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Role of correlation in the operation of quantum-dot cellular automata
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Quantum-dot cellular automat®CA) may offer a viable alternative of traditional transistor-based
technology at the nanoscale. When modeling a QCA circuit, the number of degrees of freedom
necessary to describe the quantum mechanical state increases exponentially making modeling even
modest size cell arrays difficult. The intercellular Hartree approximation largely reduces the number
of state variables and still gives good results especially when the system remains near ground state.
This suggests that a large part of the correlation degrees of freedom are not essential from the point
of view of the dynamics. In certain cases, however, such as, for example, the majority gate with
unequal input legs, the Hartree approximation gives qualitatively wrong results. An intermediate
model is constructed between the Hartree approximation and the exact model, based on the
coherence vector formalism. By including correlation effects to a desired degree, it improves the
results of the Hartree method and gives the approximate dynamics of the correlation terms. It also
models the majority gate correctly. Beside QCA cell arrays, our findings are valid for Ising spin
chains in transverse magnetic field, and can be straightforwardly generalized for coupled two-level
systems with a more complicated Hamiltonian. 2001 American Institute of Physics.
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I. INTRODUCTION to model cells which can be considered a quasi two-state
system with a coherent time evolutiofDecoherence can
In recent years the development of integrated circuits hagiso be included in the modgl.

been essentially based on scaling down, that is, increasing After developing the basic logic gates the theory has
the element density on the wafer. Scaling down of compleheen extended to large arrays of devices and computer archi-
mentary metal-oxide-semiconductor circuits, however, hasecture questions. A key advance was the realization that by
its limits. Above a certain element density various physicalperiodically modulating the inter-dot barriers, clocked con-
phenomena, including quantum effects, conspire to makeol of QCA circuitry could be accomplished. The modula-
transistor operation difficult if not impossible. If a new tech- tion could be done at a rate which is slow compared to inter-
nology is to be created for devices of nanometer scale, neWot tunneling times, thereby keeping the switching cells very
design principles are necessary. One promising approach jfear the instantaneous ground state. This quasiadiabatic
to move to a transistor-less cellular architecture based oBwitching* paradigm has proven very fruitful. Quasiadiabatic
interacting quantum dots, quantum-dot cellular automatalocking permits both logic and addressable memory to be

(QCAY). realized within the QCA framework. It allows a pipe lining
The QCA paradigm arose in the context of electrostati-of computational operations.
cally coupled quantum dots. A QCA cell consists of foar The ability of modeling large cell arrays is crucial for the

five) such dots arranged in a square pattern. Information iglevelopment of complex QCA circuits. Unfortunately, the
encoded in the arrangement of chalge., two extra elec- number of quantum degrees of freedom increases exponen-
trons within the cell. When a cell is switched, these elec-tjally with the system size. Using the Hartree approximation
trons tunnel through inter-dot barriers to neighboring dotseduces the number of state variables drastically and it can
inside the cell. still give quantitatively good results in many cases. Thus,

The physical descriptions of the two I|m|t|ng cases areeyen ignoring many quantum degrees of freedom, the dy-
the semiclassical QCA dynamft¥ and the quantum QCA namics obtained from the model remains close to the “ex-
dynamics® The first is used to model the metallic-island act” dynamics obtained from the many-body Satirger
implementation of the QCA circuits where the dots containequation. In other cases, the Hartree method can give quan-
many electrongshowever, only the two extra electrons tunnel titatively wrong results.
to neighboring dots when being switcheahd the circuit is The intercellular Hartree approximationan reduce the
described in terms of classical quantities as charging enefumber of state variables since it neglects all the correla-
gies, capacitance, etc. The quantum QCA dynamics is usegbns. In general, the correlation of two quantitidsand B,

can be defined ds
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Cas=(AB)—(A)(B). 1)
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® O oM ] FIG. 2. The steps of the quasiadiabatic switching are the followffy:
before applying the new input, the height of the inter-dot barriers is lowered,
o e ® O thus the cell does not have two distinct polarization staffes+1 andP
P=+1 P=1 =—1.(2) Then the new input can be given to the arre8). While raising
=+ - the barrier height, the QCA array will settle in its new ground state. The
guasiadiabaticity of the switching means that the system is very close to its
ground state during the whole process. It does not get to excited state after
c) setting the new input, as it happened in the case of nonadiabatic switching.
Since the system does not get to an excited state from the ground state the

cell 1 cell2 dissipation decreased a lot.

Raise
barriers

b)

1.0 . . . .
as denoted by lines in the picture. Due to Coulombic repul-

] sion the two electrons occupy antipodal sites as shown in
Fig. 1(b). These two states correspond to charge polarization
+1 and —1, respectively, with intermediate polarization in-
terpolating between the two.

In Fig. 1(c) a two cell arrangement is shown to illustrate
the cell-to-cell interaction. Cell 1 is a driver cell whose po-
larization takes the rangel to 1. It is also shown how the
polarization of cell 2 changes for different values of the
FIG. 1. Schematic of the basic four-site semiconductor QCA ¢aliThe  driver cell polarization. It can be seen that even if the polar-
geometry of the cell. The tunneling energy between two sitegantum  jzation of the driver cell 1 is changing gradually fromil to
dots is dt_etermine(_j by the heights of the potential barrier betwee_n tﬂnjm._ +1, the polarization of cell 2 changes abruptly froni to
C_ou_lomblc repulsion causes the two electrons‘to occupy ‘ant!podal S|te§|_1 Thisnonlinearityis also present in digital circuits where
within the cell. These two bistable states result in cell polarizatioR of o > < ST ) .
+1 andP=—1. (c) Nonlinear cell-to-cell response function of the basic it helps to correct deviations in signal level: even if the input
four-site cells. Cell 1 is a driver cell with fixed charge density. In equilib- of a logical gate is slightly out of the range of valid“0” and
The plo Shows the polarzatch, nduced i cell 2 by tne polarzation of L. "O2Ge evels, the output will be correct. In the case of
its ngighbor,Pl. Th: solid line ?:orresponds to antir))/arallg spins, and thethe QCA cells it causes that cell 2,W|” be saturatedth
dotted line to parallel spins. The two are nearly degenerate especially fopolarization close to-1 or +1) even if cell 1 was far from
significantly large values o, . saturation.

