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SUMMARY

A CNN Universal Machine-based structure and analogic algorithm is proposed to extract 3D spatial information from
stereo images. The CNN template values are obtained in two ways: from simplex optimization and from the energy
function. The method is demonstrated on densely textured as well as grey scale stereograms. Copyright © 1999 John
Wiley & Sons Ltd.
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1. INTRODUCTION

The cellular neural networks (CNN) introduced in 1988!-® opened a new way in array computing; they have
proved to be especially powerful in various image processing tasks. The application potential of CNNs in
stereo image processing has been discussed in several papers.!?” 1 In this one we propose a local
neighbourhood multilayer CNN architecture of a specific complex cell and its possible realisation in CNN
Universal Machine (CNNUM) framework.2+#:6:17

In Section 2, we briefly discuss the stereo depth extraction task and its representation in multilayer CNN.
In Section 3.1, a massively coupled multilayer CNN structure is derived from rules borrowed from the
computational theory of human stereo vision research. In Section 3.2, we convert the massive interlayer net
of couplings obtained, to a local neighbourhood propagation mechanism and explain its ‘time-sharing’
realisation in a CNNUM structure of complex cells. In Sections 4 and 5, two template design approaches are
detailed, the one applying simplex optimization of different goal functions, and the other based on an
approximation of CNN energy function.

2. BASICS IN STEREO PROCESSING

Since Wheatstone’s discovery of the stereoscope in 1838 it is known that images of a scene from two slightly
different horizontal angles can be fused to induce spatial depth perception, consequently, such pairs convey
3D information. Taking snapshots — generally called left and right images of a stereco pair — from only
slightly different angles the objects in the scene seem practically identical in the two snapshots. Due to the
different position of objects in spatial depth, however, the relative position of their images among the images
of other objects are different. The position difference of objects in the two snapshots is called binocular
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disparity. Comparing the snapshots, the relative spatial depth of objects can be extracted; for the larger the
binocular disparity is, the closer to the viewer the corresponding object is located in depth.

Using artificial devices, however, we do not intend to recognise objects in a scene, we would rather like to
label with spatial depth as much points in the snapshots as possible. Technically speaking, the main task in 3D
stereo processing is to establish, without any identification or recognition, a one-to-one correspondence
between the majority of points in the left and right images. In establishing a possible correspondence we can use
the fact that the local texture or the form of any particular smaller object in the two images are practically
identical, and always located on epipolar lines (that are horizontal with a good approximation in our case).
Those objects that are located at different distances from the viewer will appear with different disparity, i.e. in
different relative positions along the epipolar lines, a difference serving as a basis for depth detection placing
image segments in the 3D space. For most of the little segments in either image, however, several matching
counterparts can be found in the other one, i.e. the solution of the correspondence problem for a local approach
is not unique. Depending on the type of 2D images, to decide whether a possible matching is a proper one
corresponding to some real 3D feature, or merely a false one of a so-called false target, may pose difficulties.
Moreover, nearby objects and edges might occlude 3D regions resulting in areas appearing in either 2D image
only. Reliable decision should always be based on global evaluation, for a maximal set of one-to-one matchings
can be considered as the reconstruction of the total 3D view except for the occluded regions.

Since the recognition and correspondence of parts in the left and right images are based on global features, on
the one hand, and our aim is to solve the stereo correspondence problem within the CNN paradigm of basically
local processing capability, on the other, we presume that the 3D scene and its images show enough texture for
local evaluation!# 3 or, alternatively, we do not intend to determine the spatial location of textureless parts,
a task left for further high-level processing as interpolation, recognition or object identification.

The extensive research in human stereo vision in the 1970s, stimulated also by the invention of random-dot
stereogram by Julesz® in 1960, led to the computational theory and some comprehensive structured functional
model of stereopsis.” ' Due to their structural resemblance, the class of co-operative stereo models are
practicable in multilayer CNN implementation.® In addition to the structure of facilitation and inhibition
mechanism, we can adopt some underlying reasoning and rules as well, in developing a CNN stereo model
and determining its parameters.

2.1. Representation in 3D

As always in computer-aided image processing, our images are represented as arrays of pixels. The dimension
of pixels are in close connection to image resolution. In stereo representation of a 3D scene, the 2D pixel
dimensions together with the exact orientation of left and right images determine the 3D pixelization of the
scene. In theory, the 3D pixels are spherical cubes with a depth dimension depending on their distance from the
cameras. In practice, when using narrow angle cameras and adapting the concept of parallel projection,
the third dimension is pixelised by fronto-parallel planes. Thus, the task for depth detection is to determine
the attributes of as much as possible 3D pixel-cubes in those locations where an object can be found. If, for
simplicity, we exclude translucent objects, most of 3D pixels are either behind or in front of an object in the
scene, rendering the attributes indeterminable in the first group and transparent in the second. In our approach,
we represent the investigated portion of the 3D space with a multilayer cell structure, each cell standing for a 3D
pixel-cube and each layer for a fronto-parallel plane. In practice, based on some prior knowledge (e.g. darkness
histogram'>) about the 3D arrangement, whole depth layers can be left out from investigation, thus saving
resources by reducing the number of required layers. In the investigated layers, the hopefully extensive
contiguous patches of cells in active state are to represent the visible surface segments of 3D objects in the scene.

