Matrix variances with projections

Dénes Petz and Géza Tóth

Communicated by L. Kérchy

Abstract

The quantum variance of a self-adjoint operator depends on a density matrix whose particular example is a pure state (formulated by a projection). A general variance can be obtained from certain variances of pure states. This is very different from the probabilistic case.

By a density matrix $D \in M_{n}(\mathbb{C})$ we mean $D \geq 0$ and $\operatorname{Tr} D=1$. In quantum information theory the traditional variance is

$$
\begin{equation*}
\operatorname{Var}_{D}(A)=\operatorname{Tr} D A^{2}-(\operatorname{Tr} D A)^{2} \tag{1}
\end{equation*}
$$

when D is a density matrix and $A \in M_{n}(\mathbb{C})$ is a self-adjoint operator [3], [4]. This is the straightforward analogy of the variance in probability theory [2]; a standard notation is $\left\langle A^{2}\right\rangle-\langle A\rangle^{2}$ in both formalisms. It is rather different from probability theory that this variance can be strictly positive even in the case when D has rank 1. If D has rank 1 , then it is an orthogonal projection and it is also called as pure state.

It is easy to show that

$$
\operatorname{Var}_{D}(A+\lambda I)=\operatorname{Var}_{D}(A) \quad(\lambda \in \mathbb{R})
$$

and the concavity of the variance functional $D \mapsto \operatorname{Var}_{D}(A)$:

$$
\operatorname{Var}_{D}(A) \geq \sum_{i} \lambda_{i} \operatorname{Var}_{D_{i}}(A) \quad \text { if } \quad D=\sum_{i} \lambda_{i} D_{i}
$$

(Here $\lambda_{i} \geq 0$ and $\sum_{i} \lambda_{i}=1$.)

[^0]AMS Subject Classifications (2000): 81Q50, 40C05.
Key words and phrases: density matrix, pure state, projection, variance.

If we change the basis so that $D=\operatorname{Diag}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, then we have

$$
\begin{equation*}
\operatorname{Var}_{D}(A)=\sum_{i, j=1}^{n} \frac{p_{i}+p_{j}}{2}\left|A_{i j}\right|^{2}-\left(\sum_{i=1}^{n} p_{i} A_{i i}\right)^{2} \tag{2}
\end{equation*}
$$

In the projection example $P=\operatorname{Diag}(1,0, \ldots, 0)$, formula (2) gives

$$
\operatorname{Var}_{P}(A)=\sum_{i \neq 1}\left|A_{1 i}\right|^{2}
$$

and this can be strictly positive.

Theorem. Let D be a density matrix. Take all the decompositions such that

$$
\begin{equation*}
D=\sum_{i} q_{i} Q_{i} \tag{3}
\end{equation*}
$$

where Q_{i} are pure states and $\left(q_{i}\right)$ is a probability distribution. Then

$$
\begin{equation*}
\operatorname{Var}_{D}(A)=\sup \left(\sum_{i} q_{i}\left(\operatorname{Tr} Q_{i} A^{2}-\left(\operatorname{Tr} Q_{i} A\right)^{2}\right)\right) \tag{4}
\end{equation*}
$$

where the supremum is over all decompositions (3).
The proof will be an application of matrix theory. The first lemma contains a trivial computation on block matrices.

Lemma 1. Assume that

$$
D=\left[\begin{array}{cc}
D^{\wedge} & 0 \\
0 & 0
\end{array}\right], \quad D_{i}=\left[\begin{array}{cc}
D_{i}^{\wedge} & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
A^{\wedge} & B \\
B^{*} & C
\end{array}\right]
$$

and

$$
D=\sum_{i} \lambda_{i} D_{i}, \quad D^{\wedge}=\sum_{i} \lambda_{i} D_{i}^{\wedge}
$$

Then

$$
\begin{aligned}
\left(\operatorname{Tr} D^{\wedge}\left(A^{\wedge}\right)^{2}\right. & \left.\left.-\left(\operatorname{Tr} D^{\wedge} A^{\wedge}\right)^{2}\right)-\sum_{i} \lambda_{i}\left(\operatorname{Tr} D_{i}^{\wedge}\left(A^{\wedge}\right)^{2}-\left(\operatorname{Tr} D_{i}^{\wedge} A^{\wedge}\right)^{2}\right)\right) \\
& =\left(\operatorname{Tr} D A^{2}-(\operatorname{Tr} D A)^{2}\right)-\sum_{i} \lambda_{i}\left(\operatorname{Tr} D_{i} A^{2}-\left(\operatorname{Tr} D_{i} A\right)^{2}\right)
\end{aligned}
$$

This lemma shows that if $D \in M_{n}(\mathbb{C})$ has a rank $k<n$, then the computation of a variance $\operatorname{Var}_{D}(A)$ can be reduced to $k \times k$ matrices. The equality in (4) is rather obvious for a rank 2 density matrix and due to the previous lemma the computation will be with 2×2 matrices.

