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Matrix variances with projections

Dénes Petz and Géza Tóth
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Abstract. The quantum variance of a self-adjoint operator depends on a

density matrix whose particular example is a pure state (formulated by a

projection). A general variance can be obtained from certain variances of pure

states. This is very different from the probabilistic case.

By a density matrix D ∈ Mn(C) we mean D ≥ 0 and TrD = 1. In quantum

information theory the traditional variance is

(1) VarD(A) = TrDA2 − (TrDA)2

when D is a density matrix and A ∈Mn(C) is a self-adjoint operator [3], [4]. This

is the straightforward analogy of the variance in probability theory [2]; a standard

notation is 〈A2〉 − 〈A〉2 in both formalisms. It is rather different from probability

theory that this variance can be strictly positive even in the case when D has

rank 1. If D has rank 1, then it is an orthogonal projection and it is also called as

pure state.

It is easy to show that

VarD(A+ λI) = VarD(A) (λ ∈ R)

and the concavity of the variance functional D 7→ VarD(A):

VarD(A) ≥
∑

i

λiVarDi
(A) if D =

∑

i

λiDi.

(Here λi ≥ 0 and
∑
i λi = 1.)
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If we change the basis so that D = Diag(p1, p2, . . . , pn), then we have

(2) VarD(A) =

n∑

i,j=1

pi + pj
2

|Aij |2 −
( n∑

i=1

piAii

)2

.

In the projection example P = Diag(1, 0, . . . , 0), formula (2) gives

VarP (A) =
∑

i 6=1

|A1i|2

and this can be strictly positive.

Theorem. Let D be a density matrix. Take all the decompositions such that

(3) D =
∑

i

qiQi ,

where Qi are pure states and (qi) is a probability distribution. Then

(4) VarD(A) = sup
(∑

i

qi
(
TrQiA

2 − (TrQiA)2
) )
,

where the supremum is over all decompositions (3).

The proof will be an application of matrix theory. The first lemma contains

a trivial computation on block matrices.

Lemma 1. Assume that

D =

[
D∧ 0

0 0

]
, Di =

[
D∧
i 0

0 0

]
, A =

[
A∧ B

B∗ C

]

and

D =
∑

i

λiDi, D∧ =
∑

i

λiD
∧
i .

Then

(TrD∧(A∧)2 −(TrD∧A∧)2) −
∑

i

λi(TrD∧
i (A∧)2 − (TrD∧

i A
∧)2))

= (TrDA2 − (TrDA)2) −
∑

i

λi(TrDiA
2 − (TrDiA)2).

This lemma shows that if D ∈Mn(C) has a rank k < n, then the computation

of a variance VarD(A) can be reduced to k × k matrices. The equality in (4) is

rather obvious for a rank 2 density matrix and due to the previous lemma the

computation will be with 2 × 2 matrices.
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Lemma 2. For a rank 2 matrix D the equality holds in (4).

Proof. Due to Lemma 1 we can make the computation with 2 × 2 matrices. We

can assume that

D =

[
p 0

0 1 − p

]
, A =

[
a1 b

b a2

]
.

Then

TrDA2 = p(a21 + |b|2) + (1 − p)(a22 + |b|2).

We can assume that

TrDA = pa1 + (1 − p)a2 = 0.

Let

Q1 =

[
p c e−ıϕ

c eıϕ 1 − p

]
,

where c =
√
p(1 − p). This is a projection and

TrQ1A = a1p+ a2(1 − p) + bc e−ıϕ + bc eıϕ = 2cRe b e−ıϕ.

We choose ϕ such that Re b e−ıϕ = 0. Then TrQ1A = 0 and

TrQ1A
2 = p(a21 + |b|2) + (1 − p)(a22 + |b|2) = TrDA2.

Let

Q2 =

[
p −c e−ıϕ

−c eıϕ 1 − p

]
.

Then

D =
1

2
Q1 +

1

2
Q2

and we have

1

2
(TrQ1A

2 + TrQ1A
2) = p(a21 + |b|2) + (1 − p)(a22 + |b|2) = TrDA2.

Therefore we have an equality.

We denote by r(D) the rank of an operator D. The idea of the proof is to

reduce the rank and the block-diagonal formalism will be used [1].
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Lemma 3. Let D be a density matrix and A = A∗ be an observable. Assume the

block-matrix forms

D =

[
D1 0

0 D2

]
, A =

[
A1 A2

A∗
2 A3

]
,

and r(D1), r(D2) > 1. We construct

D′ :=

[
D1 X∗

X D2

]

such that

TrDA = TrD′A, D′ ≥ 0, r(D′) < r(D).

Proof. The TrDA = TrD′A condition is equivalent with TrXA2 + TrX∗A∗
2 = 0

and this holds if and only if Re TrXA2 = 0.

We can have unitaries U and W such that UD1U
∗ and WD2W

∗ are diagonal:

UD1U
∗ = Diag(0, . . . , 0, a1, . . . , ak), WD2W

∗ = Diag(b1, . . . , bl, 0, . . . , 0)

where ai, bj > 0. Then D has the same rank as the matrix
[
U 0

0 W

]
D

[
U∗ 0

0 W ∗

]
=

[
UD1U

∗ 0

0 WD2W
∗

]
,

the rank is k + l. A possible modification of this matrix is

Y :=




Diag(0, . . . , 0, a1, . . . , ak−1) 0 0 0

0 ak
√
akb1 0

0
√
akb1 b1 0

0 0 0 Diag(b2, . . . , bl, 0, . . . , 0)




=

[
UD1U

∗ M

M WD2W
∗

]

and r(Y ) = k + l − 1. So Y has a smaller rank than D. Next we take
[
U∗ 0

0 W ∗

]
Y

[
U 0

0 W

]
=

[
D1 U∗MW

W ∗MU D2

]

which has the same rank as Y . If X1 := W ∗MU is multiplied with eıα (α > 0),

then the positivity condition and the rank remain. On the other hand, we can

choose α > 0 such that Re Tr eıαX1A2 = 0. Then X := eıαX1 is the matrix we

wanted.
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Lemma 4. Let D be a density matrix of rank m > 1 and A = A∗ be an observable.

We claim the existence of a decomposition

(5) D = pD− + (1 − p)D+,

such that r(D−) < m, r(D+) < m, and

(6) TrAD+ = TrAD− = TrDA.

Proof. By unitary transformation we can get to the formalism of the previous

lemma:

D =

[
D1 0

0 D2

]
, A =

[
A1 A2

A∗
2 A3

]
.

We choose

D+ = D′ =

[
D1 X∗

X D2

]
, D− =

[
D1 −X∗

−X D2

]
.

Then

D =
1

2
D− +

1

2
D+

and the requirements TrAD+ = TrAD− = TrDA also hold.

Proof of the Theorem. For rank-2 states, it is true because of Lemma 2. Any

state with a rank larger than 2 can be decomposed into the mixture of lower rank

states, according to Lemma 4, that have the same expectation value for A, as the

original state has. The lower rank states can then be decomposed into the mixture

of states with an even lower rank, until we reach rank-2 states. Thus, any state D

can be decomposed into the mixture of

(7) D =
∑

pkQk

such that TrAQk = TrAD. Hence the statement of the theorem follows.

The above theorem has been included in [5] already, but the strictly mathe-

matical argument and the matrix formalism appear here.
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