is u

a!Author to whom correspondence should be addressed. Also at Neuro
phic Information Technology Graduate Center Kende-u. 13, Budapes
1111, Hungary. Present address: Theoretical Physics, University of
ford, 1 Keble Road, Oxford OX1 3NP, United Kingdom; electronic ma
geza.toth.17@nd.edu
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to model cells which can be considered a quasi two-s
system with a coherent time evolution.~Decoherence can
also be included in the model.!

After developing the basic logic gates the theory h
been extended to large arrays of devices and computer a
tecture questions. A key advance was the realization tha
periodically modulating the inter-dot barriers, clocked co
trol of QCA circuitry could be accomplished. The modul
tion could be done at a rate which is slow compared to in
dot tunneling times, thereby keeping the switching cells v
near the instantaneous ground state. This quasiadiab
switching4 paradigm has proven very fruitful. Quasiadiaba
clocking permits both logic and addressable memory to
realized within the QCA framework. It allows a pipe linin
of computational operations.

The ability of modeling large cell arrays is crucial for th
development of complex QCA circuits. Unfortunately, th
number of quantum degrees of freedom increases expo
tially with the system size. Using the Hartree approximati
reduces the number of state variables drastically and it
still give quantitatively good results in many cases. Th
even ignoring many quantum degrees of freedom, the
namics obtained from the model remains close to the ‘‘
act’’ dynamics obtained from the many-body Schro¨dinger
equation. In other cases, the Hartree method can give q
titatively wrong results.

The intercellular Hartree approximation7 can reduce the
number of state variables since it neglects all the corre
tions. In general, the correlation of two quantities,A andB,
can be defined as9

CAB5^AB&2^A&^B&. ~1!

It was shown10 that in the case of quasiclassical QCA d
namics cell correlation plays an important role and assum
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CAB50 will lead to wrong results. In this article the role o
correlations in the quantum QCA dynamics is examined
model is proposed which makes it possible to include
much quantum correlation degrees of freedom as neces
for obtaining the correct dynamics. The model will be tes
on two examples: a cell line and a majority gate with uneq
input legs. In the first case the dynamics is quantitativ
improved with respect to the model using the Hartree in
cellular approximation. In the second case the Hart
method gives even qualitatively wrong results. Our mo
gives the correct results by including correlation effects.

In Sec. II the quantum-dot cellular automata with qu
siadiabatic switching is reviewed. In Sec. III. the coheren
vector formalism is introduced. Section IV. describes
model that makes it possible to neglect higher order corr
tions. In Sec. V. simulation examples are shown to comp
the results of the exact and the approximate method.

II. QUASIADIABATIC SWITCHING WITH
QUANTUM-DOT CELLULAR AUTOMATA

The QCA cell consists of four quantum dots as shown
Fig. 1~a!. Tunneling is possible between the neighboring d

FIG. 1. Schematic of the basic four-site semiconductor QCA cell.~a! The
geometry of the cell. The tunneling energy between two sites~quantum
dots! is determined by the heights of the potential barrier between them~b!
Coulombic repulsion causes the two electrons to occupy antipodal
within the cell. These two bistable states result in cell polarization ofP5
11 and P521. ~c! Nonlinear cell-to-cell response function of the bas
four-site cells. Cell 1 is a driver cell with fixed charge density. In equil
rium the polarization of cell 2 is determined by the polarization of cell
The plot shows the polarizationP2 induced in cell 2 by the polarization o
its neighbor,P1 . The solid line corresponds to antiparallel spins, and
dotted line to parallel spins. The two are nearly degenerate especiall
significantly large values ofP1 .
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as denoted by lines in the picture. Due to Coulombic rep
sion the two electrons occupy antipodal sites as shown
Fig. 1~b!. These two states correspond to charge polariza
11 and21, respectively, with intermediate polarization in
terpolating between the two.

In Fig. 1~c! a two cell arrangement is shown to illustra
the cell-to-cell interaction. Cell 1 is a driver cell whose p
larization takes the range21 to 1. It is also shown how the
polarization of cell 2 changes for different values of t
driver cell polarization. It can be seen that even if the pol
ization of the driver cell 1 is changing gradually from21 to
11, the polarization of cell 2 changes abruptly from21 to
11. Thisnonlinearityis also present in digital circuits wher
it helps to correct deviations in signal level: even if the inp
of a logical gate is slightly out of the range of valid‘‘0’’ an
‘‘1’’ voltage levels, the output will be correct. In the case
the QCA cells it causes that cell 2 will be saturated~with
polarization close to21 or 11! even if cell 1 was far from
saturation.

A one-dimensional array of cells4 can be used to transfe
the polarization of the driver at one end of the cell line to t
other end of the line. Thus the cell line plays the role of t
wire in QCA circuits. Moreover, any logical gates~majority
gate, AND, OR! can also be implemented, and using these
basic building elements, any logical circuit can be realize5

In this paradigm of ground state computing, the soluti
of the problem has been mapped onto the ground state o
array. However, if the inputs are switchedabruptly, it is not
guaranteed that the QCA array really settles in the gro
state, i.e., in the global energy minimum state. It is a
possible, that eventually it settles in ametastablestate be-
cause the trajectory followed by the array during the res
ing transient is not well controlled.