From inherent properties of stereo image pairs discussed above follow, that with the left and right images
sliding horizontally on each other, as shown in Figure 1, time-to-time matching segments in the two images
will glide exactly to cover each other. By some appropriate equivalence check these exact matches can be
detected in a series of successive shift positions that can directly be associated with fronto-parallel depth
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layers. This way the equivalence operations produce a set of so-called equivalence patterns, binary maps of
possible target positions for further processing. Figure 1 shows a simple depth extraction example. The 3D
location of square O and cross + are unique, but the location of the two circles O are ambiguous. They can
be either at positions A or at positions B; but two of the four are false targets. Figure 1 also shows the two
symbolic paths along which the pixels of left and right images ‘go’ in producing the series of equivalence
patterns for the successive depth layers.

In Figure 1, the left and right images play a symmetrical role, going along such symmetrical paths that
cannot be well implemented in a multilayer CNN of rectangular cell structure, where the cells of neighbour-
ing layers are above each other. Shifting each layer in Figure 1 by half of the grid to the left with respect to the
lower next one as shown in Figure 2, we obtain a 3D rectangular structure, with left pixel path perpendicular
to the layers well suited to multilayer CNN.

RIGHT RIXEL PATH LEFT PIXEL PATH

v O\ e

LEFT IMAGE RIGHT IMAGE

Figure 1. Sliding elements in a stereo-pair

LEFT PIXEL PATH
RIGHT PIXEL PATH

DEPTH
LAYERS

Figure 2. Rectangular transformation of 3D representation
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3. DEPTH DETECTION IN MULTILAYER CNN ARCHITECTURE

Owing to the global nature of the stereo correspondence problem the amount of possible false targets is very
high when using local equivalence check available in CNN processing. Except for some infrequent, ‘luckily’
unique cases, in principle, there is no local property in the images to decide on whether a matching is a real
one or it corresponds to some false target. Based on common sense assumptions, however, the computational
theory of stereo vision gives guidelines, algorithmic rules to meet simultaneously for most of local matches in
order to form real objects when put together.”-8

3.1. Depth detection rules

One rule, called continuity, follows from the observation that everyday objects are usually smooth on most
of their surfaces, therefore disparity also changes smoothly. Another rule, called unigueness, is the conse-
quence of the fact that there is a unique correspondence of each image point to some surface point in the 3D
scene. There are two algorithmic interpretations of uniqueness; the stronger one is to ensure that neither
point in either image should take part in more than one matching. The other and simpler one is to force
a single-valued depth map, being valid only for opaque objects.!® The rules of continuity and uniqueness
provide for a sound methodical basis in deriving the neighbourhood relation for a massively coupled
multilayer cellular neural structure and the algorithmic core implemented by it, to obtain a 3D solution as its
equilibrium, for the stereo correspondence problem.** 3

The continuity rule is transformed into a single layer facilitation template for all layers. The uniqueness
rule in its weaker form yields uniform local inhibition templates for all pairs of layers. To implement
uniqueness in stronger form requires symmetrical pairs of horizontally shifted inhibitions for all pairs of
layers along the two pixel paths (see Figure 1), where the amount of shift is the depth difference of the
inhibiting and inhibited layers. When we process real images and not computer-generated ones, the
pixel-to-pixel correspondence between the left and right images cannot be guaranteed, therefore we will
implement the rules in a certain neighbourhood to perform a filtering of noise and inaccuracies of the
imaging process. Displaying a cross-section perpendicular to CNN layers, Figure 3(a) shows the inhibiting
influence received by a single cell from cells on other layers along the left pixel path. Figure 3(b) shows in 3D
the same mechanism for two upper layer cells of a three-layer CNN, displaying it along the left pixel path for
the one and along the right for the other.