A one-dimensional array of ceflsan be used to transfer
. . . the polarization of the driver at one end of the cell line to the
Cag=0 will lead to wrong results. In this article the role of other end of the line. Thus the cell line plays the role of the

correlat'lons in the quar?tum QCA d_ynamm;s IS exgmmed. Awire in QCA circuits. Moreover, any logical gatésajority
model is proposed which makes it possible to include a:?)g

051

-0.5¢

-1.0

-1.0 -0.5 0.5 1.0

h lation d  froed te, AND, OR can also be implemented, and using these as
fmucb qya_mtur;: corre atuzjn egfeesT‘; reedolm ?Isbnecess sic building elements, any logical circuit can be realized.
or obtaining the correct dynamics. The model will be teste In this paradigm of ground state computing, the solution

on two examples: a cell line and a majority gate with unequal, y o problem has been mapped onto the ground state of the

input legs. In the first case the dynamics is quantitativelyarray' However, if the inputs are switchabruptly, it is not

improved with respect to the model using the Hartree inter- uaranteed tha’t the QCA array really settles i’n the ground

cellular a_pproximation. In the second case the Hartre tate, i.e., in the global energy minimum state. It is also

. . ; , lpossible, that eventually it settles innaetastablestate be-

gives the correct results by including correlation effgcts. cause the trajectory followed by the array during the result-
In Sec. Il the quantum-dot cellular automata with qua-ing transient is not well controlled.

siadiabatic switching is reviewed. In Sec. Ill. the coherence This problem can be solved by quasiadiabatic switching

ﬁ1g the new input, the height of the inter-dot barriers is low-
ered, thus the cells have no more two distinct polarization
states,P=+1 andP=—1. (2) Then the new input can be
given to the array(3) While raising the barrier height, the
QCA array will settle in its new ground state.

The QCA cell consists of four quantum dots as shown in ~ The quasiadiabatic switching is based on the adiabatic
Fig. 1(a). Tunneling is possible between the neighboring dotgheorem, which states that if the change of the Hamiltonian is

II. QUASIADIABATIC SWITCHING WITH
QUANTUM-DOT CELLULAR AUTOMATA
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gradual enough and the system is initially in ground stateyhere thef\i basis operators have the form.
then it will stay in ground state throughout the whole switch-

ing process. Because the system is minimally excited from A= <A> (6)
the ground state, dissipation to the environment is very . (1) 0 2 (2) (N
small. On the other hand, to maintain quasiadiabaticity the Ai=APerPe. ok, (7
time over which the barrier helght is modulated must be |0ngNhere a term of the Kronecker product can be one of four
compared to the tunneling time through the barrier. Typicallysingle-cell operators

a factor of 10 reduces the nonadiabaticity to very small lev-

els. 1
IIl. COHERENCE VECTOR FORMALISM APPLIED FOR I ay(K)
THE QUANTUM-DOT CELLULAR AUTOMATA o,(k)
The Hamiltonian for a QCA circuit modeled as coupled Since choosing only % is excluded, there are=4N—1
two-state systen%s’s Ay's. (For example,d,(1),(2)04(3), 0y(1)d,(3), and
N-1 0,(1) are among the basis operators.
H=— 72 a (i) — _Ja )a,(j) In this article the vector constructed from the coeffi-
=1 5T 2 cients of the Eq(5) linear combination, the\ coherence
. N vector!! will be used for the state description instead of the
+ ?"2 (1) Pgriverdi), 2) density matrix. The elements of the coherence vector are

the expectation values of the, basis operators. The coher-
whereEj; is the electrostatic coupling between tith and ~ ence vector can be partitioned int¢i) single-cell coherence
thejth andyis the tunneling energy. The first term describesvectors,K(i,j) two-point, K(i,j,k) three-point, etc., corre-
the intracell tunneling between the two basis states. The seation vectors

ond term describes the electrostatic coupling between neigh- _ T

bors. The third term describes coupling to driver cells. For A=[MDA(2). K(1,9K(13.. K(1.23...] . ©
those cells which do not have a driver cell as a neighborThe A(i) single-cell coherence vectors contain the expecta-
P grivei) =0. tion values of thea,(i),ay(i) and a,(i) single-cell basis

If the inter-dot tuneling barriers in the cells are high andoperators. The(i,j) two-point correlation vector has nine
the tunneling rate is very lowzero, then they tunneling  elements
energy is zero. If the inter-dot tunneling barriers in the cells N T
are low and the tunneling rate is high, theris large. The K1) =Ko Ky KKy Kyy Kyz Kooy Kol . (10
tunneling barriers of the cells are connected to electrodes anthey are expectation values of two-cell basis operators
their height is controlled externally by voltage sources. G A A . _

For a cell line the nearest neighbor couplings can be Kap(1,))=(0a(Dan(i)); - a.b=xy.z (D
given byE; ; |=Eg while all the othelE;;’s are zero. In this  Similarly, the elements of the three-point correlations are
caseE; ;| is the cost in electrostatic energy for two cells expectation values of three-cell basis operators
being oppositely polarized. SN A A A . -~