This problem can be solved by quasiadiabatic switchin4

of the QCA array, as shown schematically in Fig. 2. Quas
diabatic switching has the following steps:~1! before apply-
ing the new input, the height of the inter-dot barriers is lo
ered, thus the cells have no more two distinct polarizat
states,P511 andP521. ~2! Then the new input can be
given to the array.~3! While raising the barrier height, the
QCA array will settle in its new ground state.

The quasiadiabatic switching is based on the adiab
theorem, which states that if the change of the Hamiltonia

es

.

or

FIG. 2. The steps of the quasiadiabatic switching are the following:~1!
before applying the new input, the height of the inter-dot barriers is lowe
thus the cell does not have two distinct polarization states,P511 andP
521. ~2! Then the new input can be given to the array.~3! While raising
the barrier height, the QCA array will settle in its new ground state. T
quasiadiabaticity of the switching means that the system is very close t
ground state during the whole process. It does not get to excited state
setting the new input, as it happened in the case of nonadiabatic switc
Since the system does not get to an excited state from the ground sta
dissipation decreased a lot.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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gradual enough and the system is initially in ground st
then it will stay in ground state throughout the whole switc
ing process. Because the system is minimally excited fr
the ground state, dissipation to the environment is v
small. On the other hand, to maintain quasiadiabaticity
time over which the barrier height is modulated must be lo
compared to the tunneling time through the barrier. Typica
a factor of 10 reduces the nonadiabaticity to very small l
els.

III. COHERENCE VECTOR FORMALISM APPLIED FOR
THE QUANTUM-DOT CELLULAR AUTOMATA

The Hamiltonian for a QCA circuit modeled as coupl
two-state systems3 is

Ĥ52g(
i 51

N

ŝx~ i !2 (
i 51

N21

(
j 5 i 11

N
Ei j

2
ŝz~ i !ŝz~ j !

1
E0

2 (
i 51

N

ŝz~ i !Pdriver~ i !, ~2!

whereEi j is the electrostatic coupling between thei th and
the j th andg is the tunneling energy. The first term describ
the intracell tunneling between the two basis states. The
ond term describes the electrostatic coupling between ne
bors. The third term describes coupling to driver cells. F
those cells which do not have a driver cell as a neighb
Pdriver( i )50.

If the inter-dot tuneling barriers in the cells are high a
the tunneling rate is very low~zero!, then theg tunneling
energy is zero. If the inter-dot tunneling barriers in the ce
are low and the tunneling rate is high, theng is large. The
tunneling barriers of the cells are connected to electrodes
their height is controlled externally by voltage sources.

For a cell line the nearest neighbor couplings can
given byEi ,i 1 l5E0 while all the otherEi j ’s are zero. In this
caseEi ,i 1 l is the cost in electrostatic energy for two ce
being oppositely polarized.

The polarization of thekth cell can be interpreted as th
expectation value of theŝz(k) Pauli spin matrix

P~k!52^ŝz~k!&. ~3!

With the negative sign we follow the convention of Ref. 1
choosing the sign of the Pauli spin matrices

ŝx5F0 1

1 0G , ŝy5F 0 i

2 i 0G , and, ŝz5F21 0

0 1G . ~4!

The dynamics of the cell line can be computed by
Liouville equation giving the time dependence of the dens
matrix. The density matrix of a system ofN cells has 2N

32N complex ~52322N real! elements. The 22N11 con-
straints are coming from the requirements of Hermiticity a
unit trace leavings522N21 real~i.e., not complex! degrees
of freedom. Now the density matrix can be expressed a
linear combination of thes generating operators of the sp
cial unitary group SU(2N) group

r̂5
1

2N 1̂1
1

2N (
i 51

s

L iL̂ i , ~5!
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where theL̂ i basis operators have the form.

L i5^L̂ i&. ~6!

L̂ i5l̂ i
~1!

^ l̂ i
~2!

^ ...^ l̂ i
~N! , ~7!

where a term of the Kronecker product can be one of f
single-cell operators

l̂ i
~k!5H 1̂

ŝx~k!

ŝy~k!

ŝz~k!

. ~8!

Since choosing only 1ˆ ’s is excluded, there ares54N21
L̂ i ’s. ~For example,ŝx(1)ŝy(2)ŝx(3), ŝy(1)ŝz(3), and
ŝz(1) are among the basis operators.!

In this article the vector constructed from theL i coeffi-
cients of the Eq.~5! linear combination, theL coherence
vector,11 will be used for the state description instead of t
density matrix. The elements of theL coherence vector are
the expectation values of theL̂ i basis operators. The cohe
ence vector can be partitioned intol( i ) single-cell coherence
vectors,K ( i , j ) two-point, K ( i , j ,k) three-point, etc., corre-
lation vectors

L5@l~1!l~2!...K ~1,2!K ~1,3!...K ~1,2,3!...#T. ~9!