(a) (b)

Figure 3. Stucture of interlayer inhibition with one-neighbourhood filtering
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3.2. Interlayer propagation mechanism

The multilayer CNN implementing the above core of rules is supplied with the set of equivalence patterns,
one for each layer, as initial state, and having the transient decayed, its steady state would yield the 3D
solution. In this CNN structure, however, the feedback connections derived from the uniqueness rule create
two massively dense interlayer nets of couplings, the first one belonging to the left pixel paths perpendicular
to the CNN plane, and the second one belonging to the right pixel paths slanted to it. Consequently, in this
CNN structure the local neighbourhood concept is not preserved concerning the depth of interlayer
connections. Analysing the interlayer mechanism of either pixel path we find that each cell receives the sum of
inhibitions from cells above it and that of from below as well. Both the upper and lower inhibitions are
collected from the local neighbourhood of the pixel path. We can exert the same inhibition if we install two
fast propagation lines along each pixel paths for collecting and transmitting inhibitions upwards and
downwards. Forming a complex cell, each CNN cell is furnished with four adders, one for each propagation
line, to add the inhibiting cell values to the value of the adder in the previous level. The sum of four in-cell
adder values will exert cell inhibition locally. Since the neighbourhood of complex cells is limited to the
adjacent layers, with the introduction of propagation mechanism of complex cells the local neighbourhood
concept of CNNis is restored. The simplified structure of a complex cell is shown in Figure 4, with displaying
only one inhibiting connection per propagation line. The thick upward and downward arrows from the
central cell indicate inhibition towards the other layers, the bi-directional arrows stand for lateral connec-
tions.

Similar to Figure 3, Figure 5(a) and 5(b), respectively, shows the cross-section and the 3D view of CNN
layers built of complex cells. In Figure 5(b), for the sake of clarity, only the contribution of one cell per layer is
depicted.

To implement the expected effect, the propagation of inhibition should be fast, i.e. the propagation delay
should be negligible with respect to the time constant of CNN cells. The problem of propagation speed can be
circumvented by a ‘software’ realisation of the complex cell in a multilayer CNN universal machine
framework operating in sampling mode.'” The CNNUM program has to implement five phases cyclically in
time-sharing; one for the CNN transient, the other four for performing the simple arithmetics of inhibition
propagation. During the propagation phases each state value sampled at the end of transient time-slice is

Figure 4. The complex cell of propagation mechanism with four address
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(a) (b)

Figure 5. Interlayer inhibition through propagation mechanism

stored in an ARAM of the cell, and is reloaded when proceeding with the next transient time-slice. The length
of the transient time-slice, i.e. the inhibition sampling rate is to be set as to avoid false trajectories.

4. TEMPLATE DESIGN—OPTIMIZATION APPROACH

In the previous sections we have developed a CNNUM architecture of complex cells to implement the
analogical algorithm for stereo depth detection, in the following two main steps:

(i) in a succession of horizontal shifts calculating a pixel-by-pixel equivalence of the left and right images
produce a series of binary (black on white) equivalence patterns, where the actual meaning of equivalence
may change depending on the features of input images,

(11) associating the equivalence patterns with depth layers, find maximum contiguous black areas that
together would give maximum covering over the whole image area with minimum overlaps.

Now, we concentrate on how to obtain proper template values for the above task. Being the propagation
mechanism transparent in this respect, in discussing template design techniques we will consider the original,
massively coupled multilayer CNN structure of non-local depth neighbourhood.

We have tried several methods to obtain templates for depth detection in the multilayer CNN described
above. The first sets of satisfactory templates quickly were found simply by error and trial based on our
expectations and some reasoning. Secondly, we used simplex optimization'® in two different ways to look for
templates. Finally, we derived template values from the comparison of CNN energy function and a second-
order goal function expressing our expectations. In most cases the templates were robust, giving good results
in wide range of template values. Surprisingly enough, however, the templates obtained in different ways were
basically different. Not even the optimization remained close to its initial value, when we started it from
a properly working result of another method. We presume that our differently formulated requirements
expressed in the different methods specify different non-linear dynamics that all converge to the same
equilibrium from the same initial condition.

The application of optimization methods is always promising, when several contradictory requirements
are to be met in a limited dimension parameter space. The advantage of simplex method is its simplicity
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concerning the goal function of requirements and its ability in avoiding local minima. We tried it with several
goal functions for different 3D depth detection applications embedded in a program written in Analogic
CNN Language ACL!® using Hardware Accelerator Board HAB?° for bulk CNN calculations.