The polarization of théth cell can be interpreted as the Kand1,1.K)=(7a(1)ou(1)oe(k)); - ab=xyy.z. (12
expectation value of thé,(k) Pauli spin matrix The dynamics of the coherence vector elements can be

P(K)= — (5,(K) 3 obtained by first computing the dynamics of the basis opera-

2 tors in the Heisenberg picture and then taking the expectation
With the negative sign we follow the convention of Ref. 11 values of both sides of the equations. The differential equa-

choosing the sign of the Pauli spin matrices tion system is linear and has the form
R 0 1] 0 i A -1 0 " d A=O(DA
=11 ol T i ol and, o,= 0o 1l 4 A= (A, (13

The dynamics of the cell line can be computed by thewhere ()(t) is the time dependent coefficient matrix. Next
Liouville equation giving the time dependence of the densitythe structure of the Eq13) differential equation system will
matrix. The density matrix of a system &f cells has 2 pe presented by giving explicit equations for the single-cell
x 2N complex(=2x2%N rea) elements. The 2'+1 con-  coherence vector elements and two-point correlations.
straints are coming from the requirements of Hermiticity and ~ The dynamics of a single-cell coherence vector can be
unit trace leaving=22N—1 real(i.e., not complexdegrees obtained as
of freedom. Now the density matrix can be expressed as a
linear combination of the generating operators of the spe- NV = O\ (i A (VA
cial unitary group SU(®) group hgh=2 MIH'EZ Bi[(ay (D))

1 —(Ox(1)04(])) 017, (14)

o 21 A S AR )
P=32 2N& i where
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0 —EoPgrivedi) O The elements of the correlation vector proper are all zero if
A . there is no correlation between the cells or theywareorre-
0i=| EoPanedi) 0 2y (15  |aeq Y

0 -2y 0 The higher order correlation vectors proper are defined

similarly to Eq.(17). For example, an element of the three-

and Nb(i) refers to the neighbors of thgh cell. The first point correlation vector proper can be given as

term on the right hand side of E¢Ll4) describes the preces-

sion of A(i) around an axis determined B, (i) and y. Mapd(i,j,K)=([Fa(i) =(Fa(i))][Tp(i) —(Tn(]))]

The second term with the sum is the coupling to the neigh- A i ) _

bors through two-point correlations. X[oe(K)=(Fe(l))]); ab.c=xy.z
The  Kyy(i,j)=(ay(i)o4(])) and  Ky(i,]) 19

=(0x(1)G,(])) terms are two-point correlation vector ele- After some algebraic transformations one gets
ments. The dynamics of the correlation vectors can be ob-

tained a¥ Mapc(i,],K) = Kapcli ], K) = Kap(i,])Ae(K)
d o —Kac(l,KN(]) = Kpe(J, KN (1)
hgiKD =000+ e DK(.]) 20 (N(DAe(K); b, =xy,2.
+Cii{A(K),K(I,m,n)}. (16) (20

The first term on the right hand side of E46) corresponds Intercellular Hartree approximation
to the evolution ofK(i,j) under the influence oPgvedi), It is possible to eliminate the correlation terms from Eq.
Parved]), andy. The second term witlS;; is an expression  (14) by assuming that the cells are uncorrelated, that is, the
consisting of coherence vector elements and three-point cotwo-point correlation vectors proper are zero
relation vector elements. . . _ )

Dynamical equations similar to E¢L6) can be written Map(i,i+1)=Kap(i,i+1)=Aa(DAp(i+1)=0.  (21)
for the three-point, four-point, etc., correlation vector ele-Based on Eq(21) the two-point correlation vector elements
ments.(They are not given hereThe complete set of these can be approximated with the multiplication of two coher-
differential equations describes the dynamics of the multicelence vector elements
system equivalently to the dynamics given by the Liouville - . .
equation for the density matrix. If there is no decoherence Kap(l,1# 1)=Na(DAp(i +1). (22)
and the system is in a pure state, these two are equivalent Bubstituting Eq(22) into Eq.(14) one obtains the dynamical
the dynamics given by the Schioger equation with the equations for the coherence vectors as
many-cell Hamiltonian. We will refer to the model contain-

ing the whole set of differential equations for the coherence # —)\(i)zﬁi)\(i), (23
vector and correlation vector elements aséiractmodel in dt
this article. where

The structure of the dynamical equations for the corre- 0 -s. 0
lation vector elements is such that in the equatiomtf - '
order correlation vector elements we can find only ( Q=3 0 2y (29
+1)th and lower order correlatiod3 This provides a possi- 0 -2y O
bility of truncating the hierarchy of dynamical equations.
Having formulas which approximate tha+ 1)th order cor- and
relations with lower order correlations and substituting them ) .
in the equations of thath order terms, all differential equa- 2i:j E%:«)(i) EijP(J) + EoPgrivedi)- (25
tions for the terms with order higher tharcan be neglected

since these terms cannot be found in the equations of lowdi€® i iS the weighted sum of the polarizations of the

order correlation terms. The details of the truncation will beN®19NPOrsLP(k)==x(Kk)]. _ o
given in the next section, The Eq.(23) dynamical equation can be writté¢hin the