The l( i ) single-cell coherence vectors contain the expec
tion values of theŝx( i ),ŝy( i ) and ŝz( i ) single-cell basis
operators. TheK ( i , j ) two-point correlation vector has nin
elements

K ~ i , j !5@Kxx Kxy Kxz Kyx Kyy Kyz Kzx Kzy Kzz#
T. ~10!

They are expectation values of two-cell basis operators

Kab~ i , j !5^ŝa~ i !ŝb~ j !&; a,b5x,y,z. ~11!

Similarly, the elements of the three-point correlations a
expectation values of three-cell basis operators

Kabc~ i , j ,k!5^ŝa~ i !ŝb~ j !ŝc~k!&; a,b5x,y,z. ~12!

The dynamics of the coherence vector elements can
obtained by first computing the dynamics of the basis ope
tors in the Heisenberg picture and then taking the expecta
values of both sides of the equations. The differential eq
tion system is linear and has the form

\
d

dt
L5V̂~ t !L, ~13!

where V̂(t) is the time dependent coefficient matrix. Ne
the structure of the Eq.~13! differential equation system wil
be presented by giving explicit equations for the single-c
coherence vector elements and two-point correlations.

The dynamics of a single-cell coherence vector can
obtained as

\
d

dt
l~ i !5V̂ il~ i !1 (

j PNb~ i !
Ei j @^ŝy~ i !ŝz~ j !&

2^ŝx~ i !ŝz~ j !& 0#T, ~14!

where
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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V̂ i5F 0 2E0Pdriver~ i ! 0

E0Pdriver~ i ! 0 2g

0 22g 0
G ~15!

and Nb( i ) refers to the neighbors of thei th cell. The first
term on the right hand side of Eq.~14! describes the preces
sion of l( i ) around an axis determined byPdriver( i ) and g.
The second term with the sum is the coupling to the nei
bors through two-point correlations.

The Kyz( i , j )5^ŝy( i )ŝz( j )& and Kxz( i , j )
5^ŝx( i )ŝz( j )& terms are two-point correlation vector el
ments. The dynamics of the correlation vectors can be
tained as12

\
d

dt
K ~ i , j !5~ 1̂^ V̂ j1V̂ i ^ 1̂!K ~ i , j !

1Ci j $l~k!,K ~ l ,m,n!%. ~16!

The first term on the right hand side of Eq.~16! corresponds
to the evolution ofK ( i , j ) under the influence ofPdriver( i ),
Pdriver( j ), andg. The second term withĈi j is an expression
consisting of coherence vector elements and three-point
relation vector elements.

Dynamical equations similar to Eq.~16! can be written
for the three-point, four-point, etc., correlation vector e
ments.~They are not given here.! The complete set of thes
differential equations describes the dynamics of the multi
system equivalently to the dynamics given by the Liouvi
equation for the density matrix. If there is no decoheren
and the system is in a pure state, these two are equivale
the dynamics given by the Schro¨dinger equation with the
many-cell Hamiltonian. We will refer to the model contai
ing the whole set of differential equations for the coheren
vector and correlation vector elements as theexactmodel in
this article.

The structure of the dynamical equations for the cor
lation vector elements is such that in the equation ofnth
order correlation vector elements we can find onlyn
11)th and lower order correlations.13 This provides a possi
bility of truncating the hierarchy of dynamical equation
Having formulas which approximate the (n11)th order cor-
relations with lower order correlations and substituting th
in the equations of thenth order terms, all differential equa
tions for the terms with order higher thann can be neglected
since these terms cannot be found in the equations of lo
order correlation terms. The details of the truncation will
given in the next section.

Besides the correlation vector there are other quant
characterizing the intercell correlation. Thecorrelation vec-
tor proper14 for two cells has nine elements. They are d
fined as

Mab~ i , j !5^@ŝa~ i !2^ŝa~ i !&#@ŝa~ j !2^ŝb~ j !&#&;

a,b5x,y,z. ~17!

With coherence vector elements Eq.~17! can be rewritten as

Mab~ i , j !5Kab~ i , j !2la~ i !lb~ j !; a,b5x,y,z. ~18!
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The elements of the correlation vector proper are all zer
there is no correlation between the cells or they areuncorre-
lated.

The higher order correlation vectors proper are defin
similarly to Eq.~17!. For example, an element of the thre
point correlation vector proper can be given as

Mabc~ i , j ,k!5^@ŝa~ i !2^ŝa~ i !&#@ŝb~ j !2^ŝb~ j !&#

3@ŝc~k!2^ŝc~k!&#&; a,b,c5x,y,z.

~19!

After some algebraic transformations one gets

Mabc~ i , j ,k!5Kabc~ i , j ,k!2Kab~ i , j !lc~k!

2Kac~ i ,k!lb~ j !2Kbc~ j ,k!la~ i !

12la~ i !lb~ j !lc~k!; a,b,c,5x,y,z.

~20!