4.1. Set of optimization parameters

The execution time of a multidimensional optimization depends strongly on the number of variables, thus
it must be reduced as possibly based on certain assumptions, exploiting e.g. symmetries. Our network can be
described by three template matrices — lateral control from equivalence patterns, lateral facilitation and
interlayer inhibition — and a current value. Owing to its central symmetry each template can be defined by
a centre and an off-centre value, leading to the parameter set (e, €., fc, fs, ic, io, I). Depending on the
application in mind this set can even be simplified further. Since off-centre values in control and inhibition
serves mainly for low-pass filtering, in experimenting with computer-generated stereopairs they can be
omitted. In the case of real camera images, when little spots bear more importance than individual pixels,
those centre and off-centre entries are better to take equal values. In the following examples the optimization
with five parameters (e, f;, f,, i, ) will be demonstrated. The corresponding templates are as follows:

o fo o i 0 0 O

A= fo fc f;) qu =|i i i B=|0 €. 0 (1)
o fo fo i 0 0 O
facilitation inhibition control

4.2. Optimization with heuristic considerations

If we confine our approach to the weak interpretation of uniqueness rule applying only one pixel path
perpendicular to depth layers and also take into account that both the equivalence patterns and the output
layers are binary, then the depth detection task with the above templates is reduced to handling 3 = 3-pixel
sized black-and-white pieces of stones. Fixing the number of layers it is fairly simple to scan through all the
possibilities if we exploit the fact that due to the symmetry of templates, besides the central pixels, only the
difference of black and white off-centre pixels in the investigated layer and that of together in all other layers
are to be considered. Technically speaking, this approach led to five embedded cycles running in small
integers in calculating the goal function for a template set. For each pixel configuration we defined the
expected direction of change in the cell state. Also, we used three categories in the size of the expected change:
no, small and large change. The goal function calculated the cumulated absolute difference between our
expectations and the real change belonging to the template just evaluated. The only difficulty in defining the
goal function was that while for some patterns the expected change is obvious, there exists a lot of ambiguous
others. To circumvent this problem we introduced a measure to qualify the strength of our expectations. The
advantage of this approach was its high speed, although the templates obtained were far from being
satisfactory; rather we used them as an initial guess for our optimization based on training, that follows.

4.3. Optimization on training images

In the second method, we computed the error between the obtained depth results and the a priori known,
required results for real images. In the simplest case the function was

L
error= Y Y |y} — 95| ®)
P=1 G j)p
where L is the number of layers, yf; and j7; are the cell output and the desired output, respectively, at position
(i, j) on layer p.
Depending on the application, it proved to be useful to include further terms in the error function to limit
the range of cell values. To avoid going into deep saturation an additive term of extra ‘punishment’ was
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applied for cases when abs(cell state) > saturation limit. Similarly, when expecting binary output we punished
the grey cells meeting the condition abs(cell state) < grey limit. In case of applying either or both punishments
the unwanted cell values were almost totally eliminated as shown in Figure 6 by the histograms of cell values.

The template values obtained were tested and found satisfactory both on computer generated stereograms
and saturated black-and-white camera image-pairs produced by projecting a random pattern onto the scene,
as shown in Figure 7.1% 1> We have also tested modified versions of the optimization method with three
further cases: real grey-scale images, images with large uniform areas and moving images. With these cases,
our aim was to gain experience in tuning the optimization method and the templates to meet special
requirements.

4.3.1. Detecting grey scale images. In everyday circumstances each object has some colour, shade and/or
texture that are the basis even for human depth perception. The matching points or areas in the left and right
images are searched for based on their common attributes. As shown in Figure 1, the matching can be unique
or ambiguous, when more than one area exhibit similar attributes. A periodic pattern leads to especially

4 I I 4
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Figure 7. Depth detection in real scene: (a) camera image of two boxes with and without projected pattern; (b) its thresholded stereopair;
(c) depth layers found
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much false target, and its special case, the uniformly coloured areas continuously can fill depth ranges with
ambiguous findings, that can only be positioned in a global processing. Obviously, matching more than one
attributes, i.e. applying a complex equivalence criterion can clear some ambiguous cases.

In our experiment we used two boxes of continuously changing grey shade and an equivalence check of
narrow grey window. The left and right images are shown in Figure 8, together with the two box faces found
as depth layers.

4.3.2. Detecting depth with large uniform areas. As was already mentioned, in real life cases of 3D objects
with large, uniform areas the depth cannot be determined in the lack of points to match. In the special case,
when we know of some sort of backgrounds (or even a few of extensive uniform areas) we can exclude their
attributes from depth detection and use only the different ones. Obviously, the 3D position of areas qualified
as ‘background’ or as ‘uniform’ are not determined, but the abundance of false targets would not wreck the
whole depth detection process. The separation of attributes is to take place already in the equivalence phase.
The method is demonstrated in the following simple example with two layers of a step-like folded newspaper.
Most part of the black-and-white scene is white, thus white is the background attribute. For depth detection
only the thin black shapes of letters can be used. In this case a simple logical AND operation will do the
separation of background areas and at the same time determine the equivalence patterns for the others.
Figure 9(a) shows the left and right camera image of the folded newspaper. At the beginning of depth
processing the images were thresholded to black-and-white. At the end of the depth detection the resulting
depth pattern was flattened to produce a depth-mask, shown in Figure 9(b), for the input images.