Lemma 2. For a rank 2 matrix D the equality holds in (4).

Proof. Due to Lemma 1 we can make the computation with 2×2 matrices. We can assume that

$$
D=\left[\begin{array}{cc}
p & 0 \\
0 & 1-p
\end{array}\right], \quad A=\left[\begin{array}{cc}
a_{1} & b \\
\bar{b} & a_{2}
\end{array}\right] .
$$

Then

$$
\operatorname{Tr} D A^{2}=p\left(a_{1}^{2}+|b|^{2}\right)+(1-p)\left(a_{2}^{2}+|b|^{2}\right)
$$

We can assume that

$$
\operatorname{Tr} D A=p a_{1}+(1-p) a_{2}=0
$$

Let

$$
Q_{1}=\left[\begin{array}{cc}
p & c e^{-\imath \varphi} \\
c e^{\imath \varphi} & 1-p
\end{array}\right]
$$

where $c=\sqrt{p(1-p)}$. This is a projection and

$$
\operatorname{Tr} Q_{1} A=a_{1} p+a_{2}(1-p)+b c e^{-\imath \varphi}+\bar{b} c e^{\imath \varphi}=2 c \operatorname{Re} b e^{-\imath \varphi}
$$

We choose φ such that $\operatorname{Re} b e^{-\imath \varphi}=0$. Then $\operatorname{Tr} Q_{1} A=0$ and

$$
\operatorname{Tr} Q_{1} A^{2}=p\left(a_{1}^{2}+|b|^{2}\right)+(1-p)\left(a_{2}^{2}+|b|^{2}\right)=\operatorname{Tr} D A^{2}
$$

Let

$$
Q_{2}=\left[\begin{array}{cc}
p & -c e^{-\imath \varphi} \\
-c e^{\imath \varphi} & 1-p
\end{array}\right]
$$

Then

$$
D=\frac{1}{2} Q_{1}+\frac{1}{2} Q_{2}
$$

and we have

$$
\frac{1}{2}\left(\operatorname{Tr} Q_{1} A^{2}+\operatorname{Tr} Q_{1} A^{2}\right)=p\left(a_{1}^{2}+|b|^{2}\right)+(1-p)\left(a_{2}^{2}+|b|^{2}\right)=\operatorname{Tr} D A^{2}
$$

Therefore we have an equality.

We denote by $r(D)$ the rank of an operator D. The idea of the proof is to reduce the rank and the block-diagonal formalism will be used [1].

Lemma 3. Let D be a density matrix and $A=A^{*}$ be an observable. Assume the block-matrix forms

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
A_{2}^{*} & A_{3}
\end{array}\right]
$$

and $r\left(D_{1}\right), r\left(D_{2}\right)>1$. We construct

$$
D^{\prime}:=\left[\begin{array}{cc}
D_{1} & X^{*} \\
X & D_{2}
\end{array}\right]
$$

such that

$$
\operatorname{Tr} D A=\operatorname{Tr} D^{\prime} A, \quad D^{\prime} \geq 0, \quad r\left(D^{\prime}\right)<r(D)
$$

Proof. The $\operatorname{Tr} D A=\operatorname{Tr} D^{\prime} A$ condition is equivalent with $\operatorname{Tr} X A_{2}+\operatorname{Tr} X^{*} A_{2}^{*}=0$ and this holds if and only if $\operatorname{Re} \operatorname{Tr} X A_{2}=0$.

We can have unitaries U and W such that $U D_{1} U^{*}$ and $W D_{2} W^{*}$ are diagonal:

$$
U D_{1} U^{*}=\operatorname{Diag}\left(0, \ldots, 0, a_{1}, \ldots, a_{k}\right), \quad W D_{2} W^{*}=\operatorname{Diag}\left(b_{1}, \ldots, b_{l}, 0, \ldots, 0\right)
$$

where $a_{i}, b_{j}>0$. Then D has the same rank as the matrix

$$
\left[\begin{array}{cc}
U & 0 \\
0 & W
\end{array}\right] D\left[\begin{array}{cc}
U^{*} & 0 \\
0 & W^{*}
\end{array}\right]=\left[\begin{array}{cc}
U D_{1} U^{*} & 0 \\
0 & W D_{2} W^{*}
\end{array}\right]
$$