Intercellular Hartree approximation

It is possible to eliminate the correlation terms from E
~14! by assuming that the cells are uncorrelated, that is,
two-point correlation vectors proper are zero

Mab~ i ,i 11!5Kab~ i ,i 11!2la~ i !lb~ i 11!50. ~21!

Based on Eq.~21! the two-point correlation vector elemen
can be approximated with the multiplication of two cohe
ence vector elements

Kab~ i ,i 11!'la~ i !lb~ i 11!. ~22!

Substituting Eq.~22! into Eq.~14! one obtains the dynamica
equations for the coherence vectors as

\
d

dt
l~ i !5Ṽ il~ i !, ~23!

where

Ṽ i5F 0 2S i 0

S i 0 2g

0 22g 0
G ~24!

and

S i5 (
j PNb~ i !

Ei j P~ j !1E0Pdriver~ i !. ~25!

Here S i is the weighted sum of the polarizations of th
neighbors@P(k)52lz(k)#.

The Eq.~23! dynamical equation can be written11 in the
form of

\
d

dt
l~ i !5G~ i !3l~ i !, ~26!

where the cross denotes vector product and

G~ i !5@22g 0 S i #
T. ~27!

Equation~26! describes the precession ofl( i ) aroundG( i ).
The instantaneous ground state of Eq.~26! is

lss~ i !5
G i

uGi u
. ~28!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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This approximation describes the state of the cell ar
by the single-cell coherence vectors only, using three
state variables for each cell. If there is no decoherence
the system is in a pure state then Eq.~26! is equivalent to the
coupled Schro¨dinger equations15

i\
dCk

dt
5ĤkCk ;k51,2,...,N, ~29!

where the single-cell Hamiltonians are

Ĥk52gŝx~k!1
Sk

2
ŝz~k!;

~30!

S i5 (
j PNb~ i !

2Ei j ^ŝz~ j !&1E0Pdriver~ i !

and the single-cell state functions are the superposition of
basis states

Ck5aku1&1bku21&5Fak

bk
G . ~31!

The state of the whole system can be constructed from
single-cell state vectors asC5C1^ C2^ ...^ CN .
In Ref. 3 the Eqs.~29! are used to model QCA lines where
is called intercellular Hartree approximation.14 In this article
we will also call the model based on the Eqs.~23!–~25!
Hartree approximation or Hartree method.

IV. MODEL NEGLECTING HIGHER ORDER
CORRELATION

In a classical multi-particle system the number of d
grees of freedom necessary for the state description incre
linearly with the number of particles. A point-like particl
can be described by its position and velocity. ForN particles,
N positions andN velocities are required which givesN
times more degrees of freedom than for a single particle

In a quantum mechanical system ofN QCA cells, the
number of degrees of freedom are much larger thanN times
the degrees of freedom of a single cell. The extra degree
freedom come from the intercellcorrelations. The informa-
tion necessary for a total description increases exponent
with the number of cells and makes it difficult to simula
even a modest size block of QCA cells. To describeN
coupled cells exactly, 22N21 variables are necessary for th
coherence vector description.

The coherence vector description makes it possible
divide the state variables into groups corresponding to
state of the cells, and to the two-point, three-point, etc., c
relations. A correlation term can be two-point, three-poi
etc., or nearest neighbor, next-to-nearest neighbor, etc.
feature of the coherence vector description helps us to de
mine which correlation terms are important from the point
view of the dynamics and which can be neglected. Usuall
is reasonable to assume that the further than nearest neig
and higher order correlations play a less important role, t
they can be approximated by lower order correlations. D
pending on which correlation terms are kept and which
neglected, models with different levels of approximatio
can be constructed which are intermediate between the
tree approximation and the exact method.
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
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Since it will be important later, we outline for a cell lin
the hierarchy of dynamical equations for the coherence
correlation vectors for the first three levels~coherence vector
elements, two- and three-point correlations! in Table I. The
Table shows which variables are on the right hand side
the dynamical equation for the single cell coherence vec
~graph I!, the nearest neighbor two-point correlation vecto
@graph II~a!#, the further-than-nearest neighbor two-poi
correlation vectors@graph II~b!#, and for the nearest neighbo
three-point correlation vectors~graph III!.

The Hartree approximation truncates the hierarchy at
dashed line in Table I keeping only graph I by removing t
coupling to the two-point correlations indicated by the upp
arrow. It assumes that theMab( i ,i 11) two-point correlation
vector proper elements are zero@see Eq.~21!# and approxi-
mates the elements of the two-point correlation vectors w
coherence vector elements using Eq.~22!.

The first approximation, that is better than the Hartr
method, can be obtained16 by keeping only the single cel
coherence vectors~graph I! and the two-point nearest neigh
bor correlations@graph II~a!#. The point of truncation is in-
dicated by a dashed-dotted line in Table I. The truncat
removes the coupling to the three-point correlations in
cated by the lower arrow.