4.3.3. Detecting moving objects. In experimenting with moving objects we used the arrangement with
projected pattern, shown in Figure 7. Unlike to the previous cases, now the CNN transient does not start
with cells in filled-in zero state, it gets periodically a new input, instead. To produce output continuously, the
transient must continue from the actual non-zero state of cells. If the state of a cell happens to be deeply in the
saturation domain, much above + 1 or below — 1, then for a need of changing input, it takes a longer time to
remove large amount of charges from the cell capacitor and find a new settled state in time, or in worst case

Figure 8. Two boxes with gradually changing grey shade and the extracted depth structure

. [ ]
Qe ..
(a)

b

Figure 9. Photo pair of the folded newspaper sheet and the depth mask obtained
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the network may not be able to find the proper output. Therefore, for following moving objects it is crucial to
find a template that would not allow the cells to go into deep saturation.

For real scene camera images we always use templates that, in addition to extracting depth, would filter
out little noisy spots in the image. According to our experience, however, the templates with good filtering
properties usually drive the cells well into saturation, therefore a trade-off was to be found between these two
contradictory requirements. The example below clearly shows the effect of poor filtering that, if necessary,
can be improved by a cascaded CNN for noise removal. Downward in Figure 10, the camera image-pairs are
shown as they followed each other at the input of the depth detecting CNN. Next to each pair of inputs, the
extracted three layers of depth can be seen. It is worth mentioning, that in this case of moving objects the
CNN, in parallel with extracting depth, at the same time has to perform the thresholding of incoming
grey-scale camera images and also the equivalence operations, a task that can be considered as a pre-
processing phase when dealing with still images.

4.4. Robustness of the network—Sensitivity on template values

In Table I, typical template values obtained at different goals in optimization are shown. Concerning the
first two rows in Table I, in analysing several sets of templates, experimenting with numerous values of
parameters changing around the optimum found and evaluating the error function for them, we met high

Figure 10. The input pattern sequence for moving object detection and the depth layers found

Table 1. Typical template values for different optimization goals

Goal function e fe fo i I

General optimization 0-658 0-542 0-348 — 0321 — 3231
Punishing saturated and grey cells 0-591 0377 0-061 — 0-065 —2:152
Optimization for moving objects 1331 0-156 0-071 — 0122 — 1999
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robustness in accordance with our expectations. In the moving object case with continuously changing input
(in general, when solving partial differential equations) the sensitivity of solution as measured in the level of
output noise was higher. In all the cases we tested, the inputs and the outputs are digital, except for the input
of the experiment with the grey scale image. However, if we consider the equivalence operation as
a preparation step then even in this case the input to the main network part is also digital.

The templates obtained well reflect our intentions expressed in the goal functions. If we punish the
saturated cells then parameter e, and f’s controlling the influence from the equivalence patterns and the
feedback, respectively, decrease. In the case of moving objects, however, the effect of the equivalence patterns
becomes stronger because for a new input the cells must be able to follow it by changing even from one
saturation to the other. For the same reason the feedback cannot be very strong, a cell should not ‘adhere’ to
its momentary state, it ought to adapt flexibly to external changes. As an unpleasant side effect of this
flexibility, we detected a degradation in the lateral filtering of results, to be properly set for a trade-off. In
general, however, all the parameters must be considered together and not examined one by one, because
many different template sets can give the same result due to the robustness of the network.

We tried the method with several goal functions for different 3D depth detection applications. The simplex
optimization frame was implemented in an Analogic CNN Language ACL'® program running on a Pentium
120 MHz PC. It invoked a multilayer CNN simulator using Hardware Accelerator Board HAB2® for bulk
CNN calculations, whenever a goal function value belonging to a new set of optimization parameters was
required. Based on previous experience, 30 iterations was allowed for the simulator to find a solution for the
three-layer test example of dimensions 174 % 143 pixels in each layer. The calculation of a goal function value
together with the data transfer time between HAB and its host was around 30 sec. The simplex process took
typically 15-30 hour, i.e. several thousands of optimization steps to find satisfactory sets of parameters
sufficiently close to each other.

5. TEMPLATE DESIGN—ENERGY FUNCTION APPROACH

Since neural networks, the same way as all physical systems, seek for steady state a local minimum, an
equilibrium of their total energy, the classical method? for designing synaptic weights or CNN template
values is, first, to compose a second-order goal function reflecting our expectations concerning the solution of
the task to be solved and, second, to match symbolically that goal function to the energy function of the
neural network expressed in physical parameters. The energy function of a CNN of unity value cell resistors
and cell capacitors, working in the linear range of its (sigmoid) output function is as follows:

1 L L n m B L n m 1 L n m
E=—2Y20Y Y A k) VoyVou—X X X Vet 52X 2 Viu (3)
p q i j kleN.G, ) p i p i

where L is the number of CNN layers, n and m are the number of rows and columns in a layer, respectively,
and V,;; is the cell state and also the output within saturation.