the rank is $k+l$. A possible modification of this matrix is

$$
\begin{aligned}
Y & :=\left[\begin{array}{cccc}
\operatorname{Diag}\left(0, \ldots, 0, a_{1}, \ldots, a_{k-1}\right) & 0 & 0 & 0 \\
0 & a_{k} & \sqrt{a_{k} b_{1}} & 0 \\
0 & \sqrt{a_{k} b_{1}} & b_{1} & 0 \\
0 & 0 & 0 & \operatorname{Diag}\left(b_{2}, \ldots, b_{l}, 0, \ldots, 0\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
U D_{1} U^{*} & M \\
M & W D_{2} W^{*}
\end{array}\right]
\end{aligned}
$$

and $r(Y)=k+l-1$. So Y has a smaller rank than D. Next we take

$$
\left[\begin{array}{cc}
U^{*} & 0 \\
0 & W^{*}
\end{array}\right] Y\left[\begin{array}{cc}
U & 0 \\
0 & W
\end{array}\right]=\left[\begin{array}{cc}
D_{1} & U^{*} M W \\
W^{*} M U & D_{2}
\end{array}\right]
$$

which has the same rank as Y. If $X_{1}:=W^{*} M U$ is multiplied with $e^{\imath \alpha}(\alpha>0)$, then the positivity condition and the rank remain. On the other hand, we can choose $\alpha>0$ such that $\operatorname{Re} \operatorname{Tr} e^{\imath \alpha} X_{1} A_{2}=0$. Then $X:=e^{\imath \alpha} X_{1}$ is the matrix we wanted.

Lemma 4. Let D be a density matrix of rank $m>1$ and $A=A^{*}$ be an observable. We claim the existence of a decomposition

$$
\begin{equation*}
D=p D_{-}+(1-p) D_{+}, \tag{5}
\end{equation*}
$$

such that $r\left(D_{-}\right)<m, r\left(D_{+}\right)<m$, and

$$
\begin{equation*}
\operatorname{Tr} A D_{+}=\operatorname{Tr} A D_{-}=\operatorname{Tr} D A \tag{6}
\end{equation*}
$$

Proof. By unitary transformation we can get to the formalism of the previous lemma:

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
A_{2}^{*} & A_{3}
\end{array}\right]
$$

We choose

$$
D_{+}=D^{\prime}=\left[\begin{array}{cc}
D_{1} & X^{*} \\
X & D_{2}
\end{array}\right], \quad D_{-}=\left[\begin{array}{cc}
D_{1} & -X^{*} \\
-X & D_{2}
\end{array}\right]
$$

Then

$$
D=\frac{1}{2} D_{-}+\frac{1}{2} D_{+}
$$

and the requirements $\operatorname{Tr} A D_{+}=\operatorname{Tr} A D_{-}=\operatorname{Tr} D A$ also hold.

Proof of the Theorem. For rank-2 states, it is true because of Lemma 2. Any state with a rank larger than 2 can be decomposed into the mixture of lower rank states, according to Lemma 4, that have the same expectation value for A, as the original state has. The lower rank states can then be decomposed into the mixture of states with an even lower rank, until we reach rank- 2 states. Thus, any state D can be decomposed into the mixture of

$$
\begin{equation*}
D=\sum p_{k} Q_{k} \tag{7}
\end{equation*}
$$

such that $\operatorname{Tr} A Q_{k}=\operatorname{Tr} A D$. Hence the statement of the theorem follows.

The above theorem has been included in [5] already, but the strictly mathematical argument and the matrix formalism appear here.

ACTA

Acknowledgement. The authors thank the European Union (ERC Starting Grant GEDENTQOPT, CHIST-ERA QUASAR), the Spanish MICINN (Project No. FIS2009-12773-C02-02), the Basque Government (Project No. IT4720-10) and the support of the National Research Fund of Hungary OTKA (No. K83858 and No. K104206).

References

[1] R. Bhatia, Matrix Analysis, Springer, 1997.
[2] W. Feller, An introduction to probability theory and its applications I, Oxford, England, Wiley, 1950.
[3] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, NorthHolland, Amsterdam, 1982.
[4] D. Petz, Quantum Information Theory and Quantum Statistics, Springer-Verlag, Heidelberg, 2008.
[5] G. Tóth and D. Petz, Optimal generalized variance and quantum Fisher information, http://fr.arxiv.org/abs/1109.2831.
D. Petz, Alfréd Rényi Institute of Mathematics, H-1364 Budapest, POB 127, Hungary; e-mail: petz@math.bme.hu
G. То́тн, Department of Theoretical Physics, The University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain; e-mail: toth@alumni.nd.edu

[^0]: Received November 3, 2011, and in revised form February 18, 2012.