In order to do the truncation, a formula must be co
structed to approximate the elements of theK ( i ,i 11,i 12)
nearest neighbor three-point correlation vector with nea
neighbor two-point correlation vector and coherence vec
elements. The approximation is based on the assumption

TABLE I. The hierarchy of the dynamical equations for the coherence v
tor elements for a cell line. The first three levels are shown: dynamics of
single-cell coherence vectors~graph I!, nearest neighbor two-point correla
tion vectors@graph II~a!#, further-than-nearest neighbor two-point correl
tion vectors@graph II~b!#, nearest neighbor three-point correlation vecto
~graph III!. The graphs are indicating which variables are in the dynam
equations of a particular coherence vector element. The dashed and da
dotted lines show where the Hartree method and the NNPC approxima
truncate the hierarchy.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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the Eq. ~20! three-point correlation vector proper elemen
are zero

Kabc~ i ,i 11,i 12!5^ŝa~ i !ŝb~ i 11!ŝc~ i 12!&

'Kab~ i ,i 11!lc~ i 12!1Kbc~ i 11,i 12!

3la~ i !1Kac~ i ,i 12!lb~ i 11!

22la~ i !lb~ i 11!lc~ i 12!,

a,b,c5x,y,z. ~32!

Equation ~32! contains the Kac( i ,i 12) next-to-neares
neighbor two-point correlation that should be eliminated
approximating them with the multiplication of the corr
sponding two coherence vector elements based on the
sumption that theMac( i ,i 12) next-to-nearest neighbor co
relation vector elements are zero:Kac( i ,i 12)
'la( i )lc( i 12). Substituting this into Eq.~32! leads to the
general formula for approximating any nearest neigh
three-point correlation vector element

Kabc~ i ,i 11,i 12!5^ŝa~ i !ŝb~ i 11!ŝc~ i 12!&

'Kab~ i ,i 11!lc~ i 12!

1Kbc~ i 11,i 12!la~ i !2la~ i !

3lb~ i 11!lc~ i 12!,

a,b,c5x,y,z. ~33!

Substituting this into the dynamical equations of near
neighbor two-point correlations@circled in graph II~a! in
Table I#, the three-point correlations can be eliminated. T
method based on this approximation will be called NNP
referring to that besides the coherence vectors it inclu
only the nearest neighbor pair correlations in the state
scription of the cell array.17

The NNPC method is the simplest that is closer to
exact model with the many-body Hamiltonian than the H
tree method. The Hartree method needs 3N state variables
for state description whereN is the number of cells. NNPC
requires 3N19M state variables, whereM is the number of
nearest neighbor pairs among the cells. For a cell lineM
5N21. Thus the number of state variables scales linea
with the system size for both methods.

The procedure can be generalized. Next-to-nea
neighbor pair correlations and higher than second order
relations can be included and it is also possible to buil
model which includes higher order correlations only f
those regions where it seems to be necessary.

Since the coherence vector formalism is based on
density matrix description, it is able to model mixed sta
unlike the state vector description. Dissipation and decoh
ence can be easily included by adding damping terms to
dynamical equations. This is true for our approximation,
well. Appendix A describes how to add dissipation to t
dynamical equations of the coherence vector elements.

V. SIMULATION EXAMPLES

Computer simulations were made to compare NN
with the Hartree approximation and with the exact mod
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
y

as-

r

t

e

s
e-

e
-

ly

st
r-
a

e
s
r-
e

s

l.

The comparison was done for the case of quasiadiab
switching of a QCA cell line and of a majority gate wit
unequal input legs. We choose units such that\51 andE0

51. We note that approximating higher and higher ord
terms puts more and more nonlinear couplings in the diff
ential equations making them numerically more difficult
handle.

A. Quasiadiabatic switching of a cell line

The first simulation example is the quasiadiaba
switching of a line of five cells as shown Fig. 3~a!. The first
cell is coupled to a driver cell. The tunneling coefficient
gradually18 lowered~the barriers are raised! as shown in Fig.
3~b!. Figure 3~c! shows the dynamics of the coherence vec
coordinates for the five cells coming from NNPC. At the e
~when the barriers are high! all the cells align with the driver,
that is, at the endlz( i )52P( i )'1. Figure 3~d! shows a
comparison of thelz(2) curves corresponding to the Hartre
approximation, the NNPC, and the exact model. The in
shows theDlz(2) deviation from the exact dynamics for th
Hartree method~dashed! and NNPC~solid!. It is clearly vis-
ible that NNPC gives a better match with the exact mo
than the Hartree approximation does.

Figures 4~a! and 4~b! show the pair correlation vecto
proper elements for NNPC and the exact model. TheMxy ,
M yx , M yz , andMzy correlation vector proper elements a
much smaller than the other five. It can be proved that if
system were exactly in ground state then they would be z
NNPC is a qualitative improvement compared to the Hart
approximation since the Hartree approximation does
model intercell correlations at all.

The initial state of the dynamical simulation was th
lowest energy stationary state of the NNPC method. T
stationary state was found by the multidimensional Newto
Raphson method~see Appendix B! using the lowest energy
eigenstate of the many-body Hamiltonian of the cell line a
starting guess.~The stationary states for the exact model a
for our approximation are slightly different. Starting from th
initial state of the exact model causes oscillations in the
namics.! The method works only if~even very small! dissi-
pative terms are added to the dynamical equations. In
simulation thetdissip dissipation time constant was 107.