The first component of the energy function is a sum of the energy of current sources controlled in feedback
by templates 4. In the second component, I, ;; is standing for the sum of the constant current source I and the
current of sources controlled forward from the input through templates B. The third component is the energy
stored in cell capacitors.

5.1. Criteria for finding a 3D surface

In order to find proper template values for stereo depth extraction, we develop a goal function to enforce
several criteria representing the continuity and uniqueness rules, in the form of second-order expressions of
cell capacitor voltages, descending towards preferable solutions. Each criterion is to convey a particular
point of view, sometimes contradictory in local neighbourhoods; their weighted competition is to terminate
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Figure 11. The equivalence pattern set and the depth layers found for a computer-generated random-dot stereogram of a three-level
step-pyramid

at an equilibrium that we consider as the solution for our problem. The starting point is the set of equivalence
patterns Q obtained from pixel-wise equivalence operations between the left and right images at a series of
relatively shifted positions.

Criterion 1. Since for a human spectator the equivalence pattern set (Figure 11) vividly shows the surface

segments looked for, indicating parts of the equivalence set belonging to the result well separated from the
other, noisy areas, in E; we require a pixel-wise identity between the equivalence image set and the result.

Z Z pii — Qpi))> =2 Etp.ij 4

where Q,,;; is value of pixel (i, j) in the pth equivalence pattern.

th

Criterion 2. From continuity rule it follows that we have to prefer the set of surface segments of maximum
contiguous areas, resulting in the local requirement E, expressing that in the horizontal and vertical
one-pixel neighbourhood of each pixel the number of pixels of the same type (black or white) should be
maximum.

E; =) Espyj
L m n

= Z Z Z [( p.ij = Vp. (t—l)J)2 +( p.ij Vp (l+1)1) + ( psij Vzui(J'—l))2 + (Vp.ij - Vp,i(j+ 1>)2] (5)

Dependmg on application the diagonal neighbours can also be included in E,, however, experience shows
that extending this criterion to the diagonal neighbours results in cutting of sharp edges.

Criterion 3. To obtain a binary (black-and-white) result we need a criterion E; with minima at state space
points of co-ordinates composed of — 1’s and + 1’s, as follows:

L m n

= - Z 2 Z Viii (6)
Criterion 4. The first three criteria are to work in each depth layer without considering the state of other
layers. The uniqueness rule postulates that each visible point in the 3D world has exactly one, unique left and

right image (except for occluded regions), leading to the consequence that each pixel in the left image has only
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one corresponding pixel in the right one. To enforce this type of uniqueness, in Section 3 we introduced
inhibition within layers to prevent a pixel from contributing to surface segments in more than one depth
layers.

As it was explained, when a pixel from the left image and another from the right one form a surface
segment, the relative difference in their horizontal positions determines the 3D depth, i.e. the depth layer. On
the other hand, for each 3D pixel uniquely can be found those two pixels, one from the left image, the other
from the right (see Figures 1 and 2), that may form a surface segment there. For the ith depth layer, the
difference in their original horizontal positions is just i, and they approach each other from layer to layer up
to the ith one. Passing depth layer i, their paths will diverge. By the uniqueness rule each surface segment
should be the only one along the paths of the contributing pixels, calling for the interlayer inhibition
mechanism along the pixel paths, as was discussed. Moreover, not all the pixel in one image must find
a corresponding pixel in the other; there might be occluded areas in the 3D sight, visible only on either image,
therefore, it is not expected from the interlayer mechanism to guarantee the existence of any surface segment
along each pixel path.

Since in a CNN cell the [black,white] range is mapped to [1, — 1], and at most one black pixel is to be
allowed along each pixel path, we consider following products of the cell capacitor voltages along each pixel

path:
L

(Vp,ij +1) Z (Vq,(i*-(p—q))j +1) (7
q#p
The value of this product increases with the number of + 1 of cell capacitor values along the pixel path
crossing layer p at pixel (i,j), if the cell capacitor value itself is + 1 at that pixel too. Summing such products
for all cells and pixel paths we obtain the inhibition criterion E,.

L L
Es=2 Evij=). [Z Voii t 1 Y (Voiro-ani + 1)} (8)
L p q#p

ij
5.2. Determining CNN templates

We associate the energy function to minimise by CNN with a weighted sum of expressions E;, E,, E;
and E,

E=axE{+b*E,+c*E;+d+E, 9)

The role of weights is to give relative emphasis to the criteria and to help to avoid local minima. The
weights that follow have been adjusted and tested in several application examples. It was found that the CNN
operation is robust with respect to the values of weights.

