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We report the generation of long-range entanglement in a macroscopic spin singlet (MSS) [1,2] via collective
quantum non-demolition (QND) measurement [3] a global entanglement method predicted [4] to produce entan-
glement at all length scales. In a cold 87Rb spin ensemble of up to 2×106 atoms, we generate a MSS, entangling
at least half of the atoms. Using a gradient field to convert singlets to triplets, we detect the decay of entanglement
in the MSS via spin noise spectroscopy [4] consistent with a mean entanglement length comparable to the size of
the atom cloud (∼ 4mm), three orders of magnitude larger than previously detected in atomic spin systems [5].

Long-range entanglement is central to outstanding problems in condensed matter physics, including high-Tc
superconductors and the quantum Hall effects [6,7]. The study of such models is a major goal of atomic quantum
simulation [8] and many essential capabilities have been developed, however generating long-range entanglement
by local interactions is challenging [9] and to date only short-range (µm) entanglement has been shown [5]. The
QND technique offers a promising new route to large-scale entanglement generation and detection for quantum
simulation [10,11].
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Fig. 1 Noise spectroscopy of a MSS via QND measurements of the spin squeezing parameter ξ 2 after a variable hold time in an
applied gradient field. (a) The MSS (blue) rapidly dephases due to singlet-triplet spin flips [4], where as the detection spin noise
from a reference thermal spin state (TSS) [12] measured before (yellow) and after (red) applying the field gradient remains
constant. (b) The spin dephasing rate can be altered by changing the magnitude of the applied field gradient. (c) Measured
dephasing time of the MSS as a function of the applied field gradient. A simple model fitted to the data (solid curve) indicates
a mean entanglement length comparable to the size of the atom cloud (∼ 4mm)
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