B. Quasiadiabatic switching of a majority gate with
unequal input legs

For the previous example the Hartree method leads
relatively good results and including correlation terms in t
model gives only a quantitative improvement in the dyna
ics of the polarizations. Next an example, the adiaba
switching of the majority gate with unequal input legs,
presented where the results of the Hartree method are
qualitatively wrong.

Before going any further, some simplifications must
made in order to reduce the number of state variables
make simulations feasible. The large number of state v
ables causes a problem even for a majority gate of nine c
where the coherence vector has 21821'2.63105 elements.
As it was told in Sec. III, the full set of differential equation
for the coherence vector model is equivalent to the ma
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



c-

e
.

7949J. Appl. Phys., Vol. 89, No. 12, 15 June 2001 G. Toth and C. S. Lent
FIG. 3. Quasiadiabatic switching of a
line of five cells. The barriers are
gradually lowered while the driver has
constant 21 polarization. The five
cells follow the polarization of the
driver. ~a! The arrangement of the five
cells and a driver,~b! the dynamics of
the inter-dot tunneling energy,~c! the
elements of the three coherence ve
tors as the function of time for the
NNPC approximation,~d! lz(2) as the
function of time for the Hartree ap-
proximation ~dashed!, NNPC ~solid!,
and the exact model~solid!. The
inset shows the Dlz(2)5lz(2)
2lz,exact(2) deviation from the exact
dynamics for the Hartree method
~dashed! and NNPC ~solid!. NNPC
gives a result closer to the exact on
than the Hartree approximation does
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body Schro¨dinger equation if the system starts out in pu
state and there is no decoherence. Thus for the exact m
the many-body Schro¨dinger equation will be used, requirin
only 21051024 real state variables. The reduction in t
number of state variables is the result of eliminating the
grees of freedom that made it possible to describe mi
states and decoherence. It does not limit our investigatio
the role of quantum correlations in the dynamics.

The QCA structure under consideration can be see
Fig. 5. One of the input legs is only one cell long a
coupled to a driver cell with polarization21. The other two
input legs are longer~their length will be denoted byL! and
they are coupled to drivers with polarization11. The polar-
ization of the output of the majority gate in ground state~if
the barriers are high! is the majority of the polarizations o
the input drivers, in this case11.

The results of the Hartree method are qualitativ
wrong forL53 giving an output polarization of21 as indi-
cated in Fig. 5. The method gives a wrong21 polarization
for cells 4 and 9.~These two cells are circled in Fig. 5.! The
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
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tunneling coefficient is gradually lowered~the barriers are
gradually raised! as shown in Fig. 6~a!. In Fig. 6~b! the dy-
namics of the polarizations obtained from the Hartr
method can be seen. It is clearly visible that three of the c
settle in the polarization21 state. Figure 6~c! shows the
exact dynamics. Notice that only one of the cells settles
21 polarization. The polarization of the gate cell~cell 4!
begins to decrease due to the effect of the driver with21
polarization, however, later it begins to increase and reac
almost 11. @Compare with the dynamics of the gate ce
shown in 6~b!.#

The phenomenon can be intuitively understood as
results of the competing inputs. Since the leg of the dri
with the 21 polarization is shorter, its influence reaches t
gate cell first and sets the polarization of the output cell
21, too. When the other two drivers with the long input le
begin to influence the gate cell, it has already two21 polar-
ized neighbors thus the drivers are not able to flip the g
cell. The output will be wrong only above a certain diffe
ence (L.2) in the length of the input legs. The Hartre
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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method works correctly with a five cell (L51) and a seven
cell (L52) gate.

According to our simulations, the NNPC approximatio
does not model this case correctly, thus further correla
terms must be included in the model. It will be examin
which cells of the majority gate can be modeled with t
Hartree approach and which must be modeled by a be
approximation. The Hartree method assumes that the sy
is in a product state and the cells are uncorrelated. Thus
parts of the gate where the correlations proper are small
be modeled with the Hartree method, while in the rest of
circuit correlations must be included in the model.

Next it will be checked how large the correlations are
a different part of a nine-cell (L53) majority gate. Figure 7
shows the time dependence ofMzz(1,2), Mzz(3,4), and
Mzz(4,9). It can be seen that the latter two~corresponding to
the correlation in the cross region! are much larger. Thus i
seems to be reasonable to include more correlation effec
the five cell cross region.~It must be noted that if all the
three inputs are11 then the correlations in the cross regi
are much smaller. That is consistent with the fact that

FIG. 4. Quasiadiabatic switching of five cells. The barriers are gradu
raised while the driver has constant21 polarization. The nearest neighbo
correlation vector proper elements for~a! the NNPC approximation and~b!
the exact method. TheMxy , M yx , M yz , andMzy correlation vector proper
elements are much smaller than the other five, thus they are multiplie
100.
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
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Hartree method, that does not include correlations at
works well in this case.!