The comparison and matching of the two expressions for the energy function, the one comprising template
elements and the other composed of criteria, is to result in formulae for template values. Since both
expressions are a sum of components, it is worth while to make the comparison by components, i.e. to
produce the template formulae as sums too. To shorten lengthy expressions in the following comparison we
use a relative notation for template entries instead of the generally used absolute ones:

Apg (X, y) = Apg (i, j; i+ x,j + y) and A(x, y) < Ap,(x, y)

1. Let us expand first the weighted component E; (4) and (9) coming from criterion 1 and substitute the
corresponding terms for V,;; and Q,;; from the energy function (3)

aElp,ij ( p.ij Qp lj) =da (V§ ij 2Vp,ij Qp,ij + Qp%lj)

1 1
:_7‘4(0 O) plj (O 0) pthpzj"f'

5 Vo +aQp (10)
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If, for simplicity, we choose a = 1/2, then the coefficient of cell capacitor voltage will be zero, and the
contribution of this criterion to self-feedback will be zero too: 4 (0, 0) = 1 — 2a = 0. (Although the self-
feedback bears importance in CNN stability, being only an additive part to it, this zero value in itself
cannot endanger the final stability.)

The second term in the above expression comes from the comparison of factors containing Q,, ;;. It
gives a contribution to the value of forward control template: B(0,0) = 2+ a = 1 and shows, that the set
of equivalence patterns will serve as the input to the network through unity weight. The last term with
Q;; can be ignored, since — with its constant value — it would not affect the location of energy minimum.

. The expansion of E, (5) and the determination of template contributions follow similar considerations.

To obtain a proper result with this criterion, the summation has to go through a whole layer and the
effect of borders will be ignored.

bE;p.ij =b[(Vp,ij — Viij- )7+ Vp.ij — Visij+ )7+ Vp.is — Va, i—1j)2 + (Vi — Vit 1j)2]
=b (8V127-U 2Vp ij V Jij—1 7 2Vp.ij Vp,ijJrl 2Vp ij V = 1j T 2Vp,ij VP.H lj)
1
:_2(14 (0 0) Vp211+A1w(0a_ ) VpuV piij— 1+API7(O 1) piij U+1
+App( 10) pu pi— 11+App(1 0) Vp11V1+1]) (11)

If we choose b = 1/2 and take into account that in the summation over the whole layer each pair of
cells arises twice and therefore the coefficients are to be divided by 2, we obtain the following
one-neighbourhood (3 % 3) contribution to the feedback template:

0 10
A=|1 —4 1 (12)
0 10

. To finish with single layer criteria, we continue with E; (6) of criterion 3 aimed to provide for binary

output. It gives a simple contribution to self-feedback, as follows:

1
CE3p,ij CVPZU_ 2 pp (0 0) pl] (13)
Similarly to the previous cases, choosing ¢ = 1/2, we have the third contribution to self-feedback:
A,,(0,0)=2c=1.
We can compose now the final feedback facilitation template too, with and without substituting
a value for weights:

0 2b 0 0 1 0
A=|2b 1 —2a—8b+2c 2b | = A=]|1 -3 1 (14)
0 2b 0 0 1 0

. Finally, we discuss criterion 4 that was composed to control the ‘distribution’ of surface segments

among depth layers as dictated by the uniqueness rule. From expression (7) contributing in E, (8), we
pick a single product, keeping only a layer index, and compare with its counterpart in the energy
function:

AV, + V)« (V,+ 1) =dV,V, +dV, + dV, +d

1
= Apg (x, 9) V, Vy —

-3 X, =WV, Vo= 1V, — LV, +d (15)

1
2 ‘117(
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We obtain the feedback template connecting depth layer ¢ to depth layer p and a contribution to constant
current source as follows:

Apy (x, ) = —d or choosingd =1, 4,,(x, y) = — 1 (16)
I,=—1

p

By running indices through all the layers we can collect the constant current contributions flowing into each
single cell, owing to the inhibition along the left and right pixel paths, with the result I = 2 — 2L.

Based on the multilayer structure of CNN in Figure 2, the general indices in the template above can be
replaced with actual ones considering the direction of pixel paths among layers. Owing to the rectangular
representation, the left pixel path always goes through pixels of identical positions perpendicularly to the
successive depth layers, resulting in feedback connections among all cells in the same position of different
layers A,,(0,0) = — 1. The right pixel paths go slanted, keeping always one pixel to the left when stepping
from one layer to the next one, i.e. A,,(¢ — p, 0) = — 1. These two nets of feedback connections coming from
the uniqueness rule create those two massively dense nets of couplings, the first one belonging to the left pixel
paths being perpendicular to the CNN plane, and the second one belonging to the right pixel paths slanted to
it, that were already discussed in Section 3.