Besides the correlation vector there are other quantitiegOrm of

characterizing the intercell correlation. Therrelation vec- d _ ]
tor proper* for two cells has nine elements. They are de- ﬁ§)\(')zr(')><)‘(')v (26)
fined as
where the cross denotes vector product and
Map(i,j)=([a(i) =(Fa(i))][Fali) = (ap(i))1); I(i)=[-2y03,1". 27
a,b=x,y,z (17) Equation(26) describes the precessionfi) aroundI'(i).
The instantaneous ground state of E2f) is
With coherence vector elements Efj7) can be rewritten as
Aggi)= o (28)
Map(i,])=Kap(i,)) =Na(DNp());  ab=xy,z. (18 ° |
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This approximation describes the state of the cell arrayfABLE I. The hierarchy of the dynamical equations for the coherence vec-

by the single-cell coherence vectors only, using three reap’ elements for a cell line. The first three levels are shown: dynamics of the
! single-cell coherence vectoftgraph ), nearest neighbor two-point correla-

state variables for each cell. If there is no decoherence ang, vectors[graph 1(a)], further-than-nearest neighbor two-point correla-

the system is in a pure state then EZf) is equivalent to the tion vectors[graph I(b)], nearest neighbor three-point correlation vectors

coupled Sch"rdinger equatiori'§ (graph lll). The graphs are indicating which variables are in the dynamical
equations of a particular coherence vector element. The dashed and dashed-
dotted lines show where the Hartree method and the NNPC approximation

e L
i% T HWk=1,2,...N, (29 truncate the hierarchy.

where the single-cell Hamiltonians are

Y
d>,.
1. EM!)«

KGi-1,i),K@G,i+1)

S
Fli= = (k) + 5 or(K);

(30 i
A - . ——A), A+ 1
2= > = Ej(04])) +EoPgrivedi) N A(l) @+
1 eNb(D) a SR, i+1) =K i+1)
and the single-cell state functions are the superposition of the
basis states

——(RG-1,ii+ 1)K, i+1,i+2)

W= ak|l>+:8k|_1>:{gk : (3D
k

The state of the whole system can be constructed from the Il R ) Ra-1,i ),
single-cell state vectors ab=V¥ ,@V¥,®...Q V. RG,j-1, /KRG, j, j+1)
In Ref. 3 the Eqs(29) are used to model QCA lines where it .
is called intercellular Hartree approximatithin this article

we will also call the model based on the Eq3)—(25) ARG i+, i+2) RGit1i+2)
Hartree approximation or Hartree method. di o

d=,. . >,
EK(LJ) -1 K(, j)

—— KRG, i+ 1, KRG, i+2),K(i+1,i+2)

L R(,i+1,i+2,i+3),

IV. MODEL NEGLECTING HIGHER ORDER KG+1,i+2,i+3,i+4)
CORRELATION

In a classical multi-particle system the number of de-
grees of freedom necessary for the state description increases Since it will be important later, we outline for a cell line
linearly with the number of particles. A point-like particle the hierarchy of dynamical equations for the coherence and
can be described by its position and velocity. Ngparticles,  correlation vectors for the first three levétoherence vector
N positions andN velocities are required which gived  elements, two- and three-point correlatipns Table |. The
times more degrees of freedom than for a single particle. Table shows which variables are on the right hand side for

In a quantum mechanical system NfQCA cells, the the dynamical equation for the single cell coherence vectors
number of degrees of freedom are much larger tRaimes  (graph ), the nearest neighbor two-point correlation vectors
the degrees of freedom of a single cell. The extra degrees ¢fraph [(a)], the further-than-nearest neighbor two-point
freedom come from the intercatbrrelations The informa-  correlation vectorggraph I(b)], and for the nearest neighbor
tion necessary for a total description increases exponentiallhree-point correlation vectofgraph I11).
with the number of cells and makes it difficult to simulate The Hartree approximation truncates the hierarchy at the
even a modest size block of QCA cells. To descri¥e dashed line in Table | keeping only graph | by removing the
coupled cells exactly,?'— 1 variables are necessary for the coupling to the two-point correlations indicated by the upper
coherence vector description. arrow. It assumes that thé ,,(i,i +1) two-point correlation

The coherence vector description makes it possible twector proper elements are zdisee Eq.(21)] and approxi-
divide the state variables into groups corresponding to thenates the elements of the two-point correlation vectors with
state of the cells, and to the two-point, three-point, etc., coreoherence vector elements using E2p).
relations. A correlation term can be two-point, three-point,  The first approximation, that is better than the Hartree
etc., or nearest neighbor, next-to-nearest neighbor, etc. Thimethod, can be obtainEdby keeping only the single cell
feature of the coherence vector description helps us to detecoherence vector@raph ) and the two-point nearest neigh-
mine which correlation terms are important from the point ofbor correlationggraph 1(a)]. The point of truncation is in-
view of the dynamics and which can be neglected. Usually iticated by a dashed-dotted line in Table I. The truncation
is reasonable to assume that the further than nearest neighttemoves the coupling to the three-point correlations indi-
and higher order correlations play a less important role, thusated by the lower arrow.
they can be approximated by lower order correlations. De- In order to do the truncation, a formula must be con-
pending on which correlation terms are kept and which arestructed to approximate the elements of ¥@,i +1,i +2)
neglected, models with different levels of approximationsnearest neighbor three-point correlation vector with nearest
can be constructed which are intermediate between the Haneighbor two-point correlation vector and coherence vector
tree approximation and the exact method. elements. The approximation is based on the assumption that
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the Eg.(20) three-point correlation vector proper elementsThe comparison was done for the case of quasiadiabatic
are zero switching of a QCA cell line and of a majority gate with
- . a A n unequal input legs. We choose units such thatl andEg,
+1i+2)= + + o . .
Kapoli,i+ Li+2)=(&a(1)p(i +1)de(i+2)) =1. We note that approximating higher and higher order
~Kap(i, i TN (i +2) +Kp(i+1,i+2) terms puts more and more nonlinear couplings in the differ-
ential equations making them numerically more difficult to

X Ng(i) +Kaeli,i + 2)Ng(i +1) handle.