One possibility is to include all the two-point, three
point, four-point, and five-point correlations of the cross
gion in the model while handling all the other cells with th
Hartree approximation. To do that certain simplifications a
needed, since the number of state variables for the se
differential equation for the coherence vector element is v
large ~1035! even for the nine-cell gate.~Notice that this
number is still much smaller than the one obtained for
full set of differential equations having all the correlations!
The simplification can be based on recognizing that in
coherent case the previous model is equivalent to a se
coupled Schro¨dinger equations

i\
dCcross

dt
5ĤcrossCcross and ~34!

i\
dCk

dt
5ĤkCk for k51,2,6,7. ~35!

Equation~34! describes the time evolution of the state of t
cross region~cells 3, 4, 5, 8, and 9!, while Eq. ~35! single-
cell Schrödinger equations describe the time evolution of t
state of the remaining cells.

The five-cell many-body Hamiltonian for the cross is

Ĥcross52g (
i 53,4,5,8,9

ŝx~ i !2
E0

2
~ ŝz~3!ŝz~4!

1ŝz~4!ŝz~5!1ŝz~9!ŝz~4!1ŝz~8!ŝz~4!!

2
E1

2
~ ŝz~3!ŝz~8!1ŝz~3!ŝz~9!1ŝz~5!ŝz~8!

1ŝz~5!ŝz~9!!2
E0

2
~ ŝz~3!P~2!1ŝz~8!P~7!

1ŝz~5!Pdriver~5!!, ~36!

y

by

FIG. 5. The nine-cell (L53) majority gate with unequal input legs. At th
end of the quasiadiabatic switching process, when the barriers are high
output polarization of the majority gate should be the majority polarizat
of the inputs. When modeled by the Hartree method, the polarizations o
cells 4 and 9~circled! are determined incorrectly. In the correct ground sta
all the cells have11 polarization except for cell 5 which has21.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 6. Quasiadiabatic switching of a
nine-cell majority gate (L53). ~a!
The time dependence of the tunnelin
energy. The barriers are graduall
raised.~b! The cell polarizations as the
function of time for the Hartree
method and~c! for the exact model. In
both~b! and~c! the curves correspond
ing to cell 4 ~gate cell!, cell 9 ~output
cell!, and cell 5 are labeled.
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while the single-cell Hamiltonians are

Ĥk52gŝx~k!1
Sk

2
ŝz~k!. ~37!

The Hamiltonian~36! is coupled to the neighboring cell
through theP(2), P(7) and Pdriver(5) polarizations while
the single-cell Hamiltonian~37! is coupled to the environ
ment throughS i• E1520.18E0 describes the interactio
between diagonal neighbors. The

FIG. 7. Dynamics of the two-point correlations proper during the quasia
batic switching of a nine-cell majority gate (L53). Mzz(1,2) ~dashed-
dotted!, Mzz(3,4) ~solid!, and Mzz(4,9) ~dashed! are shown. The correla
tions are much larger in the cross region than away from it.
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
negative sign indicates that they tend to anti align. The re
tive strength of the diagonal interaction is computed fro
geometrical considerations.

If there is no dissipation, the coherence vector desc
tion with the approximation that includes correlations only
the cross region would give the same dynamics for the s
tem as the Eqs.~34!, ~35! system of coupled Schro¨dinger
equations do. By neglecting the degrees of freedom com
from the ability of the coherence vector description to mo
mixed states, the number of real state variables is reduce
80.

Figure 8~a! shows the dynamics of the polarizations f
the nine-cell gate (L53). It now gives the correct polariza
tion for the output cell.~Compare with Fig. 6.! Figure 8~b!
shows the dynamics ofMzz(3,4) andMzz(4,9) in the cross
region. Comparison with Fig. 7~b! indicates that a large par
of the correlations proper are restored. It is worthwhile to s
how long the difference between the input legs can be be
the method breaks down and gives the wrong answer. Si
lations show that this approximation gives the correct out
for L,40. ~Notice the large improvement compared to t
Hartree method that worked correctly forL,3.!

Originally it was thought that the Hartree approach fa
for the majority gate since, because of the inequality of
input legs, the influence of one of the drivers reaches the g
cell before the other two. Our findings support the idea t

-
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FIG. 8. Quasiadiabatic switching of a
nine-cell majority gate (L53). All the
correlations are included in the five
cell cross region while outside this re
gion a Hartree description is used.~a!
Dynamics of the polarizations. The
curves corresponding to cell 4~gate
cell!, cell 9 ~output cell!, and cell 5 are
labeled.~b! Dynamics of the two-point
correlations properMzz(3,4) ~solid!
andMzz(4,9) ~dashed!. Part of the cor-
relations is restored in the cross re
gion. Compare with Fig. 7.
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what caused the Hartree approach to fail was its inability
model the correlations in the cross region.@Notice that in
Fig. 8~a! the polarization of the gate cell~cell 4! decreases in
the beginning, similar to the results of the exact meth
shown in Fig. 6~c!. Thus with both models the influence o
the driver with21 polarization reaches the gate cell befo
the influence of the other two inputs does.# If all three inputs
are 11 then even the Hartree method gives the correct
namics consistently with the previous remark about the r
of correlations since in this case the correlations in the cr
region are much smaller.