5.3. Generalisation of equivalence check

In developing the multilayer stereo CNN architecture and deriving its templates, we built upon the
essentially accepted necessity of an equivalence operation. A more general interpretation of equivalence can
be achieved by formulating the related expectation as a criterion to match with some part in the energy
function. Supposing we know the solution of a depth extraction task, we can define a solution set S, on each
layer p, to contain pixels belonging to the solution. Proper solution sets S, will minimise the following
expression:

L
z(z QL —RY— ¥ Q(L%—Rf}> (17)
p \i.j¢éSp i,jeSp
where Q (-) is a symmetrical function with minimum at Q (0), just as abs(-), Lf; and R?; are the left and right
images, respectively, shifted to level p.

If we calculate QF; = Q (L?; — RYF) set of images and through control templates B connect to the input of the
stereo CNN structure, the contribution of the involved current sources, a part of I,,;; in equation (1), to the
CNN energy function (1) can be expressed as

L
> Y B(0,0) 0f VE (18)
p iJ

Taking into account that in a binary non-saturating steady-state solution V] is either —1 or + 1
depending on whether the pixel at (i, j) belongs to the solution set S, or not, expression (18) will directly lead
to equation (17) with a coefficient B (0,0). Consequently, the stereo CNN architecture will minimise equation
(17) that therefore can be considered as an alternative to criterion 1. Accepting this interpretation of
equivalence check gives way to incorporating it into the depth detection dynamics, instead of considering it
as a pre-processing phase, leading to structures necessary, for instance, in depth detection of moving objects.

5.4. Examples with templates

We made numerous experiments with weights a, b, ¢, d. Several sets of weights were tested on computer-
generated random-dot black-and-white and grey scale stereograms, the same or similar to the previously
discussed ones. Table II summarizes the outcome of experiments. The results with parameters shown in
Table 11 were satisfactory; for computer-generated random-dot stereograms we calculated the rate of bad
pixels, it was found to be below 1%. The strange negative value for self-feedback f, can be accepted if we
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consider its role as a counterbalance for the strong inhibition. Similar role is assumed by constant current I in
keeping the dynamic range of operations close to the centre of the linear domain of CNN.

Figure 11 shows three layers of the equivalence pattern set and the resulting depth layers for a computer-
generated random-dot stereogram of a step pyramid. In order to test the disturbing effect of empty layers, the
depth detection was performed with five layers; in addition to the three layers of the step pyramid two layers
were placed in such a depth where no surface segment was expected. The CNN found the three layers
properly and left the additional two layers practically empty except for a small number of pixels at the
pyramid steps, demonstrating that the effect of empty layers in the depth detection process is negligible. The
ragged contours of pyramid steps came from the inherent local uncertainty of the random-dot technique, that
can be verified by simple visual inspection of the original stereogram.

Five depth layers extracted from a real scene stereo-pair of two boxes (similar to the scene in Figure 7) are
shown in Figure 12. On the contrary to the previous, computer-generated case, small segments in the second
and fourth ‘empty’ layers were found at the edges of the two boxes. These false findings can be attributed to

Table II. Template values from energy function approach (for facilitation corner f, zero values are assumed (see'?))

Configuration e. I I i I

Template expressions 2a 1 —2a—8b+2c 2b —d 2 —2L

Values for a=b=c=1/2 d=1 L=5 1 -3 1 —1 -8
-

L
: - .

Figure 12. The depth layers found for a real scene stereo pair of two boxes with projected pattern

Figure 13. Continuous grey scale stereo pair of a spherical segment and the contour lines found at eight equidistant depth
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local ambiguities in the projected pattern, since they are visually observable in stereoscope too, and therefore
they cannot be considered as an improper functioning of the depth detection algorithm.

Figure 13 shows a continuous grey scale stereogram of a spherical surface, modelling a real scene stereo
image situation. In producing the equivalence pattern set we simply used the difference of grey levels with low
thresholding. Due to the continuously changing grey level and the slowly varying depth there was no danger
of false targets. The evolution of CNN transient for several examples showed that most of the surface
segments were dealt among layers quickly, already in the beginning of the transient. Most of the segments
were light grey, almost white first. The final dark, mostly black tone was achieved only after a longer filtering
phase. The typical time elapsed before an approximate steady state was reached was 10-50 RC, the CNN
time constant.

6. CONCLUSIONS

Based on models and rules established in the computational theory of human stereo vision we developed
a local neighbourhood multilayer CNNUM structure to extract 3D depth from stereo images. The CNN
templates were derived in several ways using optimization and as well as a symbolic matching of CNN
energy function to a second-order goal function. The templates obtained proved to be robust in a wide range
of parameters.
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