~ 2N (DA DA +2), A. Quasiadiabatic switching of a cell line

ab.c=xy.z (32) The first simulation example is the quasiadiabatic

Equation (32) contains the K,.(i,i+2) next-to-nearest switching of a line of five cells as shown Fig&. The first
neighbor two-point correlation that should be eliminated bycell is coupled to a driver cell. The tunneling coefficient is
approximating them with the multiplication of the corre- gradually® lowered(the barriers are raisg¢ds shown in Fig.
sponding two coherence vector elements based on the asth). Figure 3c) shows the dynamics of the coherence vector
sumption that theM ,.(i,i +2) next-to-nearest neighbor cor- coordinates for the five cells coming from NNPC. At the end
relation vector elements are zero:K,(i,i+2) (when the barriers are highll the cells align with the driver,
~N,4(i)\(i+2). Substituting this into Eq(32) leads to the that is, at the end\,(i)=—P(i)~1. Figure 3d) shows a
general formula for approximating any nearest neighboicomparison of the.,(2) curves corresponding to the Hartree
three-point correlation vector element approximation, the NNPC, and the exact model. The inset
shows theA\,(2) deviation from the exact dynamics for the

Kapel(i,i+1i+2)=(Ga(1)oy(i +1)5(i +2)) Hartree methoddashed and NNPC(solid). It is clearly vis-

~Kap(i, i + DA (i +2) ible that NNPC gives a better match with the exact model
_ ) ) ) than the Hartree approximation does.
FRpei +1i+2)Na(1) = N4 (i) Figures 4a) and 4b) show the pair correlation vector
XNp(i + DING(i +2), proper elements for NNPC _and the exact model. Whg,
My, My,, andM,, correlation vector proper elements are
a,b,c=x.y,z. (33 much smaller than the other five. It can be proved that if the

Substituting this into the dynamical equations of nearestYS€m were exactly in ground state then they would be zero.
neighbor tWO-pOint Corr8|ati0n$CirCIEd in graph I(a) in NNPC is a qualltatlve Improvement ComparEd to the Hartree

Table I}, the three-point correlations can be eliminated. TheAPProximation since the Hartree approximation does not

method based on this approximation will be called NNpcTodel intercell correlations atall. -~ _
referring to that besides the coherence vectors it includes 1 he initial state of the dynamical simulation was the
only the nearest neighbor pair correlations in the state dépw_est energy stationary state of the_ _NNPC_ method. The
scription of the cell array’ stationary state was found by the multidimensional Newton—
The NNPC method is the simplest that is closer to the¥@Phson methodsee Appendix Busing the lowest energy
exact model with the many-body Hamiltonian than the Har-€igenstate of the many-body Hamiltonian of the cell line as a
tree method. The Hartree method need &ate variables Starting guess(The stationary states for the exact model and
for state description wher is the number of cells. NNPC for our approximation are slightly different. Starting from the
requires N+ 9M state variables, wheld is the number of initial state of the exact model causes oscillations in the dy-
nearest neighbor pairs among the cells. For a cell khe Namics) The method works only ifeven very smalldissi-

=N-—1. Thus the number of state variables scales linearlPalive terms are added to the dynamical equations. In our
with the system size for both methods. simulation ther s, dissipation time constant was 10

_The prqcedure can be g_enerahzed. Next-to-nearesé_ Quasiadiabatic switching of a majority gate with
neighbor pair correlations and higher than second order cor

. . Lo . _~“unequal input legs

relations can be included and it is also possible to build a )

model which includes higher order correlations only for ~ For the previous example the Hartree method leads to

those regions where it seems to be necessary. relatively good results and including correlation terms in the
Since the coherence vector formalism is based on thg10del gives only a quantitative improvement in the dynam-

density matrix description, it is able to model mixed statescS of the polarizations. Next an example, the adiabatic

unlike the state vector description. Dissipation and decohesWitching of the majority gate with unequal input legs, is

ence can be easily included by adding damping terms to thBresented where the results of the Hartree method are even

dynamical equations. This is true for our approximation, aglualitatively wrong.

well. Appendix A describes how to add dissipation to the ~ Before going any further, some simplifications must be
dynamica| equations of the coherence vector elements. made in order to reduce the number of state variables and

make simulations feasible. The large number of state vari-
ables causes a problem even for a majority gate of nine cells
where the coherence vector ha$-21~2.6x 10° elements.
Computer simulations were made to compare NNPCAs it was told in Sec. Ill, the full set of differential equations
with the Hartree approximation and with the exact model.for the coherence vector model is equivalent to the many-

V. SIMULATION EXAMPLES
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2.5]

driver cell#1 cell #2 cell #3 cell #4 cell #5 Y(t ) 2

Y Dmmmﬁ—;lm by

1

Piriver=-1
0.5]
C0 100 200 300 . 400 500
; ttme
N FIG. 3. Quasiadiabatic switching of a
0.5 1 . : A
7\, line of five cells. The barriers are
X 0 gradually lowered while the driver has
C) 0020 100 200 300 400 500 constant —1 polarization. The five
: i j cells follow the polarization of the

k 0 driver. (a) The arrangement of the five
y W— cells and a driver(b) the dynamics of
. the inter-dot tunneling energyg) the
100 200 300 400 500 elements of the three coherence vec-
T T T tors as the function of time for the
NNPC approximation(d) \,(2) as the
function of time for the Hartree ap-
proximation (dasheg, NNPC (solid),
and the exact model(solid). The
inset shows the AN,(2)=\,(2)
— Nz exact2) deviation from the exact
dynamics for the Hartree method
(dashed and NNPC (solid). NNPC
gives a result closer to the exact one
than the Hartree approximation does.