VI. CONCLUSIONS

An intermediate model between the Hartree approxim
tion and the exact method was constructed to describe
dynamics of QCA cell arrays. It is based on the truncation
the system of dynamical equations obtained from the co
ence vector formalism. By choosing the point of truncation
is possible to include correlation effects to the desired or
in the dynamics. The nearest neighbor pair correlat
~NNPC! model kept all the nearest neighbor two-point co
relations while approximating the three-point correlatio
and the further than nearest neighbor two-point correlatio
Through the example of the majority gate with unequal in
legs it was also shown how to construct an approximat
where the correlations are fully included only in a certa
part of the circuit while other parts are modeled by dynam
cal equations using the intercellular Hartree approximati
The method corrects the qualitatively wrong results of
Hartree method in determining the output for the gate. T
usefulness of these models can be summarized as foll
~1! They quantitativelyimprove the dynamics of the single
cell coherence vectors compared to the Hartree model.~2!
They represent aqualitativeimprovement since they give th
~approximate! dynamics of the correlation while the Hartre
model does not give information on correlation.~3! These
approximate models help understating which quantum
grees of freedom are important from the point of view of t
dynamics.
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APPENDIX A: INCLUDING DISSIPATION IN THE
DYNAMICAL EQUATIONS

The model presented in the previous subsections
scribes the unitary time evolution of the cell line based
the dynamical Eq.~13! of the coherence vector. Insertin
damping terms in the differential equations11 for the coher-
ence vector and correlation vector elements, dissipation
also be included in the dynamics. The differential Eq.~14!
for the single-cell coherence vector changes in the follow
way:

d

dt
l~ i !udiss2

d

dt
l~ i !undiss52

1

tdissip
@l~ i !2h~ i !#, ~A1!

where diss and ndiss stand for dissipative and nondissipa
The formula 1/tdissip describes the dissipation rate. Vectorhi

accounts for the fact that the dissipation drives the cohere
vector elements to nonzero values.

The differential Eq.~16! for a correlation vector change
in the following way:

d

dt
K ~ i , j !udiss2

d

dt
K ~ i , j !undiss

52
2

tdissip
S K ~ i , j !2

h~ i ! ^ l~ j !1l~ i ! ^ h~ j !

2 D . ~A2!

The changes for equations of higher order correlations ca
found in Ref. 11.

There are several possibilities to choose theh( i ) vector
depending on what kind of model of dissipation is used. O
possibility is the following. The instantaneous ground st
with no dissipation according to the Hartree model is giv
by Eqs.~27! and ~28!. h( i ) can be chosen as

hi~ i !5
1

tdissip
lss~ i !52

1

tdissip

Gi

uG i u
. ~A3!
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Modeling the dissipation this way, describes the relaxation
the coherence vector towardslss. If 1/tdissip is large then the
system closely follows the instantaneous ground state of
Hartree model.

APPENDIX B: FINDING THE STATIONARY STATE
OF THE DYNAMICAL EQUATIONS

The stationary states of NNPC can be obtained taking
the time derivatives zero in the dynamical equations a
solving for the coherence vector and correlation vector e
ments. The dynamics of the system can be written in
general form

d

dt
L5F~L!, ~B1!

whereF(L) is a vector-valued function of the vector var
able L. ~@The @Eq. ~13!# differential equations giving the
exact dynamics for the coherence vector are linear, howe
the NNPC method uses nonlinear terms to approxim
higher order correlations.! The stationary solution of Eq
~B1! can be obtained from

05F~Lstat! . ~B2!

We used the multidimensional Newton–Raphs
method to findLstat. It converges very fast sinceF(L) con-
tains mostly linear terms, except for the terms approximat
the higher order correlations.

The multidimensional Newton–Raphson method
based on the linearization ofF(L) around an initial guess
Lini . The next guess,Lnext, will be the vector that makes th
linearized function zero. The linearization ofF(L) is

F~L!2F~Lini!'J~Lini!~L2Lini!. ~B3!

HereJ(Lini) is the Jacobian ofF(L) at Lini . Since we are
looking for the zero ofF(L), the following equation must be
solved forLnext:

2F~Lini!5J~Lini!~Lnext2Lini!. ~B4!

The solution is

Lnext5Lini2J21~Lini!F~Lini!. ~B5!

This gives the next guess from the previous guess. No
that the Jacobian must be invertible since Eq.~B5! explicitly
contains its inverse. The Jacobian is singular if there is
Downloaded 25 Jun 2001 to 163.1.103.102. Redistribution subject to A
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dissipation, thus adding~even very small! damping terms to
the equations is necessary to find the stationary state.
reasonable to determine the Jacobian analytically instead
ing numerical differentiation in order to increase the comp
tational speed and the accuracy as well.
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