0 100 200 300 400 500
time

body Schrdinger equation if the system starts out in puretunneling coefficient is gradually loweredhe barriers are
state and there is no decoherence. Thus for the exact modegsadually raiseflas shown in Fig. @). In Fig. 6b) the dy-
the many-body Schringer equation will be used, requiring namics of the polarizations obtained from the Hartree
only 219=1024 real state variables. The reduction in themethod can be seen. Itis clearly visible that three of the cells
number of state variables is the result of eliminating the desettle in the polarization-1 state. Figure @) shows the
grees of freedom that made it possible to describe mixe@xact dynamics. Notice that only one of the cells settles in
states and decoherence. It does not limit our investigation of-1 polarization. The polarization of the gate cé&ell 4)
the role of quantum correlations in the dynamics. begins to decrease due to the effect of the driver with
The QCA structure under consideration can be seen ipolarization, however, later it begins to increase and reaches
Fig. 5. One of the input legs is only one cell long andalmost +1. [Compare with the dynamics of the gate cell
coupled to a driver cell with polarizatior 1. The other two  shown in &b).]
input legs are longe(their length will be denoted bi) and The phenomenon can be intuitively understood as the
they are coupled to drivers with polarizatiaril. The polar-  results of the competing inputs. Since the leg of the driver
ization of the output of the majority gate in ground stéfe  with the —1 polarization is shorter, its influence reaches the
the barriers are highis the majority of the polarizations of gate cell first and sets the polarization of the output cell to

the input drivers, in this case 1. —1, too. When the other two drivers with the long input legs
The results of the Hartree method are qualitativelybegin to influence the gate cell, it has already twb polar-
wrong forL=3 giving an output polarization of 1 as indi-  ized neighbors thus the drivers are not able to flip the gate

cated in Fig. 5. The method gives a wrord. polarization cell. The output will be wrong only above a certain differ-
for cells 4 and 9(These two cells are circled in Fig.)5The  ence (>2) in the length of the input legs. The Hartree
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027 0 0 W Pyriver(D)=+1
XX
0.1 05 @ -0.1

0 _0.2
0 500 0 500 -0 500 gate cell 1

0 500> % 50020 500 6
° 4O, O Pasvel®=+1 9] 53] 9] B4R (30 ] Pompur?
WIt

0. _0.2 0 :
015 5000 %0 500 0 500 output cell

Pdriver(5 )=-1

0.2 0 0 FIG. 5. The nine-cell L =3) majority gate with unequal input legs. At the
M, « end of the quasiadiabatic switching process, when the barriers are high, the
0.1 A_O'S ~0.1 output polarization of the majority gate should be the majority polarization

of the inputs. When modeled by the Hartree method, the polarizations of the

-1

0 IOOXMXY 02 M,, cells 4 and qcircled are determined incorrectly. In the correct ground state
b) 0 500 0 5000 500 all the cells havet1 polarization except for cell 5 which hasl.

0
0
0.4[100xMy,
-0 -0.2 02 _ _
~1100xM M,y 0 Hartree method, that does not include correlations at all,
VX _ 0o - -
0 w002 200°% 00 works well in this case.

gion in the model while handling all the other cells with the
02 o Hartree approximation. To do that certain simplifications are
0 5000 500 0 500 needed, since the number of state variables for the set of
: differential equation for the coherence vector element is very
FIG. 4. Quasiadiabatic switching of five cells. The barriers are graduallylarge (1035 even for the nine-cell gatgNotice that this
raised while the driver has constantl polarization. The nearest neighbor number is still much smaller than the one obtained for the
correlation vector proper elements f@ the NNPC approximation andb) ; ; : : ;
the exact method. Th®l,,, M,,, M,,, andM,, correlation vector proper full Se.t of _d.lffer.entlal equations having all the.correlatlgns'
;J'he simplification can be based on recognizing that in the

0 o.4100 v 0.4M One possibility is to include all the two-point, three-
v o2 e z point, four-point, and five-point correlations of the cross re-
-0.05 A 0.2 Z&
MZX

Xy yx
elements are much smaller than the other five, thus they are multiplied b . ] !
100. coherent case the previous model is equivalent to a set of

coupled Schrdinger equations

. d\I’CTOSS N
method works correctly with a five celL&1) and a seven i dt HerossV cross and (34)
cell (L=2) gate. 4
According to our simulations, the NNPC approximation : k_n
- . —=H, ¥, for k=1,2,6,7.
does not model this case correctly, thus further correlation dt e Tor 2.6, (39
terms must be included in the model. It will be examined

which cells of the majority gate can be modeled with thecrOSS region(cells 3, 4, 5, 8, and 9 while Eq. (35) single-

Hartree approach and which must be modeled by a bettq{e" Schralinger equations describe the time evolution of the

approximation. The Hartree method assumes that the systegreate of the remaining cells

is in a product state and the cells are uncorrelated. Thus the 1 fiva_cell many-body Hamiltonian for the cross is
parts of the gate where the correlations proper are small can

Equation(34) describes the time evolution of the state of the

be modeled with the Hartree method, while in the rest of the . . .. Eo . N
circuit correlations must be included in the model. Heross= = 7i23;5’8'9 (1) = 7 (0(3)54(4)
Next it will be checked how large the correlations are in
a different part of a nine-celll(= 3) majority gate. Figure 7 T 0,(4)0,(5)+75,(9)0,(4)+05,8)7,(4))

shows the time dependence ™f,,1,2), M,(3,4), and

E
M, 4,9). It can be seen that the latter téamrresponding to -1

(04(3)5(8)+7,(3)04(9) +5,(5)5,(8)

the correlation in the cross regipare much larger. Thus it 2

seems to be reasonable to include more correlation effects in Eo

the five cell cross region(lt must be noted that if all the +0,5)0,(9))— 7(32(3)P(2)+&Z(B)P(7)
three inputs are+1 then the correlations in the cross region

are much smaller. That is consistent with the fact that the + 0 ,(5)Pyrived5)), (36)
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while the single-cell Hamiltonians are

R ~ S
Hi=—yoy(k) + 7Uz(k)-
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FIG. 6. Quasiadiabatic switching of a

time nine-cell majority gate =3). (a)

(a)

The time dependence of the tunneling
energy. The barriers are gradually
raised.(b) The cell polarizations as the
function of time for the Hartree
method andc) for the exact model. In

PE)

both(b) and(c) the curves correspond-
ing to cell 4(gate cell, cell 9 (output
cell), and cell 5 are labeled.

(37

200 300 400 500
time

(c)

negative sign indicates that they tend to anti align. The rela-
tive strength of the diagonal interaction is computed from
geometrical considerations.

If there is no dissipation, the coherence vector descrip-

The Hamiltonian(36) is coupled to the neighboring cells tion with the approximation that includes correlations only in
through theP(2), P(7) and Pg,{(5) polarizations while

the single-cell Hamiltonian{37) is coupled to thg envirqn- tem as the Eqs(34), (35) system of coupled Schdinger
ment throughX;- E;=—0.18E, describes the interaction equations do. By neglecting the degrees of freedom coming

between diagonal neighbors. The

Mzz(4’9) 0.5

0.45]

M,,(3:4) *"
Mzz(Lz) 0.35

0.3
0.25
0.2
0.15
0.1
0.05

500
ume

the cross region would give the same dynamics for the sys-

from the ability of the coherence vector description to model
mixed states, the number of real state variables is reduced to
80.

Figure 8a) shows the dynamics of the polarizations for
the nine-cell gatel(=3). It now gives the correct polariza-
tion for the output cell(Compare with Fig. 6.Figure 8b)
shows the dynamics d¥1,,3,4) andM,/4,9) in the cross
region. Comparison with Fig.() indicates that a large part
of the correlations proper are restored. It is worthwhile to see
how long the difference between the input legs can be before
the method breaks down and gives the wrong answer. Simu-
lations show that this approximation gives the correct output
for L<<40. (Notice the large improvement compared to the
Hartree method that worked correctly for<3.)

Originally it was thought that the Hartree approach fails

FIG. 7. Dynamics of the two-point correlations proper during the quasiadia-fOr the maiority gate since. because of the inegquality of the
batic switching of a nine-cell majority gateL&€3). M,(1,2) (dashed- jonty g ' q Y

dotted, M,A3,4) (solid), and M,(4,9) (dashed are shown. The correla-
tions are much larger in the cross region than away from it.

input legs, the influence of one of the drivers reaches the gate
cell before the other two. Our findings support the idea that
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PO M,;(49)
08 045
06 Mzz(394) 04 FIG. 8. Quasiadiabatic switching of a
04 oash nine-cell majority gatel(=3). All the

correlations are included in the five-
cell cross region while outside this re-
gion a Hartree description is use@)
Dynamics of the polarizations. The
curves corresponding to cell @ate
cell), cell 9 (output cel), and cell 5 are
labeled.(b) Dynamics of the two-point
correlations properM,(3,4) (solid)
andM,(4,9) (dashedl Part of the cor-
relations is restored in the cross re-
gion. Compare with Fig. 7.

02 03
0 0.25)
-02 0.2)

~0.4 0,15
-0.6 0.1
-08 0‘05[

0 100 200 300 400 500 00
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(a) (b)

what caused the Hartree approach to fail was its inability tACKNOWLEDGMENTS

model the correlations in the cross regidhlotice that in

Fig. 8(@) the polarization of the gate cdltell 4) decreases in

the beginning, similar to the results of the exact metho

shown in Fig. §c). Thus with both models the influence of

the driver with—1 polarization reaches the gate cell before

the influence of the other two inputs do]el$.al| three inputs APPENDIX A: INCLUDING DISSIPATION IN THE

are +1 then even the Hartree method gives the correct dypynaMICAL EQUATIONS

namics consistently with the previous remark about the role

of correlations since in this case the correlations in the cross The model presented in the previous subsections de-

region are much smaller. scribes the unitary time evolution of the cell line based on
the dynamical Eq(13) of the coherence vector. Inserting
damping terms in the differential equatidhgor the coher-
ence vector and correlation vector elements, dissipation can

VI. CONCLUSIONS also be included in the dynamics. The differential Etd)

) ) ~ for the single-cell coherence vector changes in the following
An intermediate model between the Hartree approximay,ay:

tion and the exact method was constructed to describe the
dynamics of QCA cell arrays. It is based on the truncation of
the system of dynamical equations obtained from the coher-

ence vgctor formahsm. By chqosmg the point of trupcatlon twhere diss and ndiss stand for dissipative and nondissipative.
is possible to mclude correlation eﬁepts to the .de5|red Or,de'i'he formula 1#gssp describes the dissipation rate. Vecigr

in the dynamics. The nearest neighbor pair correlation, ., s for the fact that the dissipation drives the coherence
(NNPC) model kept all the nearest neighbor two-point CO\actor elements to nonzero values.

relations while approximating the three-point correlations The differential Eq(16) for a correlation vector changes
and the further than nearest neighbor two-point correlationsin the following way:

Through the example of the majority gate with unequal input

legs it was also shown how to construct an approximationd . . .

where the correlations are fully included only in a certainaK("m"‘SS_ aK("m”diSS

part of the circuit while other parts are modeled by dynami- _ . . .

cal equations using the intercellular Hartree approximation. _ _ _ 2 K(ij)— (D) ®N)) + M@ 7(]) (A2)

The method corrects the qualitatively wrong results of the Tdissip\ 2 '

Hartree method in determining the output for the gate. Therpe changes for equations of higher order correlations can be
usefulness of these models can be summarized as followg, ,nd in Ref. 11.

(1) They quantitativelyimprove the dynamics of the single- There are several possibilities to choose #{&) vector

cell coherence vectors compared to the Hartree ma@l.  gepending on what kind of model of dissipation is used. One
They represent qualitativeimprovement since they give the ,ipijity is the following. The instantaneous ground state
(approximaté dynamics of the correlation while the Hartree it no dissipation according to the Hartree model is given

model does not give information on correlatigid) These by Egs.(27) and(28). (i) can be chosen as
approximate models help understating which quantum de-

rees of freedom are important from the point of view of the . 1 . 1 T
i g P ()= ——Ai)=— —— = (A3)
ynamics. Tdissip Tdissip | ||

The authors would like to thank John Timler and @&y
Cﬁ:saba for stimulating discussions. This work was supported
y the Office of Naval Research MURI program.

d
&)\(i”diss_&}\(i”ndiss:_ [A()—n(i)], (A1)

Tdissip
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Modeling the dissipation this way, describes the relaxation oflissipation, thus addin@ven very smalldamping terms to

the coherence vector towardls;. If 1/74pis large then the  the equations is necessary to find the stationary state. It is

system closely follows the instantaneous ground state of theeasonable to determine the Jacobian analytically instead us-

Hartree model. ing numerical differentiation in order to increase the compu-
tational speed and the accuracy as well.

APPENDIX B: FINDING THE STATIONARY STATE

OF THE DYNAMICAL EQUATIONS
, , , 'C.S. Lent, P.D. T , W. Porod, and G. H. Bernstein, Nanotechnol-
The stationary states of NNPC can be obtained taking all ;4,4 f; (1993. oHga orod. an ernsiemn, Tanoiechn

the time derivatives zero in the dynamical equations and?c.s. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. L&#.714(1993.
solving for the coherence vector and correlation vector eIe—jP D. Tougaw and C. S. Lent, J. Appl. Phg, 4722(1996.

S. Lent and P. D. Tougaw, Proc. |IEBE, 541(1997).
ments. The dynamics of the system can be written in the5C S. Lent and P. D. Tougaw, J. Appl. Phys, 6227(1993.

general form 6p. D. Tougaw and C. S. Lent, J. Appl. Phys, 1818(1994).
’G. Tath, C. S. Lent, P. D. Tougaw, Y. Brazhnik, W. Weng, W. Porod, R.
=F(A), (B1) Liu, and Y. Huang, Superlattices Microstru@o, 463 (1996.
dt 8G. Tath and C. S. Lent, J. Appl. Phy85, 2977(1999.

9The meaning of th&...y symbol is different for the systems described by
whereF(A) is a vector-valued function of the vector vari- the semiclassical QCA dynamics than for systems described by the quan-
able A. ([The [Eq. (13)] differential equations giving the tum QCA dynamics. In the first case it denotes the thermal average com-
exact dynamics for the coherence vector are linear, however, puted for the accessible charge configurations of the single-electron tun-
. ! . 'neling circuit. In the second case it is the expectation value of quantum
the NNPC method uses nonlinear terms to approximate echanical operators.

higher order correlations.The stationary solution of Eq. °G. Tah, A. O. Orlov, I. Amlani, C. S. Lent, G. H. Bernstein, and G. L.

(B1) can be obtained from Snider, Phys. Rev. B0, 16906(1999.
11G. Mahler and V. A. WeberrufQuantum Networks2nd ed.(Springer,
0=F(Asta) - (B2) New York, 1998.

12 the nine elements of the correlation vector are placed |n><a33ensor
We used the multidimensional Newton—Raphson g ihe equation has the formi(d/dtyK(i,j)= QOR3L1) -R(01)D,

method to findAg. It converges very fast sinde(A) con- +&;
tains mostly linear terms, except for the terms apprOX|mat|ng3The reason for that is the structure of the E2).Hamiltonian. It contains
the higher order correlations. only double terms which are the multiplication of two Pauli spin matrices,

The multidimensional Newton—Raphson method is i.e., 0,(1)0,(]). If the Hamiltonian contained triple terms of the form

. . o o,(1)0,(j)a,(k) then in the differential equations for theth order cor-
based on the linearization ﬁ(A) around an initial guess, relation vector elements we could even find correlations of the arder

Ajni - The next guess\ ey, Will be the vector that makes the | 5

linearized function zero. The linearization B{A) is ¥The correlation proper is often called the connected part of the correlation.
SNotice that now two complex, that is, four real variables are used to
F(A)— F(Aini)*J(Aini)(A_ Aini)' (83) describe the state of a cell. This number can be reduced to two based on

. . . the overall phase arbitrariness and unity norm of the wave function. For
Here J(Ajy) is the Jacobian oF (A) at Aj,. Since we are oo "cce Ref. 7.

looking for the zero of-(A), the following equation must be 16G. Tagth, Ph.D. Thesis, University of Notre Dame, Indiana, 2000.

solved forA ey 17 Although in the example presented in Sec. V A the NNPC method will be
used as an approximation, there are cases when it gives the same dynam-
—F(Aini) =I(Ain) (Apex— Aini) - (B4) ics as the exact model does. For example, when quantum computing op-
. . erations are done on coupled two-level systems in such a way that only
The solution is nearest neighbor entanglement occurs. This highly restricts the possible

operations, but makes it possible to handle big arrays and still realize, for

— — 17 1A.. -
Anext_ Aini J (AInI)F(AInI)- (BS) example, the controlled NOT or the qubit exchange.
This glves the next guess from the prewous guess. NOtlceThe switching was carried out very slowly, since we are using the ex-
ample to compare the different dynamical descriptions and would like to
that the Jacobian must be invertible since @5p) explicitly obtain smooth curves. For the possible speed of the adiabatic switching

contains its inverse. The Jacobian is singular if there is no see Ref. 4